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Abstract: We assume the Riemann Hypothesis (RH). It is classical that there is an absolute
constant C > 1 such that ψ(x)− x changes sign in every interval [x, Cx] for x > 1 . We prove
that ψ(x)−x changes sign in [x, 19x] for all x > 1 , and also that for x > x0 , ψ(x)−x changes
sign in the interval [x, Cx ] where C = 2.02 .
Keywords: Prime Number Theorem, Riemann Hypothesis.

1. Introduction

Ingham [1] showed (assuming RH) that there is a C such that π(x)− li(x) changes
sign in every interval [x,Cx] for which x > 1. This C is very large, possibly
as large as 101000 or even more. Ingham argued by elaborating on the method
that Littlewood [4] devised to show that π(x) − li(x) has infinitely many sign
changes. Let ϑ(x) =

∑
p6x log p . Ingham’s method applies equally to sign changes

of ϑ(x)− x , but for ψ(x)− x or Π(x)− li(x) the easier method of Littlewood [5]
or Pólya [7] suffices. In this paper we consider ψ(x) − x assuming the Riemann
Hypothesis (RH).

Theorem 1. (Assume RH) For every x > 1 , the function ψ(x) − x takes both
positive and negative values in the interval [x, 19x ] .

The constant 19 is best possible, since ψ(x) < x for 1 6 x < 19.
We turn now to the problem of finding C such that ψ(x)− x changes sign

in the interval [x, Cx] for every x > x0 .
For x > 1, x not a prime power, we know that

ψ(x) = x−
∑
ρ

xρ

ρ
+ log 2π − 1

2
log(1−1/x2) . (1)
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Here the sum over the zeros is uniformly convergent in closed subintervals of (1,∞)
not containing a prime power. Put

f(y) = −
∑
ρ

eiγy

ρ
. (2)

Thus under RH,
ψ
(
ey
)− ey = f(y)ey/2 +O(1) ,

and our object is to find c so that f(y) changes sign in any interval of the form
[Y, Y + c ] . The most familiar argument in this direction involves putting

fk(y) = −
∑
ρ

eiγy

ρ(iγ)k
.

Thus f0(y) = f(y) and fk(y)′ = fk−1(y) for k > 0. Let 0 < γ1 6 γ2 6 · · · denote
the ordinates of the zeros of the zeta function in the upper half-plane, and put
yr = πr/γ1 + φ where φ is chosen, 0 6 φ < 2π , so that

eiγ1φ = − ρ1

|ρ1| . (3)

Thus the combined contribution of ±γ1 = ±14.134725141734693790 . . . to f(y)
is largest when y = y2r for some r, and is smallest (i.e., most negative) when
y = y2r−1 . If

1
|ρ1|γk1

>

∞∑

j=2

1
|ρj |γkj

, (4)

then (−1)rfk(yr + πk/2) > 0. Given k + 2 consecutive such points, we have at
least k + 1 changes of sign of fk . This gives at least k changes of sign of fk−1 ,
and so on, until we have at least one change of sign of f0 = f . Since any interval
of length (k + 2)π/γ1 contains at least k + 2 of these points, it follows that we
can take c = (k + 2)π/γ1 . It is clear that (4) holds for all sufficiently large k .
In §2 we show that it fails for k = 2, but holds for k = 3. Thus we can take
c = 5π/γ1 = 1.111303 . . . . It is also clear that there is an effectively computable
constant a > 0 such that

max
y∈I

f(y) > a, min
y∈I

f(y) 6 −a

provided that I is an interval of length at least c . Hence any C>ec = 3.0381149 . . .
is admissible for x > x0 .

A somewhat more efficient variant of this approach involves setting

F1(y) =
∫ y+π/(2γ1)

y−π/(2γ1)
f(u) du = −2

∑
ρ

eiγy sin πγ
2γ1

ρ γ
,
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and in general

Fk(y) =
∫ y+π/(2γ1)

y−π/(2γ1)
Fk−1(u) du = −2k

∑
ρ

eiγy

ρ

( sin πγ
2γ1

γ

)k
.

If
1

|ρ1|γk1
>

∞∑

j=2

∣∣ sin πγj
2γ1

∣∣k

|ρ|γkj
, (5)

then (−1)rFk(yr) > 0. Thus f takes positive values in any interval of the form

[
y2r − kπ/(2γ1), y2r + kπ/(2γ1)

]
,

and negative values in any interval

[
y2r−1 − kπ/(2γ1), y2r−1 + kπ/(2γ1)

]
.

If c = (k+ 2)π/γ1 , then any interval [y, y+ c ] contains subintervals of both these
sorts. In §2 we show that (5) fails for k = 1, but holds for k = 2. Thus we can
take c = 4π/γ1 = 0.8890 . . . , and C > ec = 2.43799 . . . for x > x0 .

With these classical arguments acknowledged, we propose a better method.
Suppose that K ∈ L1(R) is a nonnegative function with support in [−α, α ] . Then

∫ α

−α
f(Y + y)K(y) dy = −

∑
ρ

eiγY

ρ

∫ α

−α
eiγyK(y) dy = −

∑
ρ

eiγY

ρ
K̂
(−γ

2π

)

where K̂(t) denotes the Fourier transform of K , K̂(t) =
∫ α
−αK(y)e(−ty) dy . Here

e(θ) = e2πiθ is the complex exponential with period 1. If K can be chosen so that

−<
(
eiγ1Y

ρ1
K̂
(−γ1

2π

))
−
∞∑

j=2

∣∣K̂(−γj2π

)∣∣
|ρj | > 0 , (6)

then f(y) > 0 for some y ∈ [Y − α, Y + α ] . Similarly, if

−<
(
eiγ1Y

ρ1
K̂
(−γ1

2π

))
+
∞∑

j=2

∣∣K̂(−γj2π

)∣∣
|ρj | < 0 , (7)

then f(y) < 0 for some y ∈ [Y − α, Y + α ] . By simple choices of K of the form

K(y) = max(0, 1− |y|/α)
(
1± cos(γ1y + θ)

)
, (8)

we obtain
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Theorem 2. (Assume RH) Let f(y) be defined as in (2). If Y > 0 , then the
function f(y) takes values of both signs in the interval [Y, Y + c ] where c = 0.7 ,
and for x > x0 , ψ(x)− x changes sign in the interval [x, Cx ] where C = 2.02 .

We obtain the above by arguing rather crudely. We claim that by taking
more care in verifying (6) and (7), we could reduce 0.7 to 0.62.

To optimize our approach we would need kernels K(y) that depend on Y
modulo 2π/γ1 , which is to say a continuum of kernels. In the case that Y is of the
form Y = yr , we define carefully chosen kernels that seem to be close to optimal,
and thus obtain the following special results.

Theorem 3. (Assume RH) Let δ+ = 0.1375 , and δ− = 0.28495 . There is a
y ∈ [y2r − δ+,y2r + δ+] , such that f(y) > 0 . There is a y ∈ [y2r − δ−, y2r + δ−]
such that f(y) < 0 . Similarly, there is a y ∈ [y2r−1 − δ+, y2r−1 + δ+] such that
f(y) < 0 , and a y ∈ [y2r−1 − δ−, y2r−1 + δ−] such that f(y) > 0 .

If c = 2π/γ1 + 2δ+ , then any interval [y, y+ c ] contains subintervals of the
form [y2r− δ+, y2r + δ+] and of the form [y2r−1− δ+, y2r−1 + δ+] , and hence f(y)
takes values of both signs in such an interval. However, 2π/γ1 + 2δ+ = 0.7195,
which is larger than the constant we obtained already in Theorem 2.

Let J be a positive integer. Our method applies to any sum of the form

F (y) =
J∑

j=1

cos(γjy + φj)
|ρj | ,

for arbitrary real φj . Thus the following result provides lower bounds for the
constants that can be obtained by our method.

Theorem 4. Let τ+ = 0.0953 and τ− = 0.2431 . There exist functions F± of the
form

F±(y) =
J∑

j=1

ε±(j)
cos γjy
|ρj |

with ε±(j) = ±1 for all j , ε+(1) = 1 , and ε−(1) = −1 such that F+(y) < 0 for
−τ+ 6 y 6 τ+ and F−(y) < 0 for −τ− 6 y 6 τ− .

It seems plausible that with enough work one could prove Theorem 2 with c
replaced by 2δ− . Thus it seems likely that the optimal constant c in Theorem 2
lies between 2τ− = 0.4862 and 2δ− = 0.5699.

Let V (x) denote the number of sign changes of ψ(u) − u for 1 6 u 6 x .
Assuming RH, our results imply that V (x) � log x . Indeed, Kaczorowski [2] has
shown unconditionally that

lim inf
x→∞

V (x)
log x

> γ1

π
,



Changes of sign of the error term in the prime number theorem 239

and later Kaczorowski [3] showed that the constant can be improved slightly. On
the other hand, we expect that V (x) is closer to the order of

√
x ; possibly even

0 < lim inf
x→∞

V (x)√
x

< lim sup
x→∞

V (x)√
x

< ∞ .

From a calculation of sign changes out to 108 we extract the following values.

Table 1: Values of V (x).

x V (x) V (x)/
√
x

102 24 2.4

103 162 5.12

104 701 7.01

105 2351 7.43

106 7314 7.31

107 20,432 6.46

108 64,694 6.47

2. Numerical scrutiny of classical arguments

The ordinates of the first 100,000 zeros have been computed to within 10−10

by Odlyzko [6]. We set J = 32,767, and use the computed values of the first J
ordinates to derive the first three columns of the following table.

Table 2: Test of relation (4) for k = 1, 2, 3.

k
1

|ρ1|γk1

J∑

j=2

1
|ρj | γkj

∞∑

j=J+1

1
|ρj | γkj

1 0.0050021155 0.0180445096 < 0.0000537248

2 0.0003538884 0.0003753803 < 0.0000000020

3 0.0000250368 0.0000121178 < 10−10

The fourth column of the above table is computed by means of the following
reasoning. The zeta function and its derivatives are easily calculated, when |s| is
not too large, by means of the Euler–Maclaurin summation formula. The gamma
function and its derivatives are likewise easily computed. Hence we can quickly
compute

ξ(s) =
1
2
s(s− 1)ζ(s)Γ(s/2)π−s/2
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and its derivatives. But
ξ′

ξ
(s) =

∑
ρ

1
s− ρ

where the sum is conditionally convergent. On differentiating k − 1 times, we
deduce that

(ξ′
ξ

)(k−1)
(s) = (−1)k−1(k − 1)!

∑
ρ

1
(s− ρ)k

.

Here the sums are absolutely convergent for k > 2. We take s = 1/2 in the above.
For k odd the sum vanishes, due to the symmetry of the zeros. However, for even
k this gives the second column of the following table.

Table 3: Sums over zeros.

k
∑
γ

1
γk

J∑

j=1

1
γkj

∞∑

j=J+1

1
γkj

2 0.04620998623084 0.0230512683 0.0000537248

4 0.00007434519893 0.0000371726 < 10−10

6 0.00000028834786 0.0000001442 < 10−10

After computing the third column above, we can difference to obtain the fourth
column. For odd k we employ the crude inequality

∞∑

j=J+1

1
γkj

<
1
γJ

∞∑

j=J+1

1

γk−1
j

.

Thus we obtain the entries in the last column of Table 2. In a similar manner we
construct the following table, from which we see that (5) fails for k = 1, but holds
for k = 2.

Table 4: Test of relation (5) for k = 1, 2.

k
1

|ρ1|γk1

J∑

j=2

∣∣ sin πγj
2γ1

∣∣k

|ρj |γkj

∞∑

j=J+1

1
|ρj |γkj

1 0.0050021155 0.0110557294 < 0.0000537248

2 0.0003538884 0.0001566074 < 0.0000000020
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3. Proof of Theorem 1

Put g(y) =
(

log 2π − 1
2 log (1− e−2y)

)
e−y/2 . Thus by (1) and (2) we see that

ψ
(
ey
)− ey
ey/2

= f(y) + g(y) .

Put

G1(y) =
∫ y+π/(2γ1)

y−π/(2γ1)
g(u) du,

G2(y) =
∫ y+π/(2γ1)

y−π/(2γ1)
G1(u) du.

From Table 2 we deduce that when k = 2, the left hand side of (5) minus the
right hand side is > 0.000195. Hence (−1)rF2(yr) > 0.00156. On the other hand,
if y > 10, then |g(y)| < 0.012385. Hence if y > 10 + π/γ1 , then |G2(y)| <
0.012385 · (π/γ1)2 < 0.0007. Thus ψ(x) − x takes both positive and negative
values in every interval [x, 2.44x] , for all x > 28,283. To complete the proof it
suffices to note that ψ(x)−x changes sign at 19, at 359, at 6803, and at 128,981,
not to mention many other sign changes in between.

4. Proof of Theorem 2

By an easy calculation we find that if K(y) is defined as in (8), then

K̂(t) = α
( sinπαt

παt

)2
± α

2
eiθ
( sinπα(t− γ1

2π )
πα(t− γ1

2π )

)2
± α

2
e−iθ

( sinπα(t+ γ1
2π )

πα(t+ γ1
2π )

)2
.

Hence

K̂
(− γ

2π

)
= α

( sinαγ/2
αγ/2

)2
± α

2
eiθ
( sinα(γ+γ1)/2

α(γ+γ1)/2

)2
(9)

± α

2
e−iθ

( sinα(γ−γ1)/2
α(γ−γ1)/2

)2
.

In particular, it follows that

− eiγ1Y

ρ1
K̂
(− γ1

2π

)
= −αe

iγ1Y

ρ1

( sinαγ1/2
αγ1/2

)2
∓αe

i(γ1Y+θ)

2ρ1

( sinαγ1

αγ1

)2
∓αe

i(γ1Y−θ)

2ρ1
.
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Let φ be defined as in (3), and set θ = γ1(Y − φ). Then the last term above is
±α/(2|ρ1|). Put

∆ = 2
( sinαγ1/2

αγ1/2

)2
+
( sinαγ1

αγ1

)2
.

Then we find that

(±1−∆)α
2|ρ1| 6 −<e

iγ1Y

ρ1
K̂
(− γ1

2π

)
6 (±1 + ∆)α

2|ρ1| . (10)

From (9) we see that
∞∑

j=2

∣∣K̂(−γj2π

)∣∣
|ρj | 6 α

∞∑

j=2

Ej (11)

where

Ej =
1
|ρj |

(( sinαγj/2
αγj/2

)2
+

1
2

( sinα(γj + γ1)/2
α(γj + γ1)/2

)2
+

1
2

( sinα(γj − γ1)/2
α(γj − γ1)/2

)2)
.

In particular E1 = 1
2|ρ1| (∆ + 1). From (10) and (11) we see that if

∞∑

j=1

Ej <
1
|ρ1| , (12)

then (6) holds if we take the plus sign, and (7) holds if we take the minus sign.
With α = 0.35, we compute that

∑J
j=1Ej = 0.0703064889. Also, since Ej <

74/(|ρj |γ2
j )) for j > J , it follows from the second line of Table 2 that

∑
j>J Ej <

0.00000015. On the other hand, 1/|ρ1| = 0.0707035277, so (12) holds and the
proof is complete.

In deriving (10) and (11) we used the triangle inequality, which is somewhat
wasteful. If we kept strictly to (6) and (7), then a numerical check would have to
be made for each Y modulo 2π/γ1 . Such checks for closely spaced Y suggest that
(6) and (7) hold when α is smaller, say close to 0.31. However, it seems that a
rigorous argument along these lines would involve a lot of work.

5. Proof of Theorem 3

We employ (6) and (7) where K(y) is of the form

K(y) =
M∑

m=−M
am max(0, 1− |y −mδ|/δ) (13)
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where the am are nonnegative real numbers with a−m = am . Thus K(y) is an even
nonnegative piecewise linear function with K(mδ) = am . Moreover, the support
of K is contained in (−(M + 1)δ, (M + 1)δ). For such K we find that

K̂(t) =
(
a0 + 2

M∑
m=1

am cos 2πmtδ
) (sinπtδ)2

π2t2δ
.

Let K+ be of this type, with a0 = 1, M = 10, and the am as in Table 5.

Table 5: Choice of am for K+(y).

m am m am

1 0.94400 6 0.57043

2 0.90721 7 0.46654

3 0.84179 8 0.36138

4 0.76204 9 0.25600

5 0.67160 10 0.17640

We take δ = 0.0125, with the result that K+ has support in (−δ+, δ+). We
compute that

J∑

j=2

|K̂+(−γj2π )|
|ρj | = 0.0073809339 .

Also, we note that

(sinπu)2
∣∣∣1 + 2

M∑
m=1

am cos 2πmu
∣∣∣ < 0.2

uniformly in u . Hence |K̂+(t)| 6 a/t2 with a = 16/π2 , and consequently |K̂+(t/(2π))| 6
64/t2 . Thus by the second line of Table 2 we conclude that

∞∑

j=J+1

|K̂+(−γj2π )|
|ρj | < 0.0000002 .

On the other hand,
K̂+(−γ1

2π )
|ρ1| = 0.0078655340 ,

so we have (6) when Y = y2r , and (7) when Y = y2r−1 .
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Similarly, let K− be of the form (13), with a0 = 0, M = 40, and the am as
in Table 6.

Table 6: Choice of am for K−(y).

m am m am m am m am

1 0.00000 11 0.02329 21 0.31653 31 0.38884

2 0.00000 12 0.04391 22 0.34228 32 0.36259

3 0.00000 13 0.06627 23 0.36906 33 0.33571

4 0.00000 14 0.09174 24 0.39403 34 0.30907

5 0.00000 15 0.12148 25 0.41247 35 0.27871

6 0.00000 16 0.15803 26 0.42705 36 0.23867

7 0.00000 17 0.18862 27 0.43328 37 0.20743

8 0.00000 18 0.22393 28 0.42587 38 0.16867

9 0.00000 19 0.25615 29 0.41624 39 0.12862

10 0.00361 20 0.28579 30 0.40593 40 0.09620

We take δ = 0.00695, with the result that K− has support in (−δ−, δ−). We
compute that

J∑

j=2

|K̂−(−γj2π )|
|ρj | = 0.0054491548 .

Also, we note that

2(sinπu)2
∣∣∣
M∑
m=1

am cos 2πmu
∣∣∣ < 0.1

uniformly in u . Hence |K̂−(t/(2π))| 6 60/t2 . Thus by the second line of Table 2
we conclude that

∞∑

j=J+1

|K̂−(−γj2π )|
|ρj | < 0.0000002 .

On the other hand,

K̂−(−γ1
2π )

|ρ1| = −0.0055318015 ,

so we have (7) when Y = y2r , and (6) when Y = y2r−1 .
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6. Proof of Theorem 4

It suffices to take J = 36 and ε±(j) as in Table 7.

Table 7: Choices of ε±(j).

j ε+(j) K̂+
( γj

2π

)
ε−(j) K̂−

( γj
2π

)
j ε+(j) K̂+

( γj
2π

)
ε−(j) K̂−

( γj
2π

)

1 1 0.11125 −1 −0.07824 19 −1 0.00095 −1 0.00192

2 −1 0.06692 1 −0.04652 20 −1 0.00024 1 0.00139

3 −1 0.04282 1 0.00000 21 −1 −0.00073 −1 −0.00001

4 −1 0.01663 −1 0.03139 22 1 −0.00187 −1 −0.00243

5 −1 0.00780 −1 0.02861 23 −1 −0.00219 −1 −0.00309

6 1 −0.00269 −1 0.00959 24 1 −0.00232 1 −0.00292

7 1 −0.00594 1 −0.00154 25 −1 −0.00223 1 −0.00234

8 1 −0.00648 1 −0.00443 26 1 −0.00155 1 −0.00001

9 1 −0.00453 1 −0.00036 27 1 −0.00093 −1 0.00118

10 −1 −0.00318 −1 0.00212 28 1 −0.00054 1 0.00159

11 1 −0.00046 −1 0.00457 29 1 0.00046 −1 0.00164

12 1 0.00225 −1 0.00311 30 1 0.00124 −1 0.00080

13 1 0.00392 −1 −0.00000 31 −1 0.00186 −1 −0.00031

14 −1 0.00449 1 −0.00149 32 1 0.00220 1 −0.00098

15 1 0.00497 1 −0.00304 33 1 0.00242 1 −0.00136

16 −1 0.00466 1 −0.00219 34 −1 0.00248 −1 −0.00097

17 −1 0.00388 −1 −0.00038 35 −1 0.00241 1 −0.00069

18 −1 0.00277 1 0.00135 36 −1 0.00208 1 0.00022

If the ε+(j) and K+(y) are both chosen optimally, then we would expect
that ε+(j) = −sgn K̂+(γj/(2π)) for all j > 1. Similarly, if the ε−(j) and K−(y)
are chosen optimally, then we would expect that ε−(j) = −sgn K̂−(γj/(2π)) for
all j > 1. In Table 7 we see that these relations hold for most of the smaller j,
which suggests that our choices are at least moderately close to optimal. It is to
be expected that better choices of functions K±(y) can be found by using larger
values of M, and that better F±(y) can be constructed by using more zeros.
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Graphs of F±(y) can be found in Figures 1 and 2.
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Figure 1. Graph of F+(y) for −0.096 6 y 6 0.096.
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Figure 2. Graph of F−(y) for −0.245 6 y 6 0.245.
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