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OMEGA THEOREMS FOR A CLASS OF LLL-FUNCTIONS
(A note on the Rankin-Selberg zeta-function)
Ayyadurai Sankaranarayanan & Jyothi Sengupta

Abstract: In this paper we study the Omega theorems for a class of general L -functions satis-
fying certain conditions and as an important application, we obtain the Omega theorems for the
Rankin-Selberg zeta-functions Z(s0) attached to holomorphic cusp forms of fixed weight for the

full modular group when 1
2 6 σ0 < 1 .
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1. Introduction

Omega theorems for the Riemann zeta-function and L-functions of degree 2 have
been extensively studied for which we refer to [1], [2], [5], [6] and [13]. Some of
these results can collectively be seen in [4] and [14].

The aim of this note is to prove Ω theorems for a class of L-functions
satisfying certain conditions and as an application, we obtain Ω theorems for the
Rankin-Selberg zeta-functions which are of degree 4. We follow the arguments of
Ramachandra and Sankaranarayanan (see [6]).

Let C be the class of general L -functions F (s) satisfying the following con-
ditions.

(i). F (s) is absolutely convergent in the half-plane σ > 1 and continuable ana-
lytically to the region σ > 0 as a meromorphic function possibly with a sim-
ple pole at s = 1 having the residue κ1 and there F (s) is of finite order (i.e
|(s− 1)F (s)| � (|t| + 2)A in σ > 0). It has an Euler-product representation and
a functional equation of the Riemann zeta type. Thus all the non-trivial complex
zeros of F (s) lie in the vertical strip 0 6 σ 6 1.

(ii). logF (s) can be written in the form

logF (s) =
∑
p

∑

m>1

b (pm)
pms

(1.1)

2000 Mathematics Subject Classification: primary 11 N, secondary 11 N66, 11 N05.



120 Ayyadurai Sankaranarayanan & Jyothi Sengupta

with the series in (1.1) being absolutely convergent in σ > 1 (where the sum runs
over all primes p) and the coefficients b(n)’s satisfy the estimates:

b(n)� nε, (1.2)

b(p)’s are real and the asymptotic relation

∑

p6x
b(p) = κ

x

log x
+O

(
x

(log x)2

)
, (1.3)

holds where κ is any positive constant. We also assume that

∑

p6u

∣∣b (p2)∣∣� u(log u). (1.4)

(iii). Let

NF (µ, T ) = # {ρ = β + iγ : F (ρ) = 0, β > µ > 0, |γ| 6 T} . (1.5)

We make the following zero-density hypothesis.

Hypothesis. For fixed µ satisfying 1 > µ > 1
2 and for T > T0 (with T0 suffi-

ciently large), there exists a δ > 0 such that NF (µ, T )� T 1−δ where the implied
constant depends on µ and δ .

Throughout the paper, we assume that x > x0 and T > T0 (where x0 and
T0 are sufficiently large), and the parameter α satisfies the inequality 0 < α 6

1
100 log log x . The alphabets A,B,C · · · (with or without suffixes denote positive
constants) and ε, δ denote small positive constants. Now, We prove

Theorem. Let F (s) ∈ C and thus the conditions (i), (ii) and (iii) hold for F (s) by
our assumption. Let 1

2 < µ1 6 σ0 < 1 , 0 6 θ < 2π , ε > 0 . Let y be the positive
solution of the equation ey = 2y + 1 . Let l be an integer > 6 , C2 = 2y

(2y+1)2 ,
0 < C1 < C2 . Then, for T > T0 , we have

< (e−iθ logF (σ0 + it0)
)

> κ (1− σ0)−1
C0C1 (log t0)1−σ0 (log log t0)−σ0

for at least one t0 satisfying T ε 6 t0 6 T where C0 = cos
(

2π
l

) (
δ

log l

)1−σ0

. Here

δ = 1 if we assume Riemann hypothesis for F (s) . Otherwise, δ = δ (µ1) .
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2. Some Lemmas

Lemma 2.1. Let θ1, · · · , θM be distinct positive real numbers and suppose that
l > 6 is an integer. For any given positive integer R , then there exist at least R
integers r′k such that 1 6 r′k 6 J = lMR and ||r′kθm|| < 1

l for 1 6 m 6 M .

Proof. See for example [6].

Lemma 2.2. For 1
2 6 σ0 < 1 , we have

S =:
∑

|log( px )|62α

p−σ0b(p)
(

2α−
∣∣∣log

( p
x

)∣∣∣
)

= κ

(
2 sinh (α (1− σ0))

(1− σ0)

)2
x1−σ0

log x

+O
(
(κ+ 1)

(
1 + α3) x1−σ0(log x)−2) . (2.2.1)

Proof. Let β1 be a positive solution of the exponential equation

ey = 2y + 1.

Ultimately, we are going to choose α such that β1 = 2α(1− σ0) (a fixed positive
constant). We note that 1 < β1 < 2. Keeping this in mind, we prove this Lemma
in the following. We have

S =
∑

e−2αx6p6x
· · ·+

∑

x6p6e2αx
· · ·+O

(
α x−σ0+ε)

= S1 + S2 +O
(
α x−σ0+ε) . (say) (2.2.2)

We note that (from the condition (1.3) on F (s))

K(u) =:
∑

p6u
b(p) = κ

u

log u
+O

(
u

(log u)2

)
, (2.2.3)

Now,

S1 =
∫ x

xe−2α
u−σ0

(
2α− log

(x
u

))
dK(u)

= κ

∫ x

xe−2α
u−σ0

(
2α− log

(x
u

)) du

log u

+O
(
(κ+ 1)

(
1 + α+ α2) x1−σ0(log x)−2)

= κ (2α− log x)
{

u1−σ0

(1− σ0) log u
+

u1−σ0

(1− σ0)2(log u)2

∣∣x
xe−2α

}

+ κ
x1−σ0

(1− σ0)

{
1− e−2α(1−σ0)

}

+O
(
(κ+ 1)

(
1 + α+ α2 + α3) x1−σ0(log x)−2) . (2.2.4)
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Similarly, we obtain

S2 = κ (2α+ log x)

{
u1−σ0

(1− σ0) log u
+

u1−σ0

(1− σ0)2 (log u)2

∣∣xe2α
x

}

+ κ
x1−σ0

(1− σ0)

{
1− e2α(1−σ0)

}

+O
(
(κ+ 1)

(
1 + α+ α2 + α3) x1−σ0(log x)−2) . (2.2.5)

We note that 1
(1−y) = 1 + y+O

(
y2
)

and 1
(1+y) = 1− y+O

(
y2
)

for y sufficiently
small. Hence from (2.2.4) and (2.2.5), we get

S =
κx1−σ0

(1− σ0)2 log x

{
e2α(1−σ0) + e−2α(1−σ0) − 2

}

+O
(
(κ+ 1)

(
1 + α+ α2 + α3) x1−σ0(log x)−2)

= κ

(
2 sinh (α (1− σ0))

(1− σ0)

)2
x1−σ0

log x

+O

(
(κ+ 1)

(
1 + α+ α2 + α3) x1−σ0

(log x)2

)
. (2.2.6)

This proves the lemma.

Lemma 2.3. Let 0 6 θ < 2π, α > 0 and µ 6 σ0 < 1 be constants and let
s = σ + it, s0 = σ0 + it0 . Then for all x with 10 6 x � (log t0) (log log t0) , we
have

I1 =:
1

2πi

∫ 1+i∞

1−i∞

(
e−iθ logF (s+ s0)

)(eαs − e−αs
s

)2 (
2 + xseiθ + x−se−iθ

)
ds

=
∑

|log( px )|62α

p−s0b(p)
(

2α−
∣∣∣log

( p
x

)∣∣∣
)

+O
(
(1 + α) (log x)2) . (2.3.1)

Proof. For <(s+ s0) > 1, we have

logF (s+ s0) =
∑
p

b(p)
ps+s0

+
∑

m>2, p

b (pm)
pm(s+s0)

=: S3 + S4. (2.3.2)

We observe that if α > 0, x > 0 and c > 0, then we have

1
2πi

∫ c+i∞

c−i∞

(
eαs − e−αs

s

)2

xsds =
{

2α− | log x| if | log x| 6 2α,
0 if | log x| > 2α.

(2.3.3)
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Therefore, we have

I2 =:
1

2πi

∫ 1+i∞

1−i∞

(
e−iθS3

)(eαs − e−αs
s

)2 (
xseiθ

)
ds

=
∑

|log( px )|62α

p−s0b(p)
(

2α−
∣∣∣log

( p
x

)∣∣∣
)
, (2.3.4)

|I3| =:

∣∣∣∣∣
1

2πi

∫ 1+i∞

1−i∞

(
e−iθS3

)(eαs − e−αs
s

)2 (
2 + x−se−iθ

)
ds

∣∣∣∣∣

6 2

∣∣∣∣∣∣
∑

|log p|62α

p−s0b(p) (2α− |log p|)
∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

|log(px)|62α

p−s0b(p) (2α− |log (px)|)
∣∣∣∣∣∣

� α


 ∑

p6e2α
1


� e5α � (log x)2. (2.3.5)

Similarly, we estimate

|I4| =:

∣∣∣∣∣
1

2πi

∫ 1+i∞

1−i∞

(
e−iθS4

)(eαs − e−αs
s

)2 (
2 + xseiθ + x−se−iθ

)
ds

∣∣∣∣∣
= |S5 + S6 + S7| say, (2.3.6)

where
S5 =: 2e−iθ

∑

|log(pm)|62α
m>2

b (pm) p−mσ0 (2α− |log (pm)|) ,

S6 =:
∑

∣∣log
(
pm

x

)∣∣62α
m>2

b (pm) p−mσ0

(
2α−

∣∣∣∣log
(
pm

x

)∣∣∣∣
)
,

and
S7 =: e−2iθ

∑

|log(pmx)|62α
m>2

b (pm) p−mσ0 (2α− |log (pmx)|) .

Using the condition (1.2) (and since 0 < α 6 1
100 log log x and σ0 >

1
2 ), we obtain

S5 � α e2α
∑

m>2, pm6e2α
p−mσ0

� α e2α
∑

p6e2α

1
pσ0(pσ0 − 1)

� α e2α e2α

� e5α

� (log x)2 (2.3.7)
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and similarly
S7 � e5α � (log x)2. (2.3.8)

Let us write
w(u) =:

∑

p6u

∣∣b (p2)∣∣� u log u (by (1.4)).

From the Riemann-Steiltjes integration and using the average estimate condition
(1.4), we note that

S8 =:
∑

p26e2αx=:y

∣∣b (p2
)∣∣

p2σ0

=
∫ y1/2

2

1
u2σ0

d (w(u))

�
∣∣∣∣u−2σ0 w(u)

∣∣y1/2

2

∣∣∣∣+ 2σ0

∫ y1/2

2

|w(u)|
u2σ0+1 du

� y
1
2−σ0 log y + (log y)2

� (log y)2

� (α+ log x)2. (2.3.9)

We also notice that (with e2αx =: y )

S9 =:
∑

pm6y,
m>3

|b (pm)|
pmσ0

�
∑

p6y1/3

1
p2(σ0−ε) (pσ0−ε − 1)

� 1 (2.3.10)

and hence from (2.3.9) and (2.3.10), we get

S6 � α (α+ log x)2 � α (log x)2. (2.3.11)

This proves the lemma.

We note (see for example page 56, Lemma α of [14]) if f(s) is regular and
∣∣∣∣
f(s)
f (s0)

∣∣∣∣ < eM (M > 1)

in the circle |s− s0| 6 r , then
∣∣∣∣∣
f ′(s)
f(s)

−
∑
ρ

1
s− ρ

∣∣∣∣∣ <
AM

r
(|s− s0| 6 r

4
) (2.1)

where ρ runs through the zeros of f(s) such that |ρ− s0| 6 r
2 .
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Therefore, we get

F ′

F
(s) =

∑

|t−γ|61

(s− ρ)−1 +O(log t). (2.2)

Here ρ = β + iγ runs over the non-trivial zeros of F (s). Integrating (2.2) from s
to 2 + it and assuming that t is not the ordinate of any zero of F (s), we obtain

logF (s)− logF (2 + it) =
∑

|t−γ|61

{log(s− ρ)− log(2 + it− ρ)}+O(log t). (2.3)

Proceeding as in Theorem 9.6 B of [14] we get

logF (s) =
∑

|t−γ|61

log(s− ρ) +O(log t). (2.4)

Let t0 be sufficiently large and τ = (log t0)2 . If the region {σ > 0, |σ| 6 2τ} is
zero-free for F (s+ s0) for |t| 6 2τ − σ , then in 0 < σ 6 1, we have the estimate,

logF (s+ s0) = O

(
(log t0)

(
log
(

2
σ

)))
. (2.5)

This can be seen easily as follows. From (2.4), we already have,

logF (s+ s0) =
∑

|t+t0−γ|61

log (s+ s0 − ρ) +O (log t0) . (2.6)

We only need to estimate the first sum appearing in the right hand side of (2.6).
Since, |= log (s+ s0)| 6 π , we have

|log (s+ s0 − ρ)| 6 |log |s+ s0 − ρ||+ π. (2.7)

We observe if 1 6 |s+ s0 − ρ| < 2, then each term in the sum in (2.6) is in
absolute value 6 log 2 and the number of terms in the sum is O (log t0).

When 0 < |s+ s0 − ρ| < 1, we observe that

|s+ s0 − ρ|2 = (σ + σ0 − β)2 + (t+ t0 − γ)2
, (2.8)

and the rectangle {0 < σ 6 1, |t| 6 2τ − σ} is zero-free for F (s+ s0). If ρ lies on
the left border of this region, i.e on the line <s (=: β) = σ0 , then |s+ s0 − ρ|2 >
σ2 and in this case, we have | log σ| =

∣∣log
(

1
σ

)∣∣ . As before, the number of terms
in the sum (2.6) is O (log t0) and we are through.

If ρ lies inside the rectangular region, then again we obtain the same estimate
since |s+ s0 − ρ| > |t+ t0 − γ| > σ . Thus we arrive at the estimate (2.5).
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Lemma 2.4. Let θ, α, σ0 and t0 be as in lemma 2.3. The contribution of the
tail portion |t| > (log t0)2 to the integral in lemma 2.3 is O

(
(log x)2

)
. Also the

contribution from the integrals over [iτ, 1 + iτ ] and [−iτ, 1− iτ ] are O
(
(log x)2

)
.

Proof. The proof follows from the estimate

logF (s+ s0)� (log t0)
(

log
(

2
σ

))
.

Lemma 2.5. With τ = (log t0)2 , we have

I5 =: <
{

1
2πi

∫ iτ

−iτ

(
e−iθ logF (s+ s0)

)(eαs − e−αs
s

)2 (
2 + xseiθ + x−se−iθ

)
ds

}

=
∑

|log( px )|62α

b(p)p−σ0 cos (t0 log p)
(

2α−
∣∣∣log

( p
x

)∣∣∣
)

+O
(
(1 + α) (log x)2) .

Proof. Note that the coefficients b(p)’s are real numbers (by our assumption).
Now, the proof follows from the above lemmas.

Lemma 2.6. We have

Q1 =:
(

max
|t|6τ,σ=0

(<e−iθ logF (s+ s0)
))×

×


 1

2πi

∫

|t|6τ, σ=0

(
eαs − e−αs

s

)2 (
2 + xseiθ + x−se−iθ

)
ds




>
∑

|log( px )|62α

b(p)p−σ0 cos (t0 log p)
(

2α−
∣∣∣log

( p
x

)∣∣∣
)

+O
(
(1 + α) (log x)2) .

Proof. It follows from lemma 2.5.

Lemma 2.7. For τ = (log t0)2 and 2α 6 | log x| , we have

1
2πi

∫

|t|6τ, σ=0

(
eαs − e−αs

s

)2 (
2 + xseiθ + x−se−iθ

)
ds = 4α+O

(
1
τ

)
.

Proof. This is lemma 3.11 of [6].

Lemma 2.8. Let C be a positive constant to be chosen later. Let p be the set of
primes satisfying

Ce−2α(logP log logP ) 6 p 6 Ce2α(log T log log T ),

where we refer to lemma 2.1 and put T = lMRP . Here M will be greater than
or equal to the number of primes satisfying the inequalities just stated. we put
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M =
[(
Ce2α + ε

)
log T

]
where ε > 0 is an arbitrary but fixed constant. Let

x = C (log t0) (log log t0) where C is a small positive constant and t0 = 2πlk (k =
1, 2, · · · , R) for any k . Then, for all primes p satisfying

∣∣log
(
p
x

)∣∣ 6 2α , we have

Q2 =:
∑

|log( px )|62α

b(p)p−σ0 cos (t0 log p)
(

2α−
∣∣∣log

( p
x

)∣∣∣
)

> κ cos
(

2π
l

)
C1−σ0

(
2 sinhα (1− σ0)

1− σ0

)2
(

(log t0)1−σ0

(log log t0)σ0

)
.

Proof. The proof follows from the Lemma 2.2.

3. Proof of the Theorem

Consider the rectangles
{
σ0 6 σ < 1, |tj − t| 6 2 (log t0)2

}
(j = 1, 2, · · · , R).

These rectangles are disjoint and the number of such rectangles is R . If R >
DT 1−δ + 2 where D is the constant coming from the hypothesis, then at least
two of these rectangles are zero-free. We select the rectangle for which t0 + τ 6 T
(T to be defined) and fix P = T ε1 , R = T 1−δ+ε2 where ε1, ε2 are small positive
constants. Then we put, M =

[(
Ce2α + ε

)
log T

]
and lMRP = T . If we choose

C = δ
e2α log l − ε3

e2α log l for a small positive constant ε3 , then from the last three
lemmas 2.6, 2.7 and 2.8, we get

Q3 =: max
|t|6τ,σ=0

(<e−iθ logF (s+ s0)
)

> κ

4α
cos
(

2π
l

)
(log l)−(1−σ0) δ1−σ0

e2α(1−σ0)

(
2 sinhα (1− σ0)

1− σ0

)2
(

(log t0)1−σ0

(log log t0)σ0

)

=
κ

2
cos( 2π

l )δ1−σ0

(log l)1−σ0 (1− σ0)

(
(1− e−β1)√

β1

)2
(

(log t0)1−σ0

(log log t0)σ0

)
, (3.1)

where β1 = 2α(1− σ0).

By choosing β1 > 0 such that 1−e−β1√
β1

is maximum, we see that the expres-

sion in the right hand side of (3.1) becomes

κ cos( 2π
l )δ1−σ0

(log l)1−σ0 (1− σ0)

(
C1 (log t0)1−σ0

(log log t0)σ0

)
,

where C1 is a positive constant independent of δ, l, and σ0 and C2 = 2y
(2y+1)2 > C1

with y is the positive solution of the equation ey = 2y+1. This proves the theorem.
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4. Some interesting examples

Example 1. The Riemann zeta-function ζ(s):
In this case, in the Theorem, we can take µ1 = 1

2 . Here δ = 1 if we assume
the Riemann hypothesis namely “ all the non-trivial complex zeros of ζ(s) are on
the critical line <s = 1

2 ”. Otherwise we have to assume 1
2 < σ0 < 1 and then we

can take δ = 1− 3(1−σ0)
(2−σ0) (due to Ingham’s zero-density estimate, see [14]).

Example 2. The Dedekind zeta-function ζK(s) of an algebraic number field K :
Let K be an algebraic number field. The Dedekind zeta-function of K is

defined for <s > 1 by
ζK(s) =

∑

A 6=0

(NA)−s (4.1)

where NA denotes the norm of the ideal A and the sum is extended over all
non-zero integral ideals of the ring of integers of the field K . If we write,

log ζK(s) =
∞∑
n=1

enn
−s (for σ > 2), (4.2)

then, we notice that en > 0 for all n . Also from the prime ideal theorem, it is
well-known that ∑

n6x
en �

∑

p6x
ep �

∑

NP6x
� x

log x
. (4.3)

If K is an algebraic number field abelian over K ′ . Let the degrees of K and K ′

be n and k respectively. Then,

ζK(s) = L1(s) · · ·Lj(s) (4.4)

where j = n/k and Li(s) are abelian L -functions of K . Therefore we can take
any µ > 1− 3

2k+6 in our zero-density hypothesis of the condition (iii).
Let µ′ be the smallest real number for which

∫ T

0
|Li (µ′ + it)|2 dt� T 1+ε. (4.5)

Then, µ′ = 1
2 happens when K ′ = Q or Q(

√
d). Then for σ0 > 1

2 , we can
take µ > 1

2 . If µ′ > 1
2 , by standard arguments, we can take any µ > µ′ in the

zero-density hypothesis of the condition (iii). For a detailed discussion of the above
cases, we refer to section 5 of [6].

For instance, if the degree n of K exceeds 3, then we observe (see [3])

NζK (σ, T )� T (n+ε)(1−σ)(log T )C (4.6)
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uniformly for 1
2 6 σ 6 1. Then, we can take δ = 1 − (n + ε)(1 − σ0) in the

zero-density hypothesis of the condition (iii) and µ1 = 1− 1
n+ε in the Theorem.

Example 3. Rankin-Selberg zeta-functions:
Let f be a holomorphic cusp form of fixed even integral weight k for the

full modular group SL (2,Z) which is a normalised eigenfunction of all the Hecke
operators. We denote by Zf,f (s) the L-function of the Rankin-Selberg convolution
of F with itself. We recall here that

Z(s) =: Zf,f (s) = ζ(2s)

( ∞∑
n=1

λ2
f (n)n−s

)
(4.7)

where f has the Fourier series expansion f(z) =
∑
λf (n)n

k−1
2 e2πinz . Here z ∈ H

and ζ is the Riemann zeta-function. It has meromorphic continuation to the whole
complex plane with a simple pole at s = 1 and it satisfies the functional equation,

Γ(s+ k − 1)Γ(s)Z(s) = (2π)4s−2Γ(k − s)Γ(1− s)Z(1− s). (4.8)

These L - functions are of degree 4. From the Shimura’s split (see [12] or lemma
3.1 of [9] and see also the related references [7] and [8]), we observe that the
Rankin-Selberg zeta-function splits into two factors as

Z(s) = ζ(s) D(s), (4.9)

where D(s) is the normalised symmetric square L -function attached to the Hecke
eigenform f . For <s > 1, Z(s) has the Euler product,

Z(s) =
∏
p

(
1− 1

ps

)−1∏
p

(
1− α2

p

ps

)−1(
1− αp

2

ps

)−1(
1− αpαp

ps

)−1

, (4.10)

where λf (p) = αp + αp ∈ R , αp αp = 1 and |αp| = 1. In [10], the first author
established certain zero density theorems for these symmetric square L -functions.
Therefore, for example from theorem 1.1 of [10], we infer that (for 1

2 < µ < 1)

ND(µ, T )� T
5(1−µ)
(3−2µ) (log T )A

and in turn, this implies that

NZ(µ, T )� T
5(1−µ)
(3−2µ) (log T )A

where A is an absolute positive constant. Hence, the zero-density hypothesis in
condition (iii) holds when 2

3 < µ < 1.
By the prime number theorem (related to the weighted coefficients λ2

f (p),
see for example [11]), we have

∑

p6u
λ2
f (p) log p = u+O

(
ue−c

√
log u

)
, (4.11)

We also notice that (for m > 2)

b(pm) =
α2m
p + αp

2m + 2

m
� 1. (4.12)
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Therefore, we deduce from the Theorem,

Corollary. Let 1
2 6 σ0 < 1 , 0 6 θ < 2π , ε > 0 . Let y be the positive solution of

the equation ey = 2y + 1 . Let l be an integer > 6 , C2 = 2y
(2y+1)2 , 0 < C1 < C2 .

Then, for T > T0 , we have

< (e−iθ logZ (σ0 + it0)
)

> (1− σ0)−1
C0C1 (log t0)1−σ0 (log log t0)−σ0

for at least one t0 satisfying T ε 6 t0 6 T where C0 = cos
(

2π
l

) (
δ

log l

)1−σ0

. Here

δ = 1 if we assume Riemann hypothesis for Z(s) , otherwise we have to assume
2
3 < σ0 < 1 and then we can take δ = 1− 5(1−σ0)

(3−2σ0) .
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