OMEGA THEOREMS FOR A CLASS OF L-FUNCTIONS (A note on the Rankin-Selberg zeta-function)

Ayyadurai Sankaranarayanan \& Jyothi Sengupta

Abstract

In this paper we study the Omega theorems for a class of general L-functions satisfying certain conditions and as an important application, we obtain the Omega theorems for the Rankin-Selberg zeta-functions $Z\left(s_{0}\right)$ attached to holomorphic cusp forms of fixed weight for the full modular group when $\frac{1}{2} \leqslant \sigma_{0}<1$. Keywords: Rankin-Selberg zeta-function, Omega Theorems, Zero-density estimates.

1. Introduction

Omega theorems for the Riemann zeta-function and L-functions of degree 2 have been extensively studied for which we refer to [1], [2], [5], [6] and [13]. Some of these results can collectively be seen in [4] and [14].

The aim of this note is to prove Ω theorems for a class of L-functions satisfying certain conditions and as an application, we obtain Ω theorems for the Rankin-Selberg zeta-functions which are of degree 4 . We follow the arguments of Ramachandra and Sankaranarayanan (see [6]).

Let \mathcal{C} be the class of general L-functions $F(s)$ satisfying the following conditions.
(i). $F(s)$ is absolutely convergent in the half-plane $\sigma>1$ and continuable analytically to the region $\sigma \geqslant 0$ as a meromorphic function possibly with a simple pole at $s=1$ having the residue κ_{1} and there $F(s)$ is of finite order (i.e $|(s-1) F(s)| \ll(|t|+2)^{A}$ in $\left.\sigma \geqslant 0\right)$. It has an Euler-product representation and a functional equation of the Riemann zeta type. Thus all the non-trivial complex zeros of $F(s)$ lie in the vertical strip $0 \leqslant \sigma \leqslant 1$.
(ii). $\log F(s)$ can be written in the form

$$
\begin{equation*}
\log F(s)=\sum_{p} \sum_{m \geqslant 1} \frac{b\left(p^{m}\right)}{p^{m s}} \tag{1.1}
\end{equation*}
$$

with the series in (1.1) being absolutely convergent in $\sigma>1$ (where the sum runs over all primes p) and the coefficients $b(n)$'s satisfy the estimates:

$$
\begin{equation*}
b(n) \ll n^{\epsilon} \tag{1.2}
\end{equation*}
$$

$b(p)$'s are real and the asymptotic relation

$$
\begin{equation*}
\sum_{p \leqslant x} b(p)=\kappa \frac{x}{\log x}+O\left(\frac{x}{(\log x)^{2}}\right) \tag{1.3}
\end{equation*}
$$

holds where κ is any positive constant. We also assume that

$$
\begin{equation*}
\sum_{p \leqslant u}\left|b\left(p^{2}\right)\right| \ll u(\log u) \tag{1.4}
\end{equation*}
$$

(iii). Let

$$
\begin{equation*}
N_{F}(\mu, T)=\#\{\rho=\beta+i \gamma: F(\rho)=0, \beta \geqslant \mu>0,|\gamma| \leqslant T\} \tag{1.5}
\end{equation*}
$$

We make the following zero-density hypothesis.
Hypothesis. For fixed μ satisfying $1>\mu>\frac{1}{2}$ and for $T \geqslant T_{0}$ (with T_{0} sufficiently large), there exists a $\delta>0$ such that $N_{F}(\mu, T) \ll T^{1-\delta}$ where the implied constant depends on μ and δ.

Throughout the paper, we assume that $x \geqslant x_{0}$ and $T \geqslant T_{0} \quad$ (where x_{0} and T_{0} are sufficiently large), and the parameter α satisfies the inequality $0<\alpha \leqslant$ $\frac{1}{100} \log \log x$. The alphabets $A, B, C \cdots$ (with or without suffixes denote positive constants) and ϵ, δ denote small positive constants. Now, We prove

Theorem. Let $F(s) \in \mathcal{C}$ and thus the conditions (i), (ii) and (iii) hold for $F(s)$ by our assumption. Let $\frac{1}{2}<\mu_{1} \leqslant \sigma_{0}<1, \quad 0 \leqslant \theta<2 \pi, \epsilon>0$. Let y be the positive solution of the equation $e^{y}=2 y+1$. Let l be an integer $\geqslant 6, \quad C_{2}=\frac{2 y}{(2 y+1)^{2}}$, $0<C_{1}<C_{2}$. Then, for $T \geqslant T_{0}$, we have

$$
\Re\left(e^{-i \theta} \log F\left(\sigma_{0}+i t_{0}\right)\right) \geqslant \kappa\left(1-\sigma_{0}\right)^{-1} C_{0} C_{1}\left(\log t_{0}\right)^{1-\sigma_{0}}\left(\log \log t_{0}\right)^{-\sigma_{0}}
$$

for at least one t_{0} satisfying $T^{\epsilon} \leqslant t_{0} \leqslant T$ where $C_{0}=\cos \left(\frac{2 \pi}{l}\right)\left(\frac{\delta}{\log l}\right)^{1-\sigma_{0}}$. Here $\delta=1$ if we assume Riemann hypothesis for $F(s)$. Otherwise, $\delta=\delta\left(\mu_{1}\right)$.

2. Some Lemmas

Lemma 2.1. Let $\theta_{1}, \cdots, \theta_{M}$ be distinct positive real numbers and suppose that $l \geqslant 6$ is an integer. For any given positive integer R, then there exist at least R integers r_{k}^{\prime} such that $1 \leqslant r_{k}^{\prime} \leqslant J=l^{M} R$ and $\left\|r_{k}^{\prime} \theta_{m}\right\|<\frac{1}{l}$ for $1 \leqslant m \leqslant M$.
Proof. See for example [6].
Lemma 2.2. For $\frac{1}{2} \leqslant \sigma_{0}<1$, we have

$$
\begin{align*}
S= & : \sum_{\left|\log \left(\frac{p}{x}\right)\right| \leqslant 2 \alpha} p^{-\sigma_{0}} b(p)\left(2 \alpha-\left|\log \left(\frac{p}{x}\right)\right|\right) \\
= & \kappa\left(\frac{2 \sinh \left(\alpha\left(1-\sigma_{0}\right)\right)}{\left(1-\sigma_{0}\right)}\right)^{2} \frac{x^{1-\sigma_{0}}}{\log x} \\
& +O\left((\kappa+1)\left(1+\alpha^{3}\right) x^{1-\sigma_{0}}(\log x)^{-2}\right) . \tag{2.2.1}
\end{align*}
$$

Proof. Let β_{1} be a positive solution of the exponential equation

$$
e^{y}=2 y+1
$$

Ultimately, we are going to choose α such that $\beta_{1}=2 \alpha\left(1-\sigma_{0}\right)$ (a fixed positive constant). We note that $1<\beta_{1}<2$. Keeping this in mind, we prove this Lemma in the following. We have

$$
\begin{align*}
S & =\sum_{e^{-2 \alpha} x \leqslant p \leqslant x} \cdots+\sum_{x \leqslant p \leqslant e^{2 \alpha} x} \cdots+O\left(\alpha x^{-\sigma_{0}+\epsilon}\right) \\
& =S_{1}+S_{2}+O\left(\alpha x^{-\sigma_{0}+\epsilon}\right) . \tag{2.2.2}
\end{align*}
$$

We note that (from the condition (1.3) on $F(s)$)

$$
\begin{equation*}
K(u)=: \sum_{p \leqslant u} b(p)=\kappa \frac{u}{\log u}+O\left(\frac{u}{(\log u)^{2}}\right) \tag{2.2.3}
\end{equation*}
$$

Now,

$$
\begin{align*}
S_{1}= & \int_{x e^{-2 \alpha}}^{x} u^{-\sigma_{0}}\left(2 \alpha-\log \left(\frac{x}{u}\right)\right) d K(u) \\
= & \kappa \int_{x e^{-2 \alpha}}^{x} u^{-\sigma_{0}}\left(2 \alpha-\log \left(\frac{x}{u}\right)\right) \frac{d u}{\log u} \\
& +O\left((\kappa+1)\left(1+\alpha+\alpha^{2}\right) x^{1-\sigma_{0}}(\log x)^{-2}\right) \\
= & \kappa(2 \alpha-\log x)\left\{\frac{u^{1-\sigma_{0}}}{\left(1-\sigma_{0}\right) \log u}+\left.\frac{u^{1-\sigma_{0}}}{\left(1-\sigma_{0}\right)^{2}(\log u)^{2}}\right|_{x e^{-2 \alpha}} ^{x}\right\} \\
& +\kappa \frac{x^{1-\sigma_{0}}}{\left(1-\sigma_{0}\right)}\left\{1-e^{-2 \alpha\left(1-\sigma_{0}\right)}\right\} \\
& +O\left((\kappa+1)\left(1+\alpha+\alpha^{2}+\alpha^{3}\right) x^{1-\sigma_{0}}(\log x)^{-2}\right) . \tag{2.2.4}
\end{align*}
$$

Similarly, we obtain

$$
\begin{align*}
S_{2}= & \kappa(2 \alpha+\log x)\left\{\frac{u^{1-\sigma_{0}}}{\left(1-\sigma_{0}\right) \log u}+\left.\frac{u^{1-\sigma_{0}}}{\left(1-\sigma_{0}\right)^{2}(\log u)^{2}}\right|_{x} ^{x e^{2 \alpha}}\right\} \\
& +\kappa \frac{x^{1-\sigma_{0}}}{\left(1-\sigma_{0}\right)}\left\{1-e^{2 \alpha\left(1-\sigma_{0}\right)}\right\} \\
& +O\left((\kappa+1)\left(1+\alpha+\alpha^{2}+\alpha^{3}\right) x^{1-\sigma_{0}}(\log x)^{-2}\right) \tag{2.2.5}
\end{align*}
$$

We note that $\frac{1}{(1-y)}=1+y+O\left(y^{2}\right)$ and $\frac{1}{(1+y)}=1-y+O\left(y^{2}\right)$ for y sufficiently small. Hence from (2.2.4) and (2.2.5), we get

$$
\begin{align*}
S= & \frac{\kappa x^{1-\sigma_{0}}}{\left(1-\sigma_{0}\right)^{2} \log x}\left\{e^{2 \alpha\left(1-\sigma_{0}\right)}+e^{-2 \alpha\left(1-\sigma_{0}\right)}-2\right\} \\
& +O\left((\kappa+1)\left(1+\alpha+\alpha^{2}+\alpha^{3}\right) x^{1-\sigma_{0}}(\log x)^{-2}\right) \\
= & \kappa\left(\frac{2 \sinh \left(\alpha\left(1-\sigma_{0}\right)\right)}{\left(1-\sigma_{0}\right)}\right)^{2} \frac{x^{1-\sigma_{0}}}{\log x} \\
& +O\left((\kappa+1)\left(1+\alpha+\alpha^{2}+\alpha^{3}\right) \frac{x^{1-\sigma_{0}}}{(\log x)^{2}}\right) . \tag{2.2.6}
\end{align*}
$$

This proves the lemma.
Lemma 2.3. Let $0 \leqslant \theta<2 \pi, \alpha>0$ and $\mu \leqslant \sigma_{0}<1$ be constants and let $s=\sigma+i t, s_{0}=\sigma_{0}+i t_{0}$. Then for all x with $10 \leqslant x \ll\left(\log t_{0}\right)\left(\log \log t_{0}\right)$, we have

$$
\begin{align*}
I_{1} & =: \frac{1}{2 \pi i} \int_{1-i \infty}^{1+i \infty}\left(e^{-i \theta} \log F\left(s+s_{0}\right)\right)\left(\frac{e^{\alpha s}-e^{-\alpha s}}{s}\right)^{2}\left(2+x^{s} e^{i \theta}+x^{-s} e^{-i \theta}\right) d s \\
& =\sum_{\left|\log \left(\frac{p}{x}\right)\right| \leqslant 2 \alpha} p^{-s_{0}} b(p)\left(2 \alpha-\left|\log \left(\frac{p}{x}\right)\right|\right)+O\left((1+\alpha)(\log x)^{2}\right) \tag{2.3.1}
\end{align*}
$$

Proof. For $\Re\left(s+s_{0}\right)>1$, we have

$$
\begin{align*}
\log F\left(s+s_{0}\right) & =\sum_{p} \frac{b(p)}{p^{s+s_{0}}}+\sum_{m \geqslant 2, p} \frac{b\left(p^{m}\right)}{p^{m\left(s+s_{0}\right)}} \\
& =: S_{3}+S_{4} \tag{2.3.2}
\end{align*}
$$

We observe that if $\alpha>0, x>0$ and $c>0$, then we have

$$
\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty}\left(\frac{e^{\alpha s}-e^{-\alpha s}}{s}\right)^{2} x^{s} d s= \begin{cases}2 \alpha-|\log x| & \text { if }|\log x| \leqslant 2 \alpha \tag{2.3.3}\\ 0 & \text { if }|\log x|>2 \alpha\end{cases}
$$

Therefore, we have

$$
\begin{align*}
I_{2} & =: \frac{1}{2 \pi i} \int_{1-i \infty}^{1+i \infty}\left(e^{-i \theta} S_{3}\right)\left(\frac{e^{\alpha s}-e^{-\alpha s}}{s}\right)^{2}\left(x^{s} e^{i \theta}\right) d s \\
& =\sum_{\left|\log \left(\frac{p}{x}\right)\right| \leqslant 2 \alpha} p^{-s_{0}} b(p)\left(2 \alpha-\left|\log \left(\frac{p}{x}\right)\right|\right), \tag{2.3.4}\\
\left|I_{3}\right| & =:\left|\frac{1}{2 \pi i} \int_{1-i \infty}^{1+i \infty}\left(e^{-i \theta} S_{3}\right)\left(\frac{e^{\alpha s}-e^{-\alpha s}}{s}\right)^{2}\left(2+x^{-s} e^{-i \theta}\right) d s\right| \\
& \leqslant 2\left|\sum_{|\log p| \leqslant 2 \alpha} p^{-s_{0}} b(p)(2 \alpha-|\log p|)\right|+\left|\sum_{|\log (p x)| \leqslant 2 \alpha} p^{-s_{0}} b(p)(2 \alpha-|\log (p x)|)\right| \\
& \ll \alpha\left(\sum_{p \leqslant e^{2 \alpha}} 1\right) \ll e^{5 \alpha} \ll(\log x)^{2} . \tag{2.3.5}
\end{align*}
$$

Similarly, we estimate

$$
\begin{align*}
\left|I_{4}\right| & =:\left|\frac{1}{2 \pi i} \int_{1-i \infty}^{1+i \infty}\left(e^{-i \theta} S_{4}\right)\left(\frac{e^{\alpha s}-e^{-\alpha s}}{s}\right)^{2}\left(2+x^{s} e^{i \theta}+x^{-s} e^{-i \theta}\right) d s\right| \\
& =\left|S_{5}+S_{6}+S_{7}\right| \text { say } \tag{2.3.6}
\end{align*}
$$

where

$$
\left.\begin{array}{l}
S_{5}=: 2 e^{-i \theta} \sum_{\substack{\left|\log \left(p^{m}\right)\right| \leqslant 2 \alpha \\
m \geqslant 2}} b\left(p^{m}\right) p^{-m \sigma_{0}}\left(2 \alpha-\left|\log \left(p^{m}\right)\right|\right), \\
S_{6}=: \left.\sum_{\left|\log \left(\frac{p^{m}}{x}\right)\right| \leqslant 2 \alpha}^{m \geqslant 2} \right\rvert\,
\end{array}\right\}\left(p^{m}\right) p^{-m \sigma_{0}}\left(2 \alpha-\left|\log \left(\frac{p^{m}}{x}\right)\right|\right),, ~ \$
$$

and

$$
S_{7}=: e^{-2 i \theta} \sum_{\substack{\left|\log \left(p^{m} x\right)\right| \leqslant 2 \alpha \\ m \geqslant 2}} b\left(p^{m}\right) p^{-m \sigma_{0}}\left(2 \alpha-\left|\log \left(p^{m} x\right)\right|\right) .
$$

Using the condition (1.2) (and since $0<\alpha \leqslant \frac{1}{100} \log \log x$ and $\sigma_{0}>\frac{1}{2}$), we obtain

$$
\begin{align*}
S_{5} & \ll \alpha e^{2 \alpha} \sum_{m \geqslant 2, p^{m} \leqslant e^{2 \alpha}} p^{-m \sigma_{0}} \\
& \ll \alpha e^{2 \alpha} \sum_{p \leqslant e^{2 \alpha}} \frac{1}{p^{\sigma_{0}}\left(p^{\sigma_{0}}-1\right)} \\
& \ll \alpha e^{2 \alpha} e^{2 \alpha} \\
& \ll e^{5 \alpha} \\
& \ll(\log x)^{2} \tag{2.3.7}
\end{align*}
$$

and similarly

$$
\begin{equation*}
S_{7} \ll e^{5 \alpha} \ll(\log x)^{2} . \tag{2.3.8}
\end{equation*}
$$

Let us write

$$
w(u)=: \sum_{p \leqslant u}\left|b\left(p^{2}\right)\right| \ll u \log u \quad \text { (by (1.4)). }
$$

From the Riemann-Steiltjes integration and using the average estimate condition (1.4), we note that

$$
\begin{align*}
S_{8} & =: \sum_{p^{2} \leqslant e^{2} \alpha x=: y} \frac{\left|b\left(p^{2}\right)\right|}{p^{2 \sigma_{0}}} \\
& =\int_{2}^{y^{1 / 2}} \frac{1}{u^{2 \sigma_{0}}} d(w(u)) \\
& \ll\left|u^{-2 \sigma_{0}} w(u)\right|_{2}^{y^{1 / 2}} \left\lvert\,+2 \sigma_{0} \int_{2}^{y^{1 / 2}} \frac{|w(u)|}{u^{2 \sigma_{0}+1}} d u\right. \\
& \ll y^{\frac{1}{2}-\sigma_{0}} \log y+(\log y)^{2} \\
& \ll(\log y)^{2} \\
& \ll(\alpha+\log x)^{2} . \tag{2.3.9}
\end{align*}
$$

We also notice that (with $e^{2 \alpha} x=: y$)

$$
\begin{align*}
S_{9} & =: \sum_{\substack{p^{m} \leqslant y, m \geqslant 3}} \frac{\left|b\left(p^{m}\right)\right|}{p^{m \sigma_{0}}} \\
& \ll \sum_{\substack{p \leqslant y^{1 / 3}}} \frac{1}{p^{2\left(\sigma_{0}-\epsilon\right)}\left(p^{\sigma_{0}-\epsilon}-1\right)} \\
& \ll 1 \tag{2.3.10}
\end{align*}
$$

and hence from (2.3.9) and (2.3.10), we get

$$
\begin{equation*}
S_{6} \ll \alpha(\alpha+\log x)^{2} \ll \alpha(\log x)^{2} . \tag{2.3.11}
\end{equation*}
$$

This proves the lemma.
We note (see for example page 56, Lemma α of [14]) if $f(s)$ is regular and

$$
\left|\frac{f(s)}{f\left(s_{0}\right)}\right|<e^{M} \quad(M>1)
$$

in the circle $\left|s-s_{0}\right| \leqslant r$, then

$$
\begin{equation*}
\left|\frac{f^{\prime}(s)}{f(s)}-\sum_{\rho} \frac{1}{s-\rho}\right|<\frac{A M}{r} \quad\left(\left|s-s_{0}\right| \leqslant \frac{r}{4}\right) \tag{2.1}
\end{equation*}
$$

where ρ runs through the zeros of $f(s)$ such that $\left|\rho-s_{0}\right| \leqslant \frac{r}{2}$.

Therefore, we get

$$
\begin{equation*}
\frac{F^{\prime}}{F}(s)=\sum_{|t-\gamma| \leqslant 1}(s-\rho)^{-1}+O(\log t) \tag{2.2}
\end{equation*}
$$

Here $\rho=\beta+i \gamma$ runs over the non-trivial zeros of $F(s)$. Integrating (2.2) from s to $2+i t$ and assuming that t is not the ordinate of any zero of $F(s)$, we obtain

$$
\begin{equation*}
\log F(s)-\log F(2+i t)=\sum_{|t-\gamma| \leqslant 1}\{\log (s-\rho)-\log (2+i t-\rho)\}+O(\log t) . \tag{2.3}
\end{equation*}
$$

Proceeding as in Theorem 9.6 B of [14] we get

$$
\begin{equation*}
\log F(s)=\sum_{|t-\gamma| \leqslant 1} \log (s-\rho)+O(\log t) \tag{2.4}
\end{equation*}
$$

Let t_{0} be sufficiently large and $\tau=\left(\log t_{0}\right)^{2}$. If the region $\{\sigma>0,|\sigma| \leqslant 2 \tau\}$ is zero-free for $F\left(s+s_{0}\right)$ for $|t| \leqslant 2 \tau-\sigma$, then in $0<\sigma \leqslant 1$, we have the estimate,

$$
\begin{equation*}
\log F\left(s+s_{0}\right)=O\left(\left(\log t_{0}\right)\left(\log \left(\frac{2}{\sigma}\right)\right)\right) \tag{2.5}
\end{equation*}
$$

This can be seen easily as follows. From (2.4), we already have,

$$
\begin{equation*}
\log F\left(s+s_{0}\right)=\sum_{\left|t+t_{0}-\gamma\right| \leqslant 1} \log \left(s+s_{0}-\rho\right)+O\left(\log t_{0}\right) . \tag{2.6}
\end{equation*}
$$

We only need to estimate the first sum appearing in the right hand side of (2.6). Since, $\left|\Im \log \left(s+s_{0}\right)\right| \leqslant \pi$, we have

$$
\begin{equation*}
\left|\log \left(s+s_{0}-\rho\right)\right| \leqslant|\log | s+s_{0}-\rho| |+\pi . \tag{2.7}
\end{equation*}
$$

We observe if $1 \leqslant\left|s+s_{0}-\rho\right|<2$, then each term in the sum in (2.6) is in absolute value $\leqslant \log 2$ and the number of terms in the sum is $O\left(\log t_{0}\right)$.

When $0<\left|s+s_{0}-\rho\right|<1$, we observe that

$$
\begin{equation*}
\left|s+s_{0}-\rho\right|^{2}=\left(\sigma+\sigma_{0}-\beta\right)^{2}+\left(t+t_{0}-\gamma\right)^{2} \tag{2.8}
\end{equation*}
$$

and the rectangle $\{0<\sigma \leqslant 1,|t| \leqslant 2 \tau-\sigma\}$ is zero-free for $F\left(s+s_{0}\right)$. If ρ lies on the left border of this region, i.e on the line $\Re s(=: \beta)=\sigma_{0}$, then $\left|s+s_{0}-\rho\right|^{2} \geqslant$ σ^{2} and in this case, we have $|\log \sigma|=\left|\log \left(\frac{1}{\sigma}\right)\right|$. As before, the number of terms in the sum (2.6) is $O\left(\log t_{0}\right)$ and we are through.

If ρ lies inside the rectangular region, then again we obtain the same estimate since $\left|s+s_{0}-\rho\right| \geqslant\left|t+t_{0}-\gamma\right| \geqslant \sigma$. Thus we arrive at the estimate (2.5).

Lemma 2.4. Let $\theta, \alpha, \sigma_{0}$ and t_{0} be as in lemma 2.3. The contribution of the tail portion $|t| \geqslant\left(\log t_{0}\right)^{2}$ to the integral in lemma 2.3 is $O\left((\log x)^{2}\right)$. Also the contribution from the integrals over $[i \tau, 1+i \tau]$ and $[-i \tau, 1-i \tau]$ are $O\left((\log x)^{2}\right)$.
Proof. The proof follows from the estimate

$$
\log F\left(s+s_{0}\right) \ll\left(\log t_{0}\right)\left(\log \left(\frac{2}{\sigma}\right)\right)
$$

Lemma 2.5. With $\tau=\left(\log t_{0}\right)^{2}$, we have

$$
\begin{aligned}
I_{5} & =: \Re\left\{\frac{1}{2 \pi i} \int_{-i \tau}^{i \tau}\left(e^{-i \theta} \log F\left(s+s_{0}\right)\right)\left(\frac{e^{\alpha s}-e^{-\alpha s}}{s}\right)^{2}\left(2+x^{s} e^{i \theta}+x^{-s} e^{-i \theta}\right) d s\right\} \\
& =\sum_{\left|\log \left(\frac{p}{x}\right)\right| \leqslant 2 \alpha} b(p) p^{-\sigma_{0}} \cos \left(t_{0} \log p\right)\left(2 \alpha-\left|\log \left(\frac{p}{x}\right)\right|\right)+O\left((1+\alpha)(\log x)^{2}\right)
\end{aligned}
$$

Proof. Note that the coefficients $b(p)$'s are real numbers (by our assumption). Now, the proof follows from the above lemmas.

Lemma 2.6. We have

$$
\begin{aligned}
Q_{1}= & \left(\max _{|t| \leqslant \tau, \sigma=0}\left(\Re e^{-i \theta} \log F\left(s+s_{0}\right)\right)\right) \times \\
& \times\left(\frac{1}{2 \pi i} \int_{|t| \leqslant \tau, \sigma=0}\left(\frac{e^{\alpha s}-e^{-\alpha s}}{s}\right)^{2}\left(2+x^{s} e^{i \theta}+x^{-s} e^{-i \theta}\right) d s\right) \\
\geqslant & \sum_{\left|\log \left(\frac{p}{x}\right)\right| \leqslant 2 \alpha} b(p) p^{-\sigma_{0}} \cos \left(t_{0} \log p\right)\left(2 \alpha-\left|\log \left(\frac{p}{x}\right)\right|\right)+O\left((1+\alpha)(\log x)^{2}\right) .
\end{aligned}
$$

Proof. It follows from lemma 2.5.
Lemma 2.7. For $\tau=\left(\log t_{0}\right)^{2}$ and $2 \alpha \leqslant|\log x|$, we have

$$
\frac{1}{2 \pi i} \int_{|t| \leqslant \tau, \sigma=0}\left(\frac{e^{\alpha s}-e^{-\alpha s}}{s}\right)^{2}\left(2+x^{s} e^{i \theta}+x^{-s} e^{-i \theta}\right) d s=4 \alpha+O\left(\frac{1}{\tau}\right)
$$

Proof. This is lemma 3.11 of [6].
Lemma 2.8. Let C be a positive constant to be chosen later. Let p be the set of primes satisfying

$$
C e^{-2 \alpha}(\log P \log \log P) \leqslant p \leqslant C e^{2 \alpha}(\log T \log \log T)
$$

where we refer to lemma 2.1 and put $T=l^{M} R P$. Here M will be greater than or equal to the number of primes satisfying the inequalities just stated. we put
$M=\left[\left(C e^{2 \alpha}+\epsilon\right) \log T\right]$ where $\epsilon>0$ is an arbitrary but fixed constant. Let $x=C\left(\log t_{0}\right)\left(\log \log t_{0}\right)$ where C is a small positive constant and $t_{0}=2 \pi l_{k}(k=$ $1,2, \cdots, R)$ for any k. Then, for all primes p satisfying $\left|\log \left(\frac{p}{x}\right)\right| \leqslant 2 \alpha$, we have

$$
\begin{aligned}
Q_{2} & =: \sum_{\left|\log \left(\frac{p}{x}\right)\right| \leqslant 2 \alpha} b(p) p^{-\sigma_{0}} \cos \left(t_{0} \log p\right)\left(2 \alpha-\left|\log \left(\frac{p}{x}\right)\right|\right) \\
& \geqslant \kappa \cos \left(\frac{2 \pi}{l}\right) C^{1-\sigma_{0}}\left(\frac{2 \sinh \alpha\left(1-\sigma_{0}\right)}{1-\sigma_{0}}\right)^{2}\left(\frac{\left(\log t_{0}\right)^{1-\sigma_{0}}}{\left(\log \log t_{0}\right)^{\sigma_{0}}}\right) .
\end{aligned}
$$

Proof. The proof follows from the Lemma 2.2.

3. Proof of the Theorem

Consider the rectangles $\left\{\sigma_{0} \leqslant \sigma<1,\left|t_{j}-t\right| \leqslant 2\left(\log t_{0}\right)^{2}\right\} \quad(j=1,2, \cdots, R)$. These rectangles are disjoint and the number of such rectangles is R. If $R>$ $D T^{1-\delta}+2$ where D is the constant coming from the hypothesis, then at least two of these rectangles are zero-free. We select the rectangle for which $t_{0}+\tau \leqslant T$ (T to be defined) and fix $P=T^{\epsilon_{1}}, R=T^{1-\delta+\epsilon_{2}}$ where $\epsilon_{1}, \epsilon_{2}$ are small positive constants. Then we put, $M=\left[\left(C e^{2 \alpha}+\epsilon\right) \log T\right]$ and $l^{M} R P=T$. If we choose $C=\frac{\delta}{e^{2 \alpha} \log l}-\frac{\epsilon_{3}}{e^{2 \alpha} \log l}$ for a small positive constant ϵ_{3}, then from the last three lemmas 2.6, 2.7 and 2.8 , we get

$$
\begin{align*}
Q_{3} & =: \max _{|t| \leqslant \tau, \sigma=0}\left(\Re e^{-i \theta} \log F\left(s+s_{0}\right)\right) \\
& \geqslant \frac{\kappa}{4 \alpha} \cos \left(\frac{2 \pi}{l}\right)(\log l)^{-\left(1-\sigma_{0}\right)} \frac{\delta^{1-\sigma_{0}}}{e^{2 \alpha\left(1-\sigma_{0}\right)}}\left(\frac{2 \sinh \alpha\left(1-\sigma_{0}\right)}{1-\sigma_{0}}\right)^{2}\left(\frac{\left(\log t_{0}\right)^{1-\sigma_{0}}}{\left(\log \log t_{0}\right)^{\sigma_{0}}}\right) \\
& =\frac{\kappa}{2} \frac{\cos \left(\frac{2 \pi}{l}\right) \delta^{1-\sigma_{0}}}{(\log l)^{1-\sigma_{0}}\left(1-\sigma_{0}\right)}\left(\frac{\left(1-e^{-\beta_{1}}\right)}{\sqrt{\beta_{1}}}\right)^{2}\left(\frac{\left(\log t_{0}\right)^{1-\sigma_{0}}}{\left(\log \log t_{0}\right)^{\sigma_{0}}}\right), \tag{3.1}
\end{align*}
$$

where $\beta_{1}=2 \alpha\left(1-\sigma_{0}\right)$.
By choosing $\beta_{1}>0$ such that $\frac{1-e^{-\beta_{1}}}{\sqrt{\beta_{1}}}$ is maximum, we see that the expression in the right hand side of (3.1) becomes

$$
\frac{\kappa \cos \left(\frac{2 \pi}{l}\right) \delta^{1-\sigma_{0}}}{(\log l)^{1-\sigma_{0}}\left(1-\sigma_{0}\right)}\left(\frac{C_{1}\left(\log t_{0}\right)^{1-\sigma_{0}}}{\left(\log \log t_{0}\right)^{\sigma_{0}}}\right),
$$

where C_{1} is a positive constant independent of δ, l, and σ_{0} and $C_{2}=\frac{2 y}{(2 y+1)^{2}}>C_{1}$ with y is the positive solution of the equation $e^{y}=2 y+1$. This proves the theorem.

4. Some interesting examples

Example 1. The Riemann zeta-function $\zeta(s)$:
In this case, in the Theorem, we can take $\mu_{1}=\frac{1}{2}$. Here $\delta=1$ if we assume the Riemann hypothesis namely " all the non-trivial complex zeros of $\zeta(s)$ are on the critical line $\Re s=\frac{1}{2}$ ". Otherwise we have to assume $\frac{1}{2}<\sigma_{0}<1$ and then we can take $\delta=1-\frac{3\left(1-\sigma_{0}\right)}{\left(2-\sigma_{0}\right)}$ (due to Ingham's zero-density estimate, see [14]).
Example 2. The Dedekind zeta-function $\zeta_{K}(s)$ of an algebraic number field K :
Let K be an algebraic number field. The Dedekind zeta-function of K is defined for $\Re s>1$ by

$$
\begin{equation*}
\zeta_{K}(s)=\sum_{\mathfrak{A} \neq 0}(N \mathfrak{A})^{-s} \tag{4.1}
\end{equation*}
$$

where $N \mathfrak{A}$ denotes the norm of the ideal \mathfrak{A} and the sum is extended over all non-zero integral ideals of the ring of integers of the field K. If we write,

$$
\begin{equation*}
\log \zeta_{K}(s)=\sum_{n=1}^{\infty} e_{n} n^{-s} \quad(\text { for } \sigma>2) \tag{4.2}
\end{equation*}
$$

then, we notice that $e_{n} \geqslant 0$ for all n. Also from the prime ideal theorem, it is well-known that

$$
\begin{equation*}
\sum_{n \leqslant x} e_{n} \asymp \sum_{p \leqslant x} e_{p} \asymp \sum_{N \mathfrak{P} \leqslant x} \asymp \frac{x}{\log x} \tag{4.3}
\end{equation*}
$$

If K is an algebraic number field abelian over K^{\prime}. Let the degrees of K and K^{\prime} be n and k respectively. Then,

$$
\begin{equation*}
\zeta_{K}(s)=L_{1}(s) \cdots L_{j}(s) \tag{4.4}
\end{equation*}
$$

where $j=n / k$ and $L_{i}(s)$ are abelian L-functions of K. Therefore we can take any $\mu>1-\frac{3}{2 k+6}$ in our zero-density hypothesis of the condition (iii).

Let μ^{\prime} be the smallest real number for which

$$
\begin{equation*}
\int_{0}^{T}\left|L_{i}\left(\mu^{\prime}+i t\right)\right|^{2} d t \ll T^{1+\epsilon} \tag{4.5}
\end{equation*}
$$

Then, $\mu^{\prime}=\frac{1}{2}$ happens when $K^{\prime}=\mathbb{Q}$ or $\mathbb{Q}(\sqrt{d})$. Then for $\sigma_{0}>\frac{1}{2}$, we can take $\mu>\frac{1}{2}$. If $\mu^{\prime}>\frac{1}{2}$, by standard arguments, we can take any $\mu>\mu^{\prime}$ in the zero-density hypothesis of the condition (iii). For a detailed discussion of the above cases, we refer to section 5 of [6].

For instance, if the degree n of K exceeds 3 , then we observe (see [3])

$$
\begin{equation*}
N_{\zeta_{K}}(\sigma, T) \ll T^{(n+\epsilon)(1-\sigma)}(\log T)^{C} \tag{4.6}
\end{equation*}
$$

uniformly for $\frac{1}{2} \leqslant \sigma \leqslant 1$. Then, we can take $\delta=1-(n+\epsilon)\left(1-\sigma_{0}\right)$ in the zero-density hypothesis of the condition (iii) and $\mu_{1}=1-\frac{1}{n+\epsilon}$ in the Theorem.
Example 3. Rankin-Selberg zeta-functions:
Let f be a holomorphic cusp form of fixed even integral weight k for the full modular group $S L(2, \mathbb{Z})$ which is a normalised eigenfunction of all the Hecke operators. We denote by $Z_{f, f}(s)$ the L-function of the Rankin-Selberg convolution of F with itself. We recall here that

$$
\begin{equation*}
Z(s)=: Z_{f, f}(s)=\zeta(2 s)\left(\sum_{n=1}^{\infty} \lambda_{f}^{2}(n) n^{-s}\right) \tag{4.7}
\end{equation*}
$$

where f has the Fourier series expansion $f(z)=\sum \lambda_{f}(n) n^{\frac{k-1}{2}} e^{2 \pi i n z}$. Here $z \in \mathfrak{H}$ and ζ is the Riemann zeta-function. It has meromorphic continuation to the whole complex plane with a simple pole at $s=1$ and it satisfies the functional equation,

$$
\begin{equation*}
\Gamma(s+k-1) \Gamma(s) Z(s)=(2 \pi)^{4 s-2} \Gamma(k-s) \Gamma(1-s) Z(1-s) \tag{4.8}
\end{equation*}
$$

These L - functions are of degree 4 . From the Shimura's split (see [12] or lemma 3.1 of [9] and see also the related references [7] and [8]), we observe that the Rankin-Selberg zeta-function splits into two factors as

$$
\begin{equation*}
Z(s)=\zeta(s) D(s) \tag{4.9}
\end{equation*}
$$

where $D(s)$ is the normalised symmetric square L-function attached to the Hecke eigenform f. For $\Re s>1, Z(s)$ has the Euler product,

$$
\begin{equation*}
Z(s)=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1} \prod_{p}\left(1-\frac{\alpha_{p}^{2}}{p^{s}}\right)^{-1}\left(1-\frac{{\overline{\alpha_{p}}}^{2}}{p^{s}}\right)^{-1}\left(1-\frac{\alpha_{p} \overline{\alpha_{p}}}{p^{s}}\right)^{-1}, \tag{4.10}
\end{equation*}
$$

where $\lambda_{f}(p)=\alpha_{p}+\overline{\alpha_{p}} \in \mathbb{R}, \alpha_{p} \overline{\alpha_{p}}=1$ and $\left|\alpha_{p}\right|=1$. In [10], the first author established certain zero density theorems for these symmetric square L-functions. Therefore, for example from theorem 1.1 of [10], we infer that (for $\frac{1}{2}<\mu<1$)

$$
N_{D}(\mu, T) \ll T^{\frac{5(1-\mu)}{(3-2 \mu)}}(\log T)^{A}
$$

and in turn, this implies that

$$
N_{Z}(\mu, T) \ll T^{\frac{5(1-\mu)}{(3-2 \mu)}}(\log T)^{A}
$$

where A is an absolute positive constant. Hence, the zero-density hypothesis in condition (iii) holds when $\frac{2}{3}<\mu<1$.

By the prime number theorem (related to the weighted coefficients $\lambda_{f}^{2}(p)$, see for example [11]), we have

$$
\begin{equation*}
\sum_{p \leqslant u} \lambda_{f}^{2}(p) \log p=u+O\left(u e^{-c \sqrt{\log u}}\right) \tag{4.11}
\end{equation*}
$$

We also notice that (for $m \geqslant 2$)

$$
\begin{equation*}
b\left(p^{m}\right)=\frac{\alpha_{p}^{2 m}+{\overline{\alpha_{p}}}^{2 m}+2}{m} \ll 1 \tag{4.12}
\end{equation*}
$$

Therefore, we deduce from the Theorem,
Corollary. Let $\frac{1}{2} \leqslant \sigma_{0}<1, \quad 0 \leqslant \theta<2 \pi, \epsilon>0$. Let y be the positive solution of the equation $e^{y}=2 y+1$. Let l be an integer $\geqslant 6, C_{2}=\frac{2 y}{(2 y+1)^{2}}, \quad 0<C_{1}<C_{2}$. Then, for $T \geqslant T_{0}$, we have

$$
\Re\left(e^{-i \theta} \log Z\left(\sigma_{0}+i t_{0}\right)\right) \geqslant\left(1-\sigma_{0}\right)^{-1} C_{0} C_{1}\left(\log t_{0}\right)^{1-\sigma_{0}}\left(\log \log t_{0}\right)^{-\sigma_{0}}
$$

for at least one t_{0} satisfying $T^{\epsilon} \leqslant t_{0} \leqslant T$ where $C_{0}=\cos \left(\frac{2 \pi}{l}\right)\left(\frac{\delta}{\log l}\right)^{1-\sigma_{0}}$. Here $\delta=1$ if we assume Riemann hypothesis for $Z(s)$, otherwise we have to assume $\frac{2}{3}<\sigma_{0}<1$ and then we can take $\delta=1-\frac{5\left(1-\sigma_{0}\right)}{\left(3-2 \sigma_{0}\right)}$.

Acknowledgement. The authors are thankful to the anonymous referee for some fruitful suggestions and comments which resulted to this more general version.

References

[1] R. Balasubramanian, On the frequency of Titchmarsh phenomenon for $\zeta(s)$-IV, Hardy-Ramanujan J., 9 (1986), 1-10.
[2] R. Balasubramanian and K. Ramachandra, On the frequency of Titchmarsh phenomenon for $\zeta(s)$-III, Proc. Indian Acad. Sci., 86 A (1977), 341-351.
[3] D.R. Heath-Brown, On the density of the zeros of the Dedekind zeta-function, Acta Arith., 33 (1977), 169-181.
[4] A. Ivić, The Riemann zeta-function, Wiley, (1985).
[5] H.L. Montgomery, Extreme values of the Riemann zeta-function, Comment. Math. Helv., 52 (1977), 511-518.
[6] K. Ramachandra and A. Sankaranarayanan, Note on a paper by H.L. Montgo-mery-I (Omega theorems for the Riemann zeta-function), Publ. Inst. Math. (Beograd) (N.S.), 50 (64) (1991), 51-59.
[7] R.A. Rankin, Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions-I, Proc. Cambridge. Phil. Soc., 35 (1939), 351-356.
[8] R.A. Rankin, Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions-II, Proc. Cambridge. Phil. Soc., 35 (1939), 357-372.
[9] A. Sankaranarayanan, Fundamental properties of symmetric square L-funct-ions-I, Illinois J. Math., 46 (2002), 23-43.
[10] A. Sankaranarayanan, Fundamental properties of symmetric square L-funct-ions-II, Funct. Approx. Comment. Math., 30 (2002), 89-115.
[11] A. Sankaranarayanan, On Hecke L-functions associated with cusp forms-II (On the sign changes of $S_{f}(T)$), Annales Acad. Scientiarum Fenn., 31 (2006), no: 1, 213-238.
[12] G. Shimura, On the holomorphy of certain Dirichlet series, Proc. London. Math. Soc., 31 (1975), 79-98.
[13] A. Selberg, Contributions to the theory of the Riemann zeta-function in: Collected Papers, Vol I, Springer, (1989), 214-280.
[14] E.C. Titchmarsh, The theory of the Riemann zeta-function, 2nd Edition (edited by D.R. Heath-Brown), Clarendon Press (Oxford) (1986).

Addresses: School of Mathematics, TIFR, Homi Bhabha Road, Mumbai- 400 005, INDIA
E-mail: sank@math.tifr.res.in; sengupta@math.tifr.res.in
Received: 17 February 2006; revised: 6 April 2006

