THE LARGE SIEVE WITH QUADRATIC AMPLITUDE

Stephan Baier

Abstract: We establish a large sieve bound for expressions of the form

$$\sum_{r=1}^{R} \left| \sum_{M < n \leqslant M+N} a_n e\left(\alpha_r f(n)\right) \right|^2,$$

where $f(x) = \alpha x^2 + \beta x + \theta \in \mathbb{R}[x]$ is a quadratic polynomial with $\alpha > 0$ and $\beta \ge 0$. We also consider the case when $f(x) = x^d$ with $d \in \mathbb{N}$, $d \ge 3$. **Keywords:** large sieve, quadratic amplitude, double large sieve, exponential sums.

1. Introduction

Throughout this paper, we suppose that Q, R, M, N are integers with $Q \ge 1$, $R \ge 1$, $N \ge 1$ and $M \ge 0$. As usual, by ε we denote a fixed but arbitrary (small) positive real number. Further, we suppose that (a_n) and (α_r) are sequences of complex numbers. We set

$$S(\alpha) := \sum_{M < n \leqslant M + N} a_n e(\alpha n)$$

and

$$Z := \int_{0}^{1} |S(\alpha)|^2 \mathrm{d}\alpha = \sum_{M < n \leqslant M + N} |a_n|^2.$$

By ||x|| we denote the distance of a real number x to its closest integer.

In its modern form, the large sieve is an inequality connecting a discrete and the continuous mean value Z of the trigometrical polynomial $S(\alpha)$, *i.e.* an inequality of the form

$$\sum_{r=1}^{R} |S(\alpha_r)|^2 \leq \Delta(N; \alpha_1, ..., \alpha_r) Z.$$
(1)

2000 Mathematics Subject Classification: 11N35, 11L07.

34 Stephan Baier

Montgomery and Vaughan [9] proved that (1) holds with

$$\Delta(N;\alpha_1,...,\alpha_r) = N + \delta^{-1},$$

where

$$\delta := \min_{\substack{r,s \leqslant R \\ r \neq s}} ||\alpha_r - \alpha_s||.$$
⁽²⁾

In many applications, the sequence $\alpha_1, ..., \alpha_R$ consists of Farey fractions. If $\alpha_1, ..., \alpha_R$ is the sequence of all fractions a/q with $1 \leq a \leq q$, (a,q) = 1 and $q \leq Q$, then the above results implies that

$$\sum_{q \leqslant Q} \sum_{\substack{a=1\\(a,q)=1}}^{q} \left| S\left(\frac{a}{q}\right) \right|^2 \leqslant (N+Q^2)Z,$$

which is a sharpened version of the classical large sieve inequality of Bombieri [2]. In [11] L. Zhao dealt with sums of the form

$$\sum_{q \leqslant Q} \sum_{\substack{a=1\\(a,q)=1}}^{q} \left| \sum_{M < n \leqslant M+N} a_n e\left(\frac{af(n)}{q}\right) \right|^2,$$

where

$$f(x) = \alpha x^2 + \beta x + \theta \in \mathbb{R}[x]$$

is a *quadratic* polynomial with $\alpha \neq 0$. Without loss of generality, we can assume that $\alpha > 0$ (if $\alpha < 0$, then we just need to replace f(x) by -f(x)), which we suppose from now on.

For the case when β/α is rational, Zhao established the following bound (Theorem 2. in [11]): If $\beta/\alpha = u/v$ with $u, v \in \mathbb{Z}$, v > 0 and (u, v) = 1, then

$$\sum_{q \leqslant Q} \sum_{\substack{a=1\\(a,q)=1}}^{q} \left| \sum_{M < n \leqslant M+N} a_n e\left(\frac{af(n)}{q}\right) \right|^2$$

$$\ll \left(Q^2 + Q\sqrt{\alpha N(M+N+u/v)+1} \right) \Pi Z,$$
(3)

where

$$\Pi = \left(\frac{v}{\alpha} + 1\right)^{1/2+\varepsilon} [Nv(M+N) + |u| + v/\alpha]^{\varepsilon}.$$

We recall that we here suppose $M \ge 0$.

Zhao also dealt with the case when β/α is a general real number (see Proposition 1 in [11]). However, for irrational β/α his result is weaker than (3) unless β/α is in a sense well-approximable by rational numbers.

In many applications, the quantity

$$Z^* := N \max_{M < n \le M+N} |a_n|^2 \tag{4}$$

does not exceed the quantity $Z = \sum_{M < n \leq M+N} |a_n|^2$ much. In the present paper we are concerned with large sieve inequalities of the form

$$\sum_{r=1}^{R} \left| \sum_{M < n \leq M+N} a_n e\left(\alpha_r f(n)\right) \right|^2 \ll \Delta(M, N; \alpha_1, ..., \alpha_r) Z^*.$$

To avoid technical complications, we confine ourselves to the case when $\beta \ge 0$. Though, our method should lead to the same result for $\beta < 0$. We shall prove

Theorem 1. Define δ as in (2) and Z^* as in (4). Let $f(x) = \alpha x^2 + \beta x + \theta \in \mathbb{R}[x]$, where $\alpha > 0$ and $\beta \ge 0$. Then we have, with an absolute \ll -constant,

$$\sum_{r=1}^{R} \left| \sum_{M < n \leq M+N} a_n e\left(\alpha_r f(n)\right) \right|^2$$

$$\ll (1 + \alpha^{-1/2}) R^{1/2} \left(N^{1/2} (M+N)^{1/2} + \delta^{-1/2} \right) Z^* \times \log^{1/2} (2 + \alpha^{-1}) \log 2N$$
(5)

if $N > N_0$, where N_0 is a non-negative constant which depends only on α and β .

An immediate consequence of Theorem 1 is

Corollary 1. Define Z^* as in (4). Let $f(x) = \alpha x^2 + \beta x + \theta \in \mathbb{R}[x]$, where $\alpha > 0$ and $\beta \ge 0$. Then we have, with an absolute \ll -constant,

$$\sum_{q \leqslant Q} \sum_{\substack{a=1\\(a,q)=1}}^{q} \left| \sum_{M < n \leqslant M+N} a_n e\left(\frac{af(n)}{q}\right) \right|^2$$

$$\ll (1 + \alpha^{-1/2}) \left(QN^{1/2} (M+N)^{1/2} + Q^2 \right) Z^* \times \log^{1/2} (2 + \alpha^{-1}) \log 2N$$
(6)

if $N > N_0$, where N_0 is a non-negative constant which depends only on α and β .

In the following two sections we shall prove Theorem 1. In the last section we shall touch the case of polynomials f(x) of degree ≥ 3 .

2. Preliminaries

Like Zhao's method in [11], our method relies on the double large sieve of Bombieri and Iwaniec (Lemma 5.2 in [1]). Here we state only the one-dimensional version of the double large sieve. **Proposition 1.** Suppose that $x_1, ..., x_R$ and $y_1, ..., y_S$ are real numbers with

$$-\frac{X}{2} \leqslant x_r \leqslant \frac{X}{2}, \qquad -\frac{Y}{2} \leqslant y_s \leqslant \frac{Y}{2}$$

for r = 1, ..., R and s = 1, ..., S. Put $\Lambda(x) := \max(1 - |x|, 0)$. Then we have

$$\sum_{r=1}^{R} \sum_{s=1}^{S} c_r d_s e(x_r y_s) \bigg|^2 \le \left(\frac{\pi}{2}\right)^4 AB(XY+1), \tag{7}$$

where

$$A := \sum_{r=1}^{R} \sum_{\rho=1}^{R} c_r c_\rho \Lambda((x_r - x_\rho)Y)$$

and

$$B := \sum_{s=1}^{S} \sum_{\sigma=1}^{S} d_s d_\sigma \Lambda((y_s - y_\sigma)X))$$

Using Proposition 1, we shall reduce the problem in question to estimating the number of solutions $k, l, u, v \in \mathbb{Z}$ of a Diophantine inequality of the form

$$|l(v+\gamma) - k(u+\gamma)| \leqslant h, \tag{8}$$

where h and γ are fixed real numbers, and the variables k, l, u, v lie in certain intervals. We shall employ the following bound which is essentially due to G. Harman.

Proposition 2. Let $\gamma \in \mathbb{R}$ and $h, K, L, U, V \ge 1$ be given. Then the number of solutions $k, l, u, v \in \mathbb{Z}$ with $K \le k \le 2K$, $L \le l \le 2L$, $U \le u \le 2U$, $V \le v \le 2V$ of the inequality (8) is

$$\ll \left(\min\{K, L\} \max\{U, V\}(1 + |\log K/L|) + (K + L)^{3/2 + \varepsilon}\right)$$
(9)
 $\times h \log 2h \ \log 2(K + L),$

where the implied \ll -constant depends only on ε .

G. Harman stated and used the bound (9) for U = V in the proof of Lemma 3 in [4] (note that our notations differ from those in [4]). He did not prove this bound in [4] but refered to his paper [3] in which he established a similar bound, Lemma 7, for irrational real γ 's which satisfy the condition

$$||q\gamma|| > A^{-q}, \quad \text{all } q \in \mathbb{N}, \tag{10}$$

for some A. Proposition 2 can also be established by the method used to prove Lemma 7 in [3]. Instead of the estimate (5.6) in [3] one here uses the slightly weaker estimate $\ll hTl^{-1}$ (see the remark at the beginning of the proof of Lemma 8 in [3]) which is satisfied for all real γ . We also note that the term h^2 in (5.3) in [3] can be replaced by $h \log 2h$ (however, for the application in [3] it was sufficient to use (5.3) with h^2). The term h^2 arose from the crude estimate $1 + \log h \ll h$ at the end of the proof of Lemma 7 in [3].

We shall also need the following slightly modified version of Proposition 2, which can be established by the same method.

Proposition 3. Let $\gamma \in \mathbb{R}$ and $h, K, L, U, Z \ge 1$ be given. Suppose that $Z \le U$. Then the number of solutions $k, l, u, v \in \mathbb{Z}$ with $K \le k \le 2K$, $L \le l \le 2L$, $U \le u \le U + Z$, $U \le v \le U + Z$ of the inequality (8) is

$$\ll \left(\min\{K, L\}Z(1+|\log K/L|) + (K+L)^{3/2+\varepsilon}\right)$$

$$h \log 2h \ \log(K+L),$$
(11)

where the implied \ll -constant depends only on ε .

3. Proof of Theorem 1

We are now ready to prove Theorem 1, our main result. As in [11], we begin with applying the double large sieve.

Multiplying out the square, we get

$$\sum_{r=1}^{R} \left| \sum_{M < n \leqslant M+N} a_n e\left(\alpha_r f(n)\right) \right|^2$$

$$= \sum_{r=1}^{R} \sum_{M < m \leqslant M+N} \sum_{M < n \leqslant M+N} a_m \overline{a_n} e\left(\alpha_r (f(m) - f(n))\right)$$

$$= \sum_{r=1}^{R} \sum_{M < m \leqslant M+N} \sum_{M < n \leqslant M+N} a_m \overline{a_n} e\left(\alpha_r \alpha (m - n)(m + n + \beta/\alpha)\right).$$
(12)

In the remaining part of this paper, we assume without loss of generality that

$$-1/2 \leqslant \alpha_r \leqslant 1/2$$

for r = 1, ..., R, and we put $\gamma := \beta / \alpha$. Then, applying Proposition 1 with

$$\begin{split} (x_r)_{1\leqslant r\leqslant R} &= (\alpha\alpha_r)_{1\leqslant r\leqslant R}, \quad (y_s)_{1\leqslant s\leqslant S} = ((m-n)(m+n+\gamma))_{M< m,n\leqslant M+N}, \\ (c_r) &\equiv 1, \quad (d_s)_{1\leqslant s\leqslant S} = (a_m\overline{a_n})_{M< m,n\leqslant M+N}, \quad X = \alpha, \quad Y = 2N(M+N+\gamma), \\ \text{we obtain} \end{split}$$

$$\left|\sum_{r=1}^{R}\sum_{M < m \leqslant M+N}\sum_{M < n \leqslant M+N} a_m \overline{a_n} e\left(\alpha_r \alpha(m-n)(m+n+\gamma)\right)\right|^2$$
(13)
 $\ll AB(\alpha N(M+N+\gamma)+1) \max_{M < n \leqslant M+N} |a_n|^4,$

~

where A is the number of solutions α_r, α_ρ with $1 \leq r, \rho \leq R$ of the inequality

$$|\alpha_r - \alpha_\rho| \leqslant \frac{1}{2\alpha N(M+N+\gamma)},$$

and B is the number of solutions $m_1,n_1,m_2,n_2\in\mathbb{Z}$ with $M< m_1,n_1,m_2,$ $n_2\leqslant M+N$ of the inequality

$$|(m_1 - n_1)(m_1 + n_1 + \gamma) - (m_2 - n_2)(m_2 + n_2 + \gamma)| \leq 1/\alpha.$$

Since the sequence $\alpha_1, ..., \alpha_R$ is well-spaced with spacing δ , we have

$$A \leqslant R\left(1 + \frac{1}{\delta\alpha N(M+N+\gamma)}\right).$$
(14)

Obviously, B is \leq the number B' of solutions $k, l, u, v \in \mathbb{Z}$ with

$$2N \leqslant k, l \leqslant 2N, \quad 2M < u, v \leqslant 2(M+N) \tag{15}$$

of the inequality

$$|l(v+\gamma) - k(u+\gamma)| \leq 1 + 1/\alpha.$$
(16)

In the following, we derive an estimate for B'. We always suppose that the conditions in (15) are satisfied.

Case 1: If k = 0, then (16) has

$$\ll N \sum_{2M < v \leq 2(M+N)} \left(1 + \frac{1 + \alpha^{-1}}{v + \gamma} \right) \ll N^2 + N(1 + \alpha^{-1}) \log 2N$$

solutions (l, u, v).

Case 2: Similarly, if l=0 , then (16) has $\ll N^2 + N(1+\alpha^{-1})\log 2N$ solutions (k,u,v) .

Case 3: Suppose that k < 0 and l > 0. Then a crude bound for the number of solutions k, l, u, v of (16) is

$$\ll \left(\sum_{1 \leqslant t \leqslant 1 + 1/\alpha} d(t)\right)^2 \ll (1 + \alpha^{-1})^2 \log^2 2(1 + \alpha^{-1}),$$

where d(t) is the number of divisors of t.

Case 4: Suppose that k > 0 and l < 0. Then, like in Case 3, there are $\ll (1 + \alpha^{-1})^2 \log^2 2(1 + \alpha^{-1})$ solutions k, l, u, v of (16).

Case 5: Suppose that k > 0, l > 0 and $M \ge N$. Put $J := [\log_2 N] + 1$. Then, by Proposition 3, the number of solutions k, l, u, v of (16) is

$$\ll \sum_{i=0}^{J} \sum_{j=0}^{J} \left(\min\left\{\frac{N}{2^{i}}, \frac{N}{2^{j}}\right\} N(1 + |\log(2^{j}/2^{i})|) + N^{3/2+\varepsilon} \right)$$
(17)

$$\times (1 + \alpha^{-1}) \log 2(1 + \alpha^{-1}) \log 2N$$

$$\ll \left(N^{3/2+2\varepsilon} + N^{2} \sum_{i=0}^{J} \sum_{j=0}^{J} \min\left\{2^{-i}, 2^{-j}\right\} (1 + |j - i|) \right)$$

$$\times (1 + \alpha^{-1}) \log 2(1 + \alpha^{-1}) \log 2N.$$

The double sum in the last line of (17) can be estimated by

$$\sum_{i=0}^{J} \sum_{j=0}^{J} \min\left\{2^{-i}, 2^{-j}\right\} (1+|j-i|)$$
(18)
$$\ll \sum_{i=0}^{J} \sum_{j=i}^{J} 2^{-j} (1+j-i)$$
$$\ll \sum_{i=0}^{J} \sum_{j=i}^{J} \left(\frac{2}{3}\right)^{j}$$
$$\ll \sum_{i=0}^{J} \left(\frac{2}{3}\right)^{i},$$

and the sum in the last line of (18) is bounded by a constant. So the number of solutions in question is

$$\ll N^2 (1 + \alpha^{-1}) \log 2(1 + \alpha^{-1}) \log 2N.$$

Case 6: Suppose that k > 0, l > 0 and M < N. Put $J := [\log_2 N] + 1$. Then, by Proposition 2, the number of solutions k, l, u, v of (16) is

$$\ll (1 + \alpha^{-1}) \log 2(1 + \alpha^{-1}) \log 2N \sum_{i=0}^{J} \sum_{j=0}^{J} \sum_{f=0}^{J+1} \sum_{g=0}^{J+1} \sum_{g=0}^{J+1} \left(19 \right) \\ \left(\min\left\{ \frac{N}{2^{i}}, \frac{N}{2^{j}} \right\} \max\left\{ \frac{M+N}{2^{f}}, \frac{M+N}{2^{g}} \right\} (1 + |\log(2^{j}/2^{i})|) + N^{3/2+\varepsilon} \right).$$

In a similar manner like in Case 5 one proves that the expression in (19) is

$$\ll N^2 (1 + \alpha^{-1}) \log 2(1 + \alpha^{-1}) \log^2 2N.$$

Case 7: Suppose that $k<0,\ l<0$ and $M\geqslant N.$ Then we get the same bound like in Case 5.

Case 8: Suppose that $k < 0, \ l < 0$ and M < N. Then we get the same bound like in Case 6.

Collecting all contributions together, we find that the total number of solutions k, l, u, v of (16) is

$$\ll N^2 (1 + \alpha^{-1}) \log 2(1 + \alpha^{-1}) \, \log^2 2N \tag{20}$$

if $N > N_0(\alpha)$, where $N_0(\alpha)$ is a non-negative constant which depends only on α .

Now, combining (12), (13), (14) and the bound (20) for the term B, we obtain the result of Theorem 1.

4. Polynomials of higher degree

In this section we deal with the simplest polynomials of higher degree, namely the polynomials $f(x) = x^d$ with $d \ge 3$. Our aim is to estimate the expression

$$\sum_{r=1}^{R} \left| \sum_{M < n \leqslant M + N} a_n e\left(\alpha_r n^d\right) \right|^2$$

For simplicity, we confine ourselves to the case when M = 0. In what follows, we allow the implied \ll -constants to depend on d and on some parameter k which we introduce below.

Using Hölder's inequality, we get for $k \ge 2$

$$\sum_{r=1}^{R} \left| \sum_{n=1}^{N} a_n e\left(\alpha_r n^d\right) \right|^2 \leqslant R^{1-2/k} \left(\sum_{r=1}^{R} \left| \sum_{n=1}^{N} a_n e\left(\alpha_r n^d\right) \right|^k \right)^{2/k}.$$
 (21)

.

If $k \in \mathbb{N}$, then

$$\sum_{r=1}^{R} \left| \sum_{n=1}^{N} a_n e\left(\alpha_r n^d\right) \right|^k$$

$$= \sum_{r=1}^{R} \left| \sum_{n_1=1}^{N} \dots \sum_{n_k=1}^{N} a_{n_1} \cdots a_{n_k} e\left(\alpha_r \left(n_1^d + \dots + n_k^d\right)\right) \right|$$

$$= \sum_{r=1}^{R} \sum_{n_1=1}^{N} \dots \sum_{n_k=1}^{N} \epsilon_r a_{n_1} \cdots a_{n_k} e\left(\alpha_r \left(n_1^d + \dots + n_k^d\right)\right)$$
(22)

for suitable complex ϵ_r with $|\epsilon_r| = 1$.

Applying Proposition 1 with

$$\begin{aligned} (x_r)_{1\leqslant r\leqslant R} &= (\alpha_r)_{1\leqslant r\leqslant R}, \quad (y_s)_{1\leqslant s\leqslant S} &= \left(n_1^d + \ldots + n_k^d\right)_{0< n_1, \ldots, n_k\leqslant N}, \\ (c_r)_{1\leqslant r\leqslant R} &= (\epsilon_r)_{1\leqslant r\leqslant R}, \quad (d_s)_{1\leqslant s\leqslant S} &= (a_{n_1}\cdots a_{n_k})_{0< n_1, \ldots, n_k\leqslant N}, \\ X &= 1, \quad Y = 2kN^d, \end{aligned}$$

we obtain

$$\left| \sum_{r=1}^{R} \sum_{n_1=1}^{N} \dots \sum_{n_k=1}^{N} \epsilon_r a_{n_1} \cdots a_{n_k} e\left(\alpha_r \left(n_1^d + \dots + n_k^d\right)\right) \right|^2$$

$$\ll ABN^d \max_{n \le N} |a_n|^{2k},$$
(23)

where A is the number of solutions α_r, α_ρ with $1 \leq r, \rho \leq R$ of the inequality

$$|\alpha_r - \alpha_\rho| \leqslant \frac{1}{2kN^d},$$

and B is the number of solutions $(m_1, ..., m_k, n_1, ..., n_k) \in \mathbb{N}^{2k}$ with $m_1, ..., m_k$, $n_1, ..., n_k \leq N$ of the equation

$$m_1^d + \ldots + m_k^d - (n_1^d + \ldots + n_k^d) = 0.$$

Since the sequence $\alpha_1, ..., \alpha_R$ is well-spaced with spacing δ , we have

$$A \leqslant R\left(1 + \frac{1}{\delta k N^d}\right). \tag{24}$$

Combining (21), (22), (23) and (24), we obtain

Theorem 2. Define δ as in (2). Suppose that $d, k \in \mathbb{N}$, $d \ge 3$ and $k \ge 2$. Then we have

$$\sum_{r=1}^{R} \left| \sum_{n=1}^{N} a_n e\left(\alpha_r n^d\right) \right|^2 \ll R^{1-1/k} \left(N^{d/k} + \delta^{-1/k} \right) B_{d,k}^{1/k}(N) \max_{n \leqslant N} |a_n|^2,$$
(25)

where

$$B_{d,k}(N) := |\{(m_1, ..., m_k, n_1, ..., n_k) \in \mathbb{N}^{2k} : m_1, ..., m_k, n_1, ..., n_k \leqslant N, m_1^d + ... + m_k^d = n_1^d + ... + n_k^d\}|.$$

The term $B_{d,k}(N)$ can be expressed in the form

$$B_{d,k}(N) = \int_{0}^{1} \left| \sum_{n=1}^{N} e\left(\alpha n^{d}\right) \right|^{2k} \mathrm{d}\alpha,$$

and this integral can be estimated by using Hua's inequality (see [7]). In particular, for d = 3 = k Hua's inequality yields (see [5])

$$B_{3,3}(N) \ll N^{7/2+\varepsilon}.$$

Hooley [6] and Heath-Brown [5] established independently the much sharper bound

$$B_{3,3}(N) \ll N^{3+\varepsilon}$$

under the Riemann hypothesis for certain Hasse-Weil L-functions. Thus, Theorem 2 implies

Theorem 3. Define δ as in (2) and Z^* as in (4). Then we have

$$\sum_{r=1}^{R} \left| \sum_{n=1}^{N} a_n e\left(\alpha_r n^3 \right) \right|^2 \ll R^{2/3} \left(N + \delta^{-1/3} \right) N^{1/6 + \varepsilon} Z^*.$$
(26)

If the Riemann hypothesis for Hasse-Weil L-functions holds true, then the left-hand side of (26) is

$$\ll R^{2/3} \left(N + \delta^{-1/3} \right) N^{\varepsilon} Z^*.$$

42 Stephan Baier

In particular, for the special case of Farey fractions we obtain

Corollary 2. Define Z^* as in (4). Then we have

$$\sum_{q \leqslant Q} \sum_{\substack{a=1\\(a,q)=1}}^{q} \left| \sum_{n=1}^{N} a_n e\left(\frac{an^3}{q}\right) \right|^2 \ll \left(Q^{4/3}N + Q^2\right) N^{1/6+\varepsilon} Z^*.$$
(27)

If the Riemann hypothesis for Hasse-Weil L-functions holds true, then the left-hand side of (27) is

$$\ll \left(Q^{4/3}N + Q^2\right)N^{\varepsilon}Z^*.$$

Heuristicly, one may expect that

$$B_{d,k}(N) \ll N^{\max\{k,2k-d\}+\varepsilon}.$$
(28)

If this inequality holds, then for large N the optimal choice of the parameter k in Theorem 4 is k = d. In this case (k = d) the bound (28) follows from Hooley's hypothesis K^* in Waring's problem (see [6]) which asserts that

$$\sum_{n\leqslant X}R^2_{d,d}(n)\ll X^{1+\varepsilon}$$

where $R_{d,d}(n)$ is the number of solutions $(n_1, ..., n_d) \in \mathbb{N}^d$ of the equation

$$n_1^d + \dots + n_d^d = n.$$

Thus, Theorem 2 implies

Theorem 4. Define δ as in (2) and Z^* as in (4). Let $d \ge 3$ be a natural number. Assume that hypothesis K^* holds. Then we have

$$\sum_{r=1}^{R} \left| \sum_{n=1}^{N} a_n e\left(\alpha_r n^d\right) \right|^2 \ll R^{1-1/d} \left(N + \delta^{-1/d} \right) N^{\varepsilon} Z^*.$$
(29)

In particular, for the special case of Farey fractions we obtain

Corollary 3. Define Z^* as in (4). Let $d \ge 3$ be a natural number. Assume that hypothesis K^* holds. Then we have

$$\sum_{q \leqslant Q} \sum_{\substack{a=1\\(a,q)=1}}^{q} \left| \sum_{n=1}^{N} a_n e\left(\frac{an^d}{q}\right) \right|^2 \ll \left(Q^{2(1-1/d)}N + Q^2\right) N^{\varepsilon} Z^*.$$
(30)

Actually, Hooley [6] and Heath-Brown [5] proved the hypothesis K^* for d = 3 under the Riemann hypothesis for certain Hasse-Weil *L*-functions.

We note that for d = 2 the bounds (29) and (30) with $\log 2N$ in place of N^{ε} follow from Theorem 1 and Corollary 1. For d = 1 the bounds (29) and (30) with the term N^{ε} omitted follow from the ordinary large sieve inequalities given at the beginning of this paper.

Acknowledgement. This paper was written when the author held a postdoctoral position at the Harish-Chandra Research Institute at Allahabad (India). The author wishes to thank this institute for financial support.

References

- [1] E. Bombieri, H. Iwaniec, On the order of $\zeta(1/2+it)$. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) **13** (1986), 449–472.
- [2] E. Bombieri, On the large sieve, Mathematika **12** (1965), 201–225.
- [3] G. Harman, Metrical theorems on fractional parts of real sequences, J. Reine Angew. Math. 396 (1989), 192–211.
- [4] G. Harman, Fractional and integral parts of p^{λ} , Acta Arith. 58 (1991), 141–152.
- [5] D.R. Heath-Brown, The circle method and diagonal cubic forms, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 356 (1998), 673–699.
- [6] C. Hooley, On Hypothesis K* in Waring's problem, Sieve methods, exponential sums, and their applications in number theory (Cardiff, 1995), 175–185, London Math. Soc. Lecture Note Ser. 237, Cambridge Univ. Press, Cambridge, 1997.
- [7] L.K. Hua, On Waring's problem, Quart. J. Math. Oxford Ser. 9 (1938), 199–292.
- [8] H.L. Montgomery, *Topics in multiplicative number theory*, Lecture Notes in Mathematics, Vol. 227, Springer-Verlag, Berlin-New York, 1971.
- [9] H.L. Montgomery, R.C. Vaughan, The large sieve, Mathematika 20 (1973), 119–134.
- [10] R.C. Vaughan, T.D. Wooley, Waring's problem: a survey, Number theory for the millennium, III (Urbana, IL, 2000), 301–340, A K Peters, Natick, MA, 2002.
- [11] L. Zhao, *Large Sieve Inequalities with Quadratic Amplitudes*, to appear in Monatshefte für Mathematik.

Address: Queen's University, Jeffery Hall, University Ave, Kingston, ON K7L3N6 Canada E-mail: sbaier@mast.queensu.ca Received: 27 January 2005; revised: 13 February 2006