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THE MOMENTS OF THE RIEMANN ZETA-FUNCTION
PART I: THE FOURTH MOMENT OFF THE CRITICAL LINE
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Abstract: In this paper, the first part of a larger work, we prove the spectral decomposition of

∫ ∞

−∞
|ζ(σ + it)|4g(t) dt ( 1

2 < σ < 1 fixed),

where g(t) is a suitable weight function of fast decay. This is used to obtain estimates and omega
results for the function

E2(T, σ) :=

∫ T

0

|ζ(σ + it)|4 dt− ζ4(2σ)

ζ(4σ)
T − T

3− 4σ

(
T

2π

)2−4σ ζ4(2− 2σ)

ζ(4− 4σ)

− T 2−2σ(a0(σ) + a1(σ) log T + a2(σ) log2 T ),

the error term in the asymptotic formula for the fourth moment of |ζ(σ + it)| .
Keywords: Fourth moment of the Riemann zeta-function, spectral decomposition, Hecke series,
hypergeometric function, omega results.

1. Introduction

Power moments of the Riemann zeta-function ζ(s) are one of the central objects in
the theory of ζ(s), with many important applications. Although the main interest
is in the moments on the “critical line” Re s = 1

2 , the moments when s lies in
the “critical strip” 1

2 < Re s < 1, or “off” the critical line, are also of great
interest. There exist extensive results on the second and fourth moments on the
critical line, the only ones that so far can be treated unconditionally, and where
asymptotic formulas have been obtained. A comprehensive review on mean square
results for ζ(s) is given by Matsumoto [Ma], where further references may be
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found. Some of the relevant works on the fourth moment of |ζ( 1
2 + it)| are [I1],

[I2], [I4]– [I8], [IM1]– [IM3], [IJM], [Mo2]– [Mo6], where also the interested reader
may find further references. The aim of this paper is to treat the fourth moment
off the critical line. The only works that seem to have explicitly dealt with this
subject are [I6], [K1] and [K2]. Thus it appears that the time is ripe for an extensive
account of this subject, which we hope that the present work will provide.

The main object of our study is the weighted integral

L(g;σ, τ) :=
∫ ∞
−∞
|ζ (σ + it)|2 |ζ(τ + it)|2g(t) dt, (1.1)

where σ, τ are given constants satisfying

1
2 6 σ 6 τ (σ 6= 1, τ 6= 1). (1.2)

The basic assumption on the weight g is: The even function g(t) takes real values
on the real axis, and there exists a large positive constant A such that g(t) is
regular and g(t) = O((|t|+ 1)−A) in the horizontal strip |Im t| 6 A .

We shall obtain the spectral decomposition of L(g;σ, τ) (see Section 3) by
the method used by the second author in the case of L(g; 1

2 ,
1
2 ) (see [Mo2], [Mo6]).

This decomposition, which is in fact an exact identity, will contain, among other
things, the function

g∗(ξ) =
∫ ∞
−∞

g(t)e−iξt dt (ξ ∈ R), (1.3)

namely the Fourier transform of g . Note that, since g is even,

g∗(ξ) =
∫ ∞
−∞

g(t)eiξt dt =
∫ ∞
−∞

g(t) cos(ξt) dt = gc(ξ), (1.4)

where gc is the cosine Fourier transform of g . The function L(g;σ, τ) is, with an
appropriate choice of the weight g , the local object which after the integration over
a suitable parameter contained in g will lead to the asymptotic evaluation of the
global object ∫ T

0
|ζ(σ + it)|2|ζ(τ + it)|2 dt, (1.5)

provided that (1.2) holds. A good choice of g will entail rapid decay of gc , which
will facilitate handling of the quantities that will appear in the spectral decompo-
sition.

It is clear that (1.5) is not interesting when σ > 1, τ > 1, in which case the
zeta-values in question are represented by absolutely convergent series which may
be readily integrated termwise. The special cases of interest of (1.1) and (1.5) are
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a) σ = τ = 1
2 . This is the classical case of the fourth moment of ζ(s) on the

critical line, and probably the most important case. The explicit formula by the
second author [Mo2], and is extensively discussed in [I2] and [Mo6].

b) 1
2 < σ = τ < 1. This is the case of the fourth moment of ζ(s) off the

critical line. As already mentioned, this is discussed by the first author in [I6]
and by A. Kačėnas [K1], [K2]. The formula for the fourth moment reads (when
1
2 < σ < 1 is fixed)

∫ T

0
|ζ(σ + it)|4 dt =

ζ4(2σ)
ζ(4σ)

T +
T

3− 4σ

(
T

2π

)2−4σ
ζ4(2− 2σ)
ζ(4− 4σ)

(1.6)

+ T 2−2σ(a0(σ) + a1(σ) log T + a2(σ) log2 T ) + E2(T, σ),

where E2(T, σ) is the error term, and the aj(σ)’s are constants which may be
explicitly evaluated. When σ → 1

2 + 0 the function E2(T, σ) tends to E2(T, 1
2 ) ≡

E2(T ), the error term in the asymptotic formula for
∫ T

0 |ζ( 1
2 + it)|4 dt .

In [I6] only a sketch of the spectral decomposition of the fourth moment off
the critical line, due to the second author, was given. Here we are going to give a
rigorous proof of the spectral decomposition in question and to recover and extend
the results given in [I6]. The works of Kačėnas contain an explicit evaluation of
the main term in the asymptotic formulas for the fourth moment off the critical
line, but the estimates for the error term are weaker than those given in [I6].
We also remark that the cases a) and b) have their analogues (mean squares) for
automorphic L–functions (see [Mo3], [Mo7]). The fourth moment of ζ(s) off the
critical line has its analogue in the mean square off the critical line. In this case,
which is less difficult to deal with than the present case, the formula reads

∫ T

0
|ζ(σ + it)|2 dt = ζ(2σ)T + (2π)2σ−1 ζ(2− 2σ)

2− 2σ
T 2−2σ + E1(T, σ) (1.7)

( 1
2 < σ < 1),

where E1(T, σ) in (1.7) represents the error term, and the notational analogy be-
tween E1(T, σ) and E2(T, σ) is obvious. As we already mentioned, [Ma] represents
a comprehensive survey of results on E1(T, σ).

c) σ = 1
2 ,

1
2 < τ < 1. This case, which does not seeem to have been treated

in the literature before, may be thought of as a “hybrid mean value”.
d) σ = 1

2 , τ > 1. This case is an extension of c). When τ is large, it is of
interest because then L(g; 1

2 , τ) is bounded by of
∫ ∞
−∞

∣∣ζ ( 1
2 + it

)∣∣2 g(t) dt,

and provides the mean (at least theoretically) to estimate ζ( 1
2 + it) pointwise,

which is a fundamental problem in the theory of ζ(s).
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In this paper, which is Part I of the whole work, we shall treat the case b)
above. To avoid excessive length, the cases c) and d) will be treated in Part II.
The plan of the present paper is as follows. The formulation of the spectral de-
composition of L(g; τ, τ), when 1

2 < τ < 1, will be given in Section 2. Although
the proof has many analogies with the proof of the second author for the case of
L(g; 1

2 ,
1
2 ), there are also many detours, and the complete, rigorous proof is given

in Section 3. In the result αjH2
j ( 1

2 )Hj(τ) and αjHj( 1
2 )H2

j (τ) (in Part II) appear,
and the asymptotic evaluation of sums of these quantities over κj 6 K is carried
out in Section 4. The detailed asymptotic evaluation of the function Λ, appearing
in the spectral decomposition of L(g; τ, τ) with the Gaussian weight function, is
contained in Section 5. The explicit formulas for L(g; τ, τ) and its integral are pre-
sented in Section 6. They are necessary in order to obtain results on the error term
E2(T, σ), which is done in Section 7 and Section 8. The notation used throughout
the paper is, whenever possible, standard. We have used the letter τ occasionally
where one would commonly used σ (as in the notation for E2(T, σ)). This was
done to avoid possible confusion with the real part of the complex variable s ,
especially in Section 3.

2. Spectral decomposition of the fourth moment – notation and results

In this section we introduce the necessary notation for the spectral decomposition
of L(g; τ, τ), the weighted fourth moment off the critical line. We also present
Theorem 1, which will give the desired decomposition, but postpone the proof
for Section 3. The notation used throughout is standard, to be found e.g., in the
second author’s monograph [Mo6], and for this reason we shall be relatively brief.

Let {λj = κ2
j+

1
4}∪ {0} be the discrete spectrum of the hyperbolic Laplacian

∆ = −y2

((
∂

∂x

)2

+
(
∂

∂y

)2
)

acting over the Hilbert space composed of all Γ -automorphic functions which are
square integrable with respect to the hyperbolic measure, where

Γ ∼= SL(2, Z)/{+1,−1}.

Let {ψj} be a maximal orthonormal system in this space such that ∆ψj = λjψj
for each j > 1 and T (n)ψj = tj(n)ψj for each integer n ∈ N , where

(
T (n)f

)
(z) =

1√
n

∑

ad=n

d∑

b=1

f

(
az + b

d

)
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is the Hecke operator. We shall further assume that ψj(−z̄) = εjψj(z) with the
parity sign εj = ±1. We then define (s = σ + it will denote a complex variable)

Hj(s) =
∞∑
n=1

tj(n)n−s (σ > 1), (2.1)

which denotes the Hecke series associated with ψj(z), and which can be continued
analytically to an entire function. As usual we put

αj = |ρj(1)|2(coshπκj)−1, (2.2)

where ρj(1) is the first Fourier coefficient of ψj(z). The holomorphic counterparts
αj,k and

Hj,k(s) :=
∞∑
n=1

tj,k(n)n−s (Re s > 1)

of (2.2) and (2.1), respectively, are defined in [Mo6, Chapter 3]; as to ϑ(2k) in
(2.7) below see Section 2.2 there. Now we can formulate

Theorem 1. Let 1
2 < τ < 1 be fixed, and let g satisfy the basic assumption.

Then we have (cf. (1.1))

L(g; τ, τ) =
{
Zr + Zd + Zc + Zh

}
(τ, g), (2.3)

where

Zr(τ, g) = M(pτ ; g) (2.4)

− 8πζ(2τ − 1)2Re
{(

cE − ζ ′

ζ
(2τ − 1)

)
g((τ − 1)i) +

1
2
ig′((τ − 1)i)

}
,

with the function M being defined by (3.65) , (3.88) , and (3.92) according as
1
2 < τ < 3

4 , τ = 3
4 , and 3

4 < τ < 1 , respectively. Further we have

Zd(τ, g) =
∞∑

j=1

αjH
2
j ( 1

2 )Hj

(
2τ − 1

2

)
Λ(κj ; τ, g), (2.5)

Zc(τ, g) =
1
π

∫ ∞
−∞

|ζ( 1
2 + ir)|4|ζ(2τ − 1

2 + ir)|2
|ζ(1 + 2ir)|2 Λ(r; τ, g) dr, (2.6)

Zh(τ, g) =
∞∑

k=1

ϑ(2k)∑

j=1

αj,2kH
2
j,2k( 1

2 )Hj,2k(2τ − 1
2 )Λ

(
( 1

2 − 2k)i ; τ, g
)
. (2.7)

Here cE = −Γ′(1) is Euler’s constant, and

Λ(r; τ, g) =
∫ ∞

0
(y(1 + y))−τgc

(
log
(

1 +
1
y

))
(2.8)

× Re
{
y−

1
2−ir

(
1 +

i

sinh(πr)

)
Γ( 1

2 + ir)2

Γ(1 + 2ir)
F

(
1
2 + ir, 1

2 + ir; 1 + 2ir;−1
y

)}
dy

with the hypergeometric function F .



138 Aleksandar Ivić & Yoichi Motohashi

The above spectral decomposition is analogous to the spectral decomposi-
tion of the function L(g; 1

2 ,
1
2 ), given as [Mo6, Theorem 4.2]. It is in fact an exact

identity, relating the original object (weighted integral of the fourth moment) to
various objects from spectral theory, hence the terminology “spectral decomposi-
tion”. The notation is also analogous to the one used in [Mo6, Theorem 4.2], as
much as possible. The notation M(pτ ; g) refers to the “main term”, since suita-
ble integration of this term will lead to the main term for the fourth moment of
|ζ(σ + it)| itself (see (1.6)). Likewise, the notation Zr,Zd,Zc,Zh refers to “resi-
dual”, “discrete”, “continuous” and “holomorphic” parts, respectively. As we just
mentioned, the term M(pτ ; g), contained in Zr , will eventually contribute to the
main term, while the remaining terms will contribute to the error terms. Of these,
the most difficult (major) contribution, like in the case of L(g; 1

2 ,
1
2 ), will come

from Zd .
An important feature of the above formula is the appearance of the oscil-

latory integral Λ(r; τ, g) which containins the hypergeometic function. We recall
here that, for |z| < 1, one defines the hypergeometric function

F (α, β; γ; z) =
∞∑

k=0

(α)k(β)k
(γ)kk!

zk (2.9)

= 1 +
∞∑

k=1

α(α+ 1) . . . (α+ k − 1)β(β + 1) . . . (β + k − 1)
γ(γ + 1) . . . (γ + k − 1)k!

zk.

Analytic continuation and other properties of F (α, β; γ; z) are treated e.g., by
N.N. Lebedev [L].

3. Proof of the spectral decomposition for the fourth moment

This section contains the proof of Theorem 1; we assume throughout that 1
2 < τ <

1 is fixed, and that the basic assumption on g holds. Our argument is a reworking
of [Mo6, Chapter 4]; thus we could mention specific changes only. However, that
would make the later part of our discussion hard to comprehend, since as has been
mentioned above there are many sensitive detours peculiar to our new situation
that begins in fact at (3.7) below.

Let first

g̃(s, λ) =
∫ ∞

0
ys−1(1 + y)−λg∗(log(1 + y)) dy (3.1)

= Γ(s)
∫ ∞+Ai

−∞+Ai

Γ(λ− it− s)
Γ(λ− it) g(t) dt,

where g∗ is defined by (1.3). We begin with the analogue of [Mo6, Lemma 4.1],
namely
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Lemma 1. The function g̃(s, λ)/Γ(s) continues holomorphically to the domain

|Re s| 6 1
3
A, |Reλ| 6 1

3
A ; (3.2)

and there we have

g̃(s, λ)� |s|− 1
2A, (3.3)

when s tends to infinity while λ remains bounded.

Let now D+ and D− be the domains of C4 where all four variables have
real parts larger than and less than one, respectively. We set, for (u, v, w, z) ∈ D+ ,

J(u, v, w, z; g) :=
∫ ∞
−∞

ζ(u+ it)ζ(v + it)ζ(w − it)ζ(z − it)g(t) dt. (3.4)

Moving the path upwards appropriately, we see that J is a meromorphic function
over the domain

B = { (u, v, w, z) ∈ C4 : |u|, |v|, |w|, |z| < B }, (3.5)

where B = cA with 0 < c < 1 is supposed to be sufficiently large. Then, taking
(u, v, w, z) in D− ∩ B , we get the following meromorphic continuation of J to
D− ∩ B :

J(u, v, w, z; g) =
∫ ∞
−∞

ζ(u+ it)ζ(v + it)ζ(w − it)ζ(z − it)g(t) dt (3.6)

+ 2πζ(v − u+ 1)ζ(u+ w − 1)ζ(u+ z − 1)g((u− 1)i)

+ 2πζ(u− v + 1)ζ(v + w − 1)ζ(v + z − 1)g((v − 1)i)

+ 2πζ(z − w + 1)ζ(u+ w − 1)ζ(v + w − 1)g((1− w)i)

+ 2πζ(w − z + 1)ζ(u+ z − 1)ζ(v + z − 1)g((1− z)i).

Lemma 2. The function J is regular at the point pτ := (τ, τ, τ, τ) , and we have

L(g; τ, τ) = J(pτ ; g) (3.7)

− 8πζ(2τ − 1)2Re
{(

cE − ζ ′

ζ
(2τ − 1)

)
g((τ − 1)i) +

1
2
ig′((τ − 1)i)

}
,

where cE = −Γ′(1) is Euler’s constant.

Proof. On the right side of (3.6) the integral is obviously regular throughout
D− ∩ B . To see the regularity at pτ of the sum of other terms, we need only to
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replace the factors ζ(v − u+ 1), ζ(u− v + 1), ζ(z − w + 1) and ζ(w − z + 1) by
their Laurent expansions. For example, its value at pτ is

4πζ(2τ − 1)2cE{g((τ − 1)i) + g((1− τ)i)} (3.8)

− 2π
[ ∂
∂v
{ζ(v + w − 1)ζ(v + z − 1)g((v − 1)i)}

]
pτ

− 2π
[ ∂
∂z
{ζ(u+ z − 1)ζ(v + z − 1)g((1− z)i)}

]
pτ

= 4π{ζ(2τ − 1)2cE − ζ(2τ − 1)ζ ′(2τ − 1)}{g((τ − 1)i) + g((1− τ)i)}
+ 2πζ(2τ − 1)2i{g′((τ − 1)i)− g′((1− τ)i)}.

Next, in D+ we have

J(u, v, w, z; g) =
∞∑

k,l,m,n=1

k−ul−vm−wn−zg∗(log(mn)/(kl)) (3.9)

= J0(u, v, w, z; g) + J1(u, v, w, z; g) + J1(w, z, u, v; g),

where J0 and J1 correspond to the parts with kl = mn and kl < mn , respectively.
We have

J0(u, v, w, z; g) = g∗(0)ζ(u+w)ζ(u+ z)ζ(v+w)ζ(v+ z)/ζ(u+ v+w+ z), (3.10)

and

J1(u, v, w, z; g) =
1

2πi

∞∑
m,n=1

σu−v(m)σw−z(m+ n)
mu+w

∫

(2)
g̃(s, w)(m/n)s ds, (3.11)

where
∫

(c) · · · ds denotes integration over the line Re s = c , and σa(n) =
∑
d|n d

a .
One may deal with this double sum in two ways: either by using the Ramanujan
expansion of the function σw−z(m+n), or by embedding J1 in values of a Poincaré
series on Γ\PSL2(R). Here the first method is employed, and we shall follow
[Mo6, Chapter 4]. As to the second method, see [BM]. It should be remarked that
the latter dispenses with the spectral theory of sums of Kloosterman sums that
plays a predominant rôle in the former. Also it should be added in this context
that Theorem 1 above could be formulated solely in terms of the Γ -automorphic
representations of PSL2(R).

Lemma 3. The function J1(u, v, w, z; g) can be continued meromorphically to the
domain

E := {(u, v, w, z) ∈ B : Re (u+ w) < 1
3B,Re (v + w) < 1

3B, (3.12)

Re (u+ v + w + z) > 3B},



The fourth moment off the critical line 141

and in E we have the decomposition

J1(u, v, w, z) = J2(u, v, w, z) + J+
3 (u, v, w, z) + J−3 (u, v, w, z). (3.13)

Here

J2(u, v, w, z; g) := g̃(u+ w − 1)ζ(v + z)ζ(u+ w − 1) (3.14)

× ζ(z − w + 1)ζ(v − u+ 1)/ζ(v + z − u− w + 2),

+ g̃(v + w − 1)ζ(u+ z)ζ(v + w − 1)

× ζ(z − w + 1)ζ(u− v + 1)/ζ(u+ z − v − w + 2)

and

J±3 (u, v, w, z; g) := 2(2π)w−z−1ζ(z − w + 1) (3.15)

×
∞∑

m,n=1

m
1
2 (1−u−v−w−z)n

1
2 (u+w−v−z−1)σv−u(n)K±(m,n;u, v, w, z; g),

where

K±(m,n;u, v, w, z; g) =
∞∑

l=1

1
l
S(m,±n; l)ϕ±

(4π
l

√
mn;u, v, w, z; g

)

with S(a, b; c) =
∑

16n6c,(n,c)=1,nn̄≡1(mod c) exp
(
2πi
(
an+bn̄
c

))
a Kloosterman sum,

and

ϕ+(x;u, v, w, z; g) :=
1

2πi
cos( 1

2 (u− v)π)
∫

(B)

(x
2

)u+v+w+z−1−2s
(3.16)

× Γ(s+ 1− u− w)Γ(s+ 1− v − w)g̃(s, w) ds,

ϕ−(x;u, v, w, z; g) := − 1
2πi

∫

(B)

(x
2

)u+v+w+z−1−2s
cos(π(w + 1

2 (u+ v)− s)) (3.17)

× Γ(s+ 1− u− w)Γ(s+ 1− v − w)g̃(s, w) ds.

The Kloosterman–Spectral sum formula of N.V. Kuznetsov (see [Mo6]) yields,
with the standard notation from the spectral theory of the Fourier coefficients of
modular cusp forms, that

K+(m,n; u, v, w, z; g) :=
∞∑

j=1

αjtj(m)tj(n)(ϕ+)+(κj ;u, v, w, z; g) (3.18)

+
1
π

∫ ∞
−∞

σ2ir(m)σ2ir(n)
(mn)ir|ζ(1 + 2ir)|2 (ϕ+)+(r;u, v, w, z; g) dr

+ 2
∞∑

k=1

ϑ(k)∑

j=1

αj,ktj,k(m)tj,k(n)(ϕ+)+(( 1
2 − k)i;u, v, w, z; g),
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where

(ϕ+)+(r;u, v, w, z; g) (3.19)

:=
πi

2 sinh(πr)

∫ ∞
0

(J2ir(x)− J−2ir(x))ϕ+(x;u, v, w, z; g)
dx
x
,

and Jν(x) is the Bessel function of the first kind in standard notation (see [L]).
Also,

K−(m,n;u, v, w, z; g) :=
∞∑

j=1

εjαjtj(m)tj(n)(ϕ−)−(κj ;u, v, w, z; g) (3.20)

+
1
π

∫ ∞
−∞

σ2ir(m)σ2ir(n)
(mn)ir|ζ(1 + 2ir)|2 (ϕ−)−(r;u, v, w, z; g) dr,

where

(ϕ−)−(r;u, v, w, z; g) := 2 cosh(πr)
∫ ∞

0
ϕ−(r;u, v, w, z; g)K2ir(x)

dx
x
, (3.21)

and Kν(x) is the Bessel function of imaginary argument (or Macdonald’s func-
tion).

Now, in order to facilitate later discussion, we introduce three functions Φ±
and Ξ of five complex variables:

Φ+(ξ; u, v, w, z; g) := −i(2π)w−z−2 cos( 1
2π(u− v)) (3.22)

×
∫ i∞

−i∞
sin(1

2π(u+ v + w + z − 2s))

× Γ( 1
2 (u+ v + w + z − 1) + ξ − s)Γ(1

2 (u+ v + w + z − 1)− ξ − s)
× Γ(s+ 1− u− w)Γ(s+ 1− v − w)g̃(s, w) ds;

Φ−(ξ; u, v, w, z; g) = i(2π)w−z−2 cos(πξ)
∫ i∞

−i∞
cos(π(w + 1

2 (u+ v)− s)) (3.23)

× Γ( 1
2 (u+ v + w + z − 1) + ξ − s)Γ(1

2 (u+ v + w + z − 1)− ξ − s)
× Γ(s+ 1− u− w)Γ(s+ 1− v − w)g̃(s, w) ds;

Ξ(ξ;u, v, w, z; g) =
1

2πi

∫ ∞i
−∞i

Γ
(
ξ + 1

2 (u+ v + w + z − 1)− s)

Γ
(
ξ + 1

2 (3− u− v − w − z) + s
) (3.24)

× Γ(s+ 1− u− w)Γ(s+ 1− v − w)g̃(s, w) ds.

Note that the path in (3.22) is such that the poles of the first two gamma-factors
and those of the other three factors in the integrand are separated to the right and
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the left, respectively, by the path, and ξ, u, v, w, z are assumed to be such that the
path can be drawn. The path in (3.23) is chosen in just the same way. On the other
hand the path in (3.24) separates the poles of Γ

(
ξ + 1

2 (u+ v + w + z − 1)− s)
and those of Γ(s+ 1− u− w)Γ(s+ 1− v − w)g̃(s, w) to the left and the right of
the path, respectively.

Lemma 4. We have

Φ+(ξ;u, v, w, z; g) = − (2π)w−z cos
(

1
2π(u− v))

4 sin(πξ)
(3.25)

× {Ξ(ξ;u, v, w, z; g)− Ξ(−ξ;u, v, w, z; g)} ;

Φ−(ξ;u, v, w, z; g) =
(2π)w−z

4 sin(πξ)

{
sin(π( 1

2 (z − w) + ξ))Ξ(ξ;u, v, w, z; g) (3.26)

− sin(π( 1
2 (z − w)− ξ))Ξ(−ξ;u, v, w, z; g)

}
,

provided the left sides are well-defined. Also, for real r and (u, v, w, z) ∈ E (see
(3.12)) ,

(ϕ+)+(r;u, v, w, z; g) = 1
2 (2π)1−w+zΦ+(ir;u, v, w, z; g), (3.27)

(ϕ−)−(r;u, v, w, z; g) = 1
2 (2π)1−w+zΦ−(ir;u, v, w, z; g); (3.28)

and, for integral k > 1 and (u, v, w, z) ∈ E ,

(ϕ+)+(i( 1
2 − k);u, v, w, z; g) (3.29)

= 1
2 (−1)kπ cos( 1

2π(u− v))Ξ(k − 1
2 ;u, v, w, z; g).

The last three formulas are consequences of Mellin transforms of J - and K -
Bessel functions.

Next, we insert the spectral expansions (3.18) and (3.20) into (3.15) and
exchange the order of sums and integrals. The absolute convergence that we have
to check is obvious as far as the double summation over the variables m,n is
concerned, since we have (u, v, w, z) ∈ E and

tj(n)� n
1
4 +δ, tj,k(n)� n

1
4 +δ, (3.30)

where the implicit constant depends only on δ , an arbitrary fixed positive constant.
The bounds in (3.30) are not the best ones known, but they are sufficient for our
purpose. Thus the issue is reduced to bounding (ϕ±)± ; and Lemma 4 renders it
in terms of the function Ξ. We then have, uniformly for any fixed compact subset
of E ,

Ξ(ir;u, v, w, z; g)� |r|− 1
4A, Ξ(k − 1

2 ;u, v, w, z; g)� k−
1
4A, (3.31)



144 Aleksandar Ivić & Yoichi Motohashi

as real r and positive integral k tend to infinity. Hence, on noting (see [Mo6])
that

∑

K6κj<2K

αj � K2,

ϑ(k)∑

j=1

αj,k � k, (3.32)

we are now able to exchange freely the order of sums and integrals in question, as
long as we work inside E .

Before stating our new expressions for J±3 we put

S(ξ;u, v, w, z) := ζ( 1
2 (u+ v + w + z − 1) + ξ)ζ( 1

2 (u+ v + w + z − 1)− ξ) (3.33)

× ζ( 1
2 (u+ z − v − w + 1) + ξ)ζ(1

2 (u+ z − v − w + 1)− ξ)
× ζ( 1

2 (v + z − u− w + 1) + ξ)ζ(1
2 (v + z − u− w + 1)− ξ).

Then we have

Lemma 5. In the domain E we have

J+
3 (u, v, w, z; g) = J+

3,c(u, v, w, z; g) + J+
3,d(u, v, w, z; g) + J+

3,h(u, v, w, z; g), (3.34)

where

J+
3,c(u, v, w, z; g) :=

1
iπ

∫

(0)

S(ξ;u, v, w, z)
ζ(1 + 2ξ)ζ(1− 2ξ)

Φ+(ξ;u, v, w, z; g) dξ, (3.35)

J+
3,d(u, v, w, z; g)

:=
∞∑

j=1

αjHj( 1
2 (u+ v + w + z − 1))Hj(1

2 (u+ z − v − w + 1)) (3.36)

×Hj( 1
2 (v + z − u− w + 1))Φ+(iκj ;u, v, w, z; g),

J+
3,h(u, v, w, z; g) := (2π)w−z cos( 1

2 (u− v)) (3.37)

×
∞∑

k=6

ϑ(k)∑

j=1

(−1)kαj,kHj,k( 1
2 (u+ v + w + z − 1))Hj,k( 1

2 (u+ z − v − w + 1))

×Hj,k( 1
2 (v + z − u− w + 1))Ξ(k − 1

2 ;u, v, w, z; g).

Also
J−3 (u, v, w, z; g) = J−3,c(u, v, w, z; g) + J−3,d(u, v, w, z; g), (3.38)

where

J−3,c(u, v, w, z; g) :=
1
iπ

∫

(0)

S(ξ;u, v, w, z)
ζ(1 + 2ξ)ζ(1− 2ξ)

Φ−(ξ;u, v, w, z; g) dξ, (3.39)

J−3,d(u, v, w, z; g)

=
∞∑

j=1

εjαjHj( 1
2 (u+ v + w + z − 1))Hj( 1

2 (u+ z − v − w + 1)) (3.40)

×Hj( 1
2 (v + z − u− w + 1))Φ−(iκj ;u, v, w, z; g).
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Our next task is to show that the above spectral expansions of J±3 can be
continued to the domain B , whereby we shall finish our meromorphic continuation
of J1 . The domain B is obviously symmetric and wide enough to have a joint do-
main with D+ , where the decomposition (3.9) was introduced. Hence (3.9) should
hold throughout B , and we shall obtain a spectral decomposition of L4(g; τ, τ),
as asserted.

By virtue of Lemma 4, our problem is equivalent to studying the analytic
properties of the function Ξ . In fact, it is meromorphic in a fairly wide domain in
C5 , as given by

Lemma 6. The function Ξ(ξ;u, v, w, z; g) is meromorphic in the domain

B̃ =
{
ξ : Re ξ > − 1

8A
}× B (3.41)

and regular in B̃ \N , where N is the set of points (ξ, u, v, w, z) such that at least
one of

ξ + 1
2 (u+ v + w + z − 1), ξ + 1

2 (u+ z − v − w + 1), (3.42)

ξ + 1
2 (v + z − u− w + 1)

is equal to a non-positive integer. Moreover, if |ξ| tends to infinity in any fixed
vertical or horizontal strips while satisfying Re ξ > − 1

8A , then uniformly in B we
have

Ξ(ξ;u, v, w, z; g)� |ξ|− 1
4A. (3.43)

In passing, we record that we have also (this is [Mo6, Lemma 4.8] with
γ = 2ξ + 1)

Lemma 7. If (ξ, u, v, w, z) is such that the path in (3.24) can be drawn in a
vertical strip contained in the half plane Re s > 0 , then we have

Ξ(ξ;u, v, w, z; g) (3.44)

=
Γ(α)Γ(β)
Γ(2ξ + 1)

∫ ∞
0

yξ+
1
2 (u+v+w+z−3)

(1 + y)w
g∗(log(1 + y))F (α, β; 2ξ + 1;−y) dy,

where F (see (2.9)) is the hypergeometric function, and

α = ξ + 1
2 (u+ z − v − w + 1), β = ξ + 1

2 (v + z − u− w + 1). (3.45)

An immediate consequence of Lemma 6 is that J±3,d and J+
3,h are mero-

morphic inside B . Thus, we shall consider J±3,c . To this end we assume first that
(u, v, w, z) is in E ; and put

J3,c(u, v, w, z; g) = J+
3,c(u, v, w, z; g) + J−3,c(u, v, w, z; g). (3.46)
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We have, by (3.25)–(3.26),

J3,c(u, v, w, z; g) = i(2π)w−z−1
∫

(0)

S(ξ;u, v, w, z)
sin(πξ)ζ(1 + 2ξ)ζ(1− 2ξ)

(3.47)

× {cos( 1
2π(u− v))− sin(π( 1

2 (z − w) + ξ))}Ξ(ξ;u, v, w, z; g) dξ.

Applying the functional equation for ζ(s) to ζ(1− 2ξ), we obtain from (3.47)

J3,c(u, v, w, z; g) (3.48)

= 2i(2π)w−z−2
∫

(0)
(2π)2ξ{cos( 1

2π(u− v))− sin(π( 1
2 (z − w) + ξ))}

× S(ξ;u, v, w, z)Γ(1− 2ξ){ζ(2ξ)ζ(1 + 2ξ)}−1Ξ(ξ;u, v, w, z; g) dξ.

We then choose Q which is to satisfy the condition

3B < Q 6 1
4A; ζ(s) 6= 0 for Im s = ±Q. (3.49)

We divide the range of integration in (3.48) into two parts according as |ξ| >
Q and |ξ| 6 Q , and denote the corresponding parts of J3,c by J

(1)
3,c and J

(2)
3,c ,

respectively. We observe that if Re ξ = 0, |Im ξ| > Q , then S(ξ;u, v, w, z) is
regular and O(|ξ|cB) uniformly in B with an absolute constant c . Then, Lemma 7
implies that the integrand in the part J

(1)
3,c is regular and of fast decay with respect

to ξ uniformly in B . Hence J
(1)
3,c is regular in B . As to J

(2)
3,c , we move the path to

LQ which is the result of connecting the points −Qi , [Q] + 1
4 −Qi , [Q] + 1

4 +Qi ,
Qi with straight lines. The singularities of the integrand which we encounter in
this procedure are all poles, and located at

1
2 (u+ v + w + z − 3), 1

2 (u+ z − v − w − 1), 1
2 (v + z − u− w − 1); (3.50)

1
2ρ ( |Im ρ| < Q ); 1

2n ( 2 6 n 6 [Q] ); (3.51)

where ρ is a complex zero of ζ(s); note our choice of Q . The first three come
from S(ξ;u, v, w, z), and the others from Γ(1 − 2ξ)ζ(2ξ)−1 , since we have here
(u, v, w, z) ∈ E and so the Ξ-factor is regular for Re ξ > 0. We may suppose,
for an obvious reason, that the poles given in (3.50) are all simple, and do not
coincide with any of those given in (3.51). Then we have

J3,c(u, v, w, z; g) = F−(u, v, w, z; g) + U(u, v, w, z; g) + J
(Q)
3,c (u, v, w, z; g). (3.52)

Here F− and U are the contributions of residues at the poles given in (3.50) and
(3.51), respectively; and J

(Q)
3,c is the same as (3.48) but with the path L∗Q which

is the sum of the path LQ and the half lines (−i∞,−Qi] , [Qi, i∞). By virtue
of Lemma 7, the terms F− and U are meromorphic over B , and J

(Q)
3,c is regular

there.
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Summing up, we have

Lemma 8. The function J1(u, v, w, z; g) (see (3.11)) continues meromorphically
to the domain B . Thus the decomposition (3.9) holds throughout B .

It remains for us only to specialize (3.9) by setting (u, v, w, z) = pτ . This
amounts to studying the local behaviour, near pτ , of the various components of
J1 which have been introduced in the above discussion. As a consequence we shall
obtain the explicit formula for L4(g; τ, τ) furnished by Theorem 1. Namely we
have the decomposition, over B ,

J1(u, v, w, z; g) = {J2 + J3,c + J+
3,d + J−3,d + J+

3,h}(u, v, w, z; g), (3.53)

where J±3,d is regular at pτ . To see this we observe that when (u, v, w, z) is near
pτ the point (ir, u, v, w, z), with an arbitrary real r , is not in the set N defined
at (3.42); thus by (3.25)–(3.26) the functions Φ±(ir;u, v, w, z) are also regular
at pτ for any real r . Hence J±3,d are regular at pτ . Similarly one can see that J+

3,h
is regular at pτ . That is, we may set (u, v, w, z) = pτ in the series expansions
(3.36), (3.37) and (3.40) without any modification, and find that

{J+
3,d + J−3,d + J+

3,h}(pτ ; g) (3.54)

=
∞∑

j=1

αjH
2
j ( 1

2 )Hj(2τ − 1
2 ){Φ+ + Φ−}(iκj ; pτ ; g)

+
∞∑

k=1

ϑ(2k)∑

j=1

αj,2kH
2
j,2k(1

2 )Hj,2k(2τ − 1
2 )Ξ(2k − 1

2 ; pτ ; g),

where we have used the fact that Hj( 1
2 ) = 0 if εj = −1, and Hj,k( 1

2 ) = 0 if k is
odd. Note also that by (3.25)–(3.26) we have, for real r ,

{Φ+ + Φ−}(ir; pτ ; g) =
1
4

(
1 +

i

sinh(πr)

)
Ξ(ir; pτ ; g) (3.55)

+
1
4

(
1− i

sinh(πr)

)
Ξ(−ir; pτ ; g).

On the other hand, Lemma 7 gives

Ξ(ir; pτ ; g) =
Γ( 1

2 + ir)2

Γ(1 + 2ir)

∫ ∞
0

y2τ− 3
2 +ir(1 + y)−τg∗(log(1 + y)) (3.56)

× F ( 1
2 + ir, 1

2 + ir; 1 + 2ir;−y) dy.

Hence

{Φ+ + Φ−}(ir; pτ ; g) =
1
2

∫ ∞
0

y2τ− 3
2 (1 + y)−τg∗(log(1 + y)) (3.57)

× Re
{
yir
(

1 +
i

sinh(πr)

)Γ( 1
2 + ir)2

Γ(1 + 2ir)
F ( 1

2 + ir, 1
2 + ir; 1 + 2ir;−y)

}
dy.
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Further, we observe that (3.56) holds with ir replaced by k − 1
2 ; and thus (3.57)

gives, for any integer k > 1,

{Φ+ + Φ−}(2k − 1
2 ; pτ ; g) = Ξ(2k − 1

2 ; pτ ; g). (3.58)

Now, we consider J3,c in an immediate neighbourhood of pτ . Let us assume
first that

1
2
< τ <

3
4
. (3.59)

This is much similar to the case τ = 1
2 , which is treated in [Mo6]. We return to

(3.52), and move the contour in J
(Q)
3,c back to the imaginary axis, while keeping

(u, v, w, z) close to pτ . The poles which we encounter in this process are those given
in (3.51) and 1

2 (3− u− v −w − z), which is in fact to the right of the imaginary
axis. Other poles of S(ξ;u, v, w, z) are either on the left of the imaginary axis or
cancelled by the zeros of the factor cos( 1

2π(u − v)) − sin(π( 1
2 (z − w) + ξ)), and

moreover Lemma 7 implies that Ξ(ξ;u, v, w, z; g) is regular for Re (ξ) > − 1
4 . We

denote by F+(u, v, w, z; g) the contribution of the pole 1
2 (3−u−v−w− z). Then

we have

J
(Q)
3,c (u, v, w, z; g) = F+(u, v, w, z; g)− U(u, v, w, z; g) + J∗3,c(u, v, w, z; g), (3.60)

where J∗3,c has the same expression as the right side of (3.48) but with different
(u, v, w, z). Hence, by (3.52),

J3,c(u, v, w, z; g) = {F+ + F−}(u, v, w, z; g) + J∗3,c(u, v, w, z; g), (3.61)

when (u, v, w, z) is close to pτ . Here we should note that J∗3,c is regular at pτ ,
and

J∗3,c(pτ ; g) =
1
π

∫ ∞
−∞

|ζ( 1
2 + it)|4|ζ(2τ − 1

2 + it)|2
|ζ(1 + 2it)|2 {Φ+ + Φ−}(it; pτ ; g) dt. (3.62)

This ends the local study of the decomposition (3.53) in the vicinity of pτ , pro-
vided that (3.59) holds.

Now, if (u, v, w, z) is close to pτ , then we have

J(u, v, w, z; g) = M(u, v, w, z; g) + J∗3,c(u, v, w, z; g) + J∗3,c(w, z, u, v; g) (3.63)

+ {J−3,d + J+
3,d + J+

3,h}(u, v, w, z; g) + {J−3,d + J+
3,d + J+

3,h}(w, z, u, v; g) ,

where

M(u, v, w, z; g) = J0(u, v, w, z; g) + J2(u, v, w, z; g) + J2(w, z, u, v; g) (3.64)

+ {F+ + F−}(u, v, w, z; g) + {F+ + F−}(w, z, u, v; g).
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It should be stressed that all terms in (3.63) are regular at pτ . That the function
M is regular at pτ is due to the fact that all terms in (3.63) except for M have
already been proved to be regular at pτ .

It remains for us to express M(pτ ; g) in terms of g . We have

M(u, v, w, z; g) =
12∑

j=0

Mj(u, v, w, z; g) (3.65)

with
M6+j(u, v, w, z; g) = Mj(w, z, u, v; g) ( 1 6 j 6 6 ) . (3.66)

Here (recall that g̃ is given by (3.1))

M0(u, v, w, z; g) = g∗(0)ζ(u+ w)ζ(u+ z)ζ(v + w) (3.67)

× ζ(v + z){ζ(u+ v + w + z)}−1,

M1(u, v, w, z; g) = g̃(v + w − 1, w)ζ(u+ z)ζ(v + w − 1) (3.68)

× ζ(z − w + 1)ζ(u− v + 1){ζ(u+ z − v − w + 2)}−1,

M2(u, v, w, z; g) = g̃(u+ w − 1, w)ζ(v + z)ζ(u+ w − 1) (3.69)

× ζ(z − w + 1)ζ(v − u+ 1){ζ(v + z − u− w + 2)}−1,

M3(u, v, w, z; g) = (2π)w−z{cos( 1
2π(u− v)) + cos(π(z − w + 1

2 (u− v)))} (3.70)

× ζ(u+ z − 1)ζ(v + w)ζ(z − w)ζ(v − u+ 1)

× {cos( 1
2π(u+ z − v − w))ζ(2− u− z + v + w)}−1

× Ξ( 1
2 (u+ z − v − w − 1);u, v, w, z; g),

M4(u, v, w, z; g) = (2π)w−z{cos( 1
2π(u− v)) + cos(π(z − w + 1

2 (v − u)))} (3.71)

× ζ(v + z − 1)ζ(u+ w)ζ(z − w)ζ(u− v + 1)

× {cos( 1
2π(v + z − u− w))ζ(2− v − z + u+ w)}−1

× Ξ( 1
2 (v + z − u− w − 1);u, v, w, z; g),

M5(u, v, w, z; g) = −(2π)w−z{cos( 1
2π(u− v))− cos(π(z + 1

2 (u+ v)))} (3.72)

× ζ(u+ z − 1)ζ(2− v − w)ζ(v + z − 1)ζ(2− u− w)

× {cos( 1
2π(u+ v + w + z))ζ(4− u− v − w − z)}−1

× Ξ( 1
2 (u+ v + w + z − 3);u, v, w, z; g),

M6(u, v, w, z; g) = (2π)w−z{cos( 1
2π(u− v)) + cos(π(w + 1

2 (u+ v)))} (3.73)

× ζ(u+ z − 1)ζ(2− v − w)ζ(v + z − 1)ζ(2− u− w)

× {cos( 1
2π(u+ v + w + z))ζ(4− u− v − w − z)}−1

× Ξ(− 1
2 (u+ v + w + z − 3);u, v, w, z; g) .

Among these, M0 is equal to J0 ; M1 and M2 come from J2 ; and Mj ( 3 6
j 6 6 ) are the contributions of residues of the integral in (3.48) at the poles
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ξ = 1
2 (u+z−v−w−1), 1

2 (v+z−u−w−1), 1
2 (u+v+w+z−3), 1

2 (3−u−v−w−z),
respectively. They can be singular at pτ individually, but the singular parts should
cancel each other out if they are brought into (3.64), for M is regular at pτ . More
precisely, put (u, v, w, z) = pτ + (a1, a2, a3, a4)δ with a small complex δ , and
expand each term into a Laurent series in δ ; then the sum of the constant terms is
equal to M(pτ ), regardless of the choice of the vector (a1, a2, a3, a4). We choose it
in such a way that it is real and no singularities of any of the Mj (0 6 j 6 12) are
encountered when |δ| tends to 0. This is possible, for the exceptional a1, a2, a3, a4

satisfy a finite number of linear relations. Thus we shall assume hereafter that
δ 6= 0 is small and the vector (a1, a2, a3, a4) is chosen accordingly; and we denote
(a1, a2, a3, a4)δ either by (δ) or by (δ1, δ2, δ3, δ4). Also we denote the constant
term of Mj by M∗j .

First, we have trivially

M∗0 = M0(pτ ; g) =
ζ4(2τ)
ζ(4τ)

g∗(0). (3.74)

Invoking (3.1), we have

M1(pτ + (δ); g) = Γ(2τ − 1 + δ2 + δ3)ζ(2τ + δ1 + δ4)ζ(2τ − 1 + δ2 + δ3) (3.75)

× ζ(δ4 − δ3 + 1)ζ(δ1 − δ2 + 1){ζ(2 + δ1 − δ2 − δ3 + δ4)}−1

×
∫ ∞
−∞

Γ(1− τ − δ2 − it)
Γ(τ + δ3 − it) g(t) dt.

This implies that the singularity of M1 at pτ is of order two. Hence the constant
term of M1(pτ + (δ); g) is a linear combination of the first three coefficients of the
power series in δ for the last integral. Thus

M∗1 =
∫ ∞
−∞

Γ(1− τ − it)
Γ(τ − it) (3.76)

×
(
d0 + d1

Γ′

Γ
(1− τ − it)Γ′

Γ
(τ − it) + d2

Γ′′

Γ
(1− τ − it) + d3

Γ′′

Γ
(τ − it)

)
g(t) dt

where the constants dj depend on τ and the vector (a1, a2, a3, a4). Clearly M2

can be treated in just the same way, and M∗2 has the same form as (3.76).
The terms Mj ( 3 6 j 6 6 ) are not so simple; and our computation of them

depends on a classical formula of Barnes (see e.g., [WW]). By the definition (3.24)
we have, for the Ξ-factor in M3 ,

Ξ( 1
2 (u+ z − v − w − 1);u, v, w, z; g) (3.77)

=
1

2πi

∫ i∞

−i∞
Γ(u+ z − 1− s)Γ(s+ 1− u− w)g̃(s, w) ds,
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where the path separates the poles of Γ(u + z − 1 − s) and those of the other
two factors to the right and the left, respectively; that we can draw such a path is
assured by our choice of (a1, a2, a3, a4). Inserting (3.1) in this we get an absolutely
convergent double integral, hence it follows that

Ξ( 1
2 (u+ z − v − w − 1);u, v, w, z; g) =

∫ ∞
−∞

g(t)
Γ(w − it) (3.78)

× 1
2πi

∫ i∞

−i∞
Γ(s)Γ(s+ 1− u− w)Γ(u+ z − 1− s)Γ(w − it− s) ds dt.

The path of the inner integral is the same as in (3.1); and obviously we may
suppose that it separates the poles of the first two Γ-factors from those of the
other two. Hence we have, again by the Barnes formula,

Ξ( 1
2 (u+ z − v − w − 1);u, v, w, z; g) (3.79)

= Γ(u+ z − 1)Γ(z − w)
∫ ∞
−∞

Γ(1− u− it)
Γ(z − it) g(t) dt.

This implies that M3 has a singularity of order two at pτ ; thus M∗3 admits an
expression of the same form as (3.76). Obviously the same argument applies to
M4 .

The Ξ-factor of M5 can be computed in much the same way, and we have

Ξ( 1
2 (u+ v + w + z − 3);u, v, w, z; g) (3.80)

= Γ(u+ z − 1)Γ(v + z − 1)
∫ ∞
−∞

Γ(1− u− it)Γ(1− v − it)
Γ(w − it)Γ(z − it) g(t) dt.

This implies that M5 is regular at pτ , and

M∗5 = M5(pτ ; g) = (1− sec(2τπ))
(Γ(2τ − 1)ζ(2τ − 1)ζ(2− 2τ))2

ζ(4− 4τ)
(3.81)

×
∫ ∞
−∞

(
Γ(1− τ − it)

Γ(τ − it)
)2

g(t) dt

A rearrangement gives
∫ ∞
−∞

(
Γ(1− τ − it)

Γ(τ − it)
)2

g(t) dt (3.82)

=
1

2π2

∫ ∞
−∞
|Γ(1− τ + it)|4(1− cos(2τπ) cosh(2πt))g(t) dt.

As to M6 , this also is regular at pτ , since the Ξ-factor is regular there
because of Lemma 7. We have

M∗6 = M6(pτ ; g) = (1 + sec(2τπ))
(ζ(2τ − 1)ζ(2− 2τ))2

ζ(4− 4τ)
Ξ(3

2 − 2τ ; pτ ; g) (3.83)
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with

Ξ( 3
2 − 2τ ; pτ ; g) (3.84)

=
1
2i

∫ ∞
−∞

g(t)
Γ(τ − it)

(∫

(σ0)

Γ(s+ 1− 2τ)2Γ(τ − it− s)
sin(πs)Γ(3− 4τ + s)

ds

)
dt,

where 2τ − 1 < σ0 < τ . We have

∫

(σ0)
· · · = − 2πi

sin(π(τ − it))
N∑

j=1

Γ(j + 1− 2τ)2

Γ(j + 3− 4τ)Γ(j + 1− τ + it)
(3.85)

+
2πi

sin(π(τ − it))
N−1∑

j=0

Γ(j + 1− τ − it)2

Γ(j + 3(1− τ)− it)Γ(j + 1)
+
∫

(σN )
· · · ,

where 2τ − 1 +N < σN < τ +N . This ends the discussion under the assumption
that (3.59) holds.

Next, let

τ =
3
4
.

There is an essential difference between this case and (3.59), which we just discus-
sed. This is due to the fact that the singularities ± 1

2 (u + v + w + z − 3) of the
integrand in (3.47) approach the origin as (u, v, w, z) tends to p 3

4
. That is, they

cannot be treated as well-separated.
While keeping (u, v, w, z) close to p 3

4
, we move the contour in J

(Q)
3,c to the

imaginary axis but with a small outward indent around the origin. The poles which
we encounter in this process are those given in (3.51) and ± 1

2 (u+ v+w+ z− 3).
Other poles of S(ξ;u, v, w, z) are either close to − 1

2 or cancelled by the zeros of
the factor cos( 1

2π(u− v))− sin(π(1
2 (z −w) + ξ)), and moreover Lemma 7 implies

that Ξ(ξ;u, v, w, z; g) is regular for Re (ξ) > − 1
4 . We have

J
(Q)
3,c (u, v, w, z; g) (3.86)

= (F+ − F−)(u, v, w, z; g)− U(u, v, w, z; g) + J∗3,c(u, v, w, z; g),

where F± are as before, and J∗3,c has the same expression as the right side of
(3.47) but with the indented contour and a different (u, v, w, z). By (3.52),

J3,c(u, v, w, z; g) = F+(u, v, w, z; g) + J∗3,c(u, v, w, z; g),

when (u, v, w, z) is close to p 3
4

. Here we should note that J∗3,c is regular at p 3
4

,
and

J∗3,c(p 3
4
; g) =

1
π

∫ ∞
−∞

|ζ( 1
2 + it)|4|ζ(1 + it)|2
|ζ(1 + 2it)|2 {Φ+ + Φ−}(it; p 3

4
; g) dt, (3.87)



The fourth moment off the critical line 153

because this integrand is continuous. This ends the local study of the decomposi-
tion (3.53) in a small neighbourhood of p 3

4
.

Now, if (u, v, w, z) is close to p 3
4

, then the counterpart of (3.63)–(3.64)
holds, and it remains for us to express M(p 3

4
; g) in terms of g , but with the new

M . We have

M(u, v, w, z; g) =
12∑

j=0
j 6=5,11

Mj(u, v, w, z; g) (3.88)

where Mj are the same as in (3.65)–(3.73). The terms M5 and M11 are missing,
because the shift of the contour cancels the contribution of the pole at 1

2 (u+ v +
w + z − 3) out, as we have seen above.

The computation of M∗j is the same as before. It should perhaps be remarked
that

M∗6 = M6(p 3
4
; g) = − 2

π
ζ4(1

2 )Ξ
(

0; p 3
4
; g
)
. (3.89)

We have

Ξ
(

0; p 3
4
; g
)

=
1

2πi

∫ ∞
−∞

g(t)
Γ( 3

4 − it)

(∫

( 2
3 )

Γ2(s− 1
2 )Γ( 3

4 − it− s)Γ(1− s) ds

)
dt (3.90)

= π

∫ ∞
−∞

(
Γ( 1

4 − it)
Γ( 3

4 − it)

)2

g(t) dt.

Finally, let
3
4
< τ < 1. (3.91)

Then the pole 1
2 (3 − u − v − w − z) is on the left of the imaginary axis; and the

contribution of the pole 1
2 (u+v+w+z−3) is cancelled out by moving the contour

to the imaginary axis. That is, we have

M(u, v, w, z; g) =
12∑

j=0
j 6=5,6,11,12

Mj(u, v, w, z; g) (3.92)

This ends our discussion and completes the proof of Theorem 1.

4. Sums of spectral values

Note that (2.6) of Theorem 1 contains the quantities αjH2
j (1

2 )Hj(σ) (σ = 2τ − 1
2 )

with a given 1
2 < σ < 1, while in Part II of this work we shall encounter sums



154 Aleksandar Ivić & Yoichi Motohashi

containing αjHj(1
2 )H2

j (σ). For the omega-results relating to moments we shall
need the non-vanishing of

Lσ(κ) :=
∑
κj=κ

αjH
2
j (1

2 )Hj(σ), Nσ(κ) :=
∑
κj=κ

αjHj(1
2 )H2

j (σ) (4.1)

for infinitely many κ and a given 1
2 < σ < 1. The non-vanishing of L 1

2
(κ) was used

(see [I2], [I5], [I7], [IM1], [Mo4], [Mo6]) for omega results on the fourth moment of
|ζ( 1

2 + it)| . The non-vanishing of Lσ(κ) and Nσ(κ) that we need is a corollary of
the following

Theorem 2. For fixed τ such that 1
2 < τ < 1 and K →∞ , we have

∑

κj6K
αjHj(1

2 )H2
j (τ) = (1 + o(1))π−2ζ2(τ + 1

2 )ζ(2τ)K2 (4.2)

and ∑

κj6K
αjH

2
j ( 1

2 )Hj(τ) = (1 + o(1))2π−2ζ2(τ + 1
2 )K2 logK. (4.3)

For L 1
2
(κ) not only that non-vanishing is known, but a sharper asymptotic

formula for the sum in question, namely

∑

κj6K
αjH

3
j ( 1

2 ) = K2P3(logK) +O(K5/4 log37/4K), (4.4)

proved by the first author [Iv9], where P3(x) is a suitable cubic polynomial. One
could also employ similar methods to obtain a sharpening of (4.2) and (4.3), but
this will not be done here, since it is not needed in the sequel. It is known (see
Katok–Sarnak [KS]) that Hj( 1

2 ) > 0; it follows trivially from the functional equ-
ation for Hj(s) that Hj( 1

2 ) = 0 if εj = −1. Our formula (4.3) supports the
conjecture that Hj(σ) > 0 for 0 6 σ 6 1, but this remains an open problem.

Proof of Theorem 2. Because Hj

(
1
2

)
= 0 when εj = −1, we may start by

treating the sum ∑

κj6K

(
εjαjHj( 1

2 )Hj(λ)
) ·Hj(τ), (4.5)

with the aim of taking later λ = 1
2 or λ = τ in (4.5).

Let h(r) be an even, entire function such that h(± 1
2 i) = 0 and h(r) �

exp(−c|r|2) (c > 0) in any fixed horizontal strip, and

H(u, v; f ;h) :=
∞∑

j=1

εjαjHj(u)Hj(v)tj(f)h(κj) (f > 1). (4.6)
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Transformation formulas for the sums appearing in (4.6) were established by the
second author [Mo1] and then in [Mo6] (see eq. (3.3.6) there, also (3.3.8) and
(3.3.9) are important). The formulas in question transform the quantity (4.6) from
spectral theory into a sum of various quantities from classical analytic number
theory. We set

H(λ; f ;h) = H( 1
2 , λ; f ;h). (4.7)

According to the formulas displayed on p. 117 of [Mo6], we have

H(u, v; f ;h) = 2(πi)−1(2π
√
f)2(u−1) ĥ(1− u)

cos(πu)
σ1−u−v(f)ζ(1− u+ v) (4.8)

+ 2(πi)−1(2π
√
f)2(v−1) ĥ(1− v)

cos(πv)
σ1−u−v(f)ζ(1− v + u)

+ 8(2π)u+v−4
∞∑
m=1

mu−1σv−u(m)σ1−u−v(m+ f)Ψ+(u, v;m/f ;h)

+ 8(2π)u+v−4
∞∑
m=1
m 6=f

mu−1σv−u(m)σ1−u−v(m− f)Ψ−(u, v;m/f ;h)

+ 8(2π)u+v−4fu−1σv−u(f)ζ(u+ v − 1)Ψ−(u, v; 1;h)

− 4σ2(u−1)(f)f1−uζ(u+ v − 1)ζ(v − u+ 1)h(i(u− 1))/ζ(3− 2u)

− 4σ2(v−1)(f)f1−vζ(u+ v − 1)ζ(u− v + 1)h(i(v − 1))/ζ(3− 2v)

− π−1
∫ ∞
−∞

σ2ir(f)ζ(u+ ir)ζ(u− ir)ζ(v + ir)ζ(v − ir)
f ir|ζ(1 + 2ir)|2 h(r) dr.

Here

Ψ+(u, v;x;h) = −
∫

(β)
Γ(1− u− s)Γ(1− v − s) (4.9)

× cos(π(s+ 1
2 (u+ v)))

ĥ(s)
cos(πs)

xs ds

and

Ψ−(u, v;x;h) = cos( 1
2π(u− v)) (4.10)

×
∫

(β)
Γ(1− u− s)Γ(1− v − s) ĥ(s)

cos(πs)
xs ds,

where

ĥ(s) =
∫

Im r=−C
rh(r)

Γ(s+ ir)
Γ(1− s+ ir)

dr (Re s > −C), (4.11)

with any large C > 0. This is proved if u 6= v , which can be dropped by an
obvious convention; and 1 + β < Re (u),Re (v) < 1 with − 3

2 < β < 0.



156 Aleksandar Ivić & Yoichi Motohashi

If
1
2
< λ < 1, (4.12)

then we have

lim
(u,v)→( 1

2 ,λ)

{
(2π
√
f)2(u−1) ĥ(1− u)

cos(πu)
σ1−u−v(f)ζ(1− u+ v) (4.13)

+ (2π
√
f)2(v−1) ĥ(1− v)

cos(πv)
σ1−u−v(f)ζ(1− v + u)

}

=
1

2π2 ζ(λ+ 1
2 )(ĥ)′( 1

2 )σ 1
2−λ(f)f−

1
2

+ (2π)2(λ−1)sec(πλ)ζ(3
2 − λ)ĥ(1− λ)σ 1

2−λ(f)fλ−1,

where the fact ĥ
(

1
2

)
= 0 has been used (see (3.3.15) of [Mo6]), and that

lim
(u,v)→( 1

2 ,λ)

{
σ2(u−1)(f)f1−uζ(u+ v − 1)ζ(v − u+ 1)h(i(u− 1))/ζ(3− 2u) (4.14)

+ σ2(v−1)(f)f1−vζ(u+ v − 1)ζ(u− v + 1)h(i(v − 1))/ζ(3− 2v)
}

=
6
π2 ζ(λ− 1

2 )ζ(λ+ 1
2 )h(− 1

2 i)σ−1(f)f
1
2

+
ζ
(
λ− 1

2

)
ζ
(

3
2 − λ

)

ζ(3− 2λ)
h(i(λ− 1))σ2(λ−1)(f)f1−λ.

Note that the right sides of both (4.13) and (4.14) have removable singularities
at λ = 1

2 . It is found that if (4.12) holds, then

H(λ; f ;h) =
7∑

ν=1

Hν(λ; f ;h). (4.15)

Here

H1(λ; f ;h) =
2
πi
× the right side of (4.13), (4.16)

H2(λ; f ;h) = 8(2π)λ−
7
2

∞∑
m=1

m−
1
2σλ− 1

2
(m)σ 1

2−λ(m+ f)Ψ+(λ;m/f ;h), (4.17)

H3(λ; f ;h) = 8(2π)λ−
7
2

×
∞∑
m=1

(m+ f)−
1
2σλ− 1

2
(m+ f)σ 1

2−λ(m)Ψ−(λ; 1 +m/f ;h), (4.18)

H4(λ; f ;h) = 8(2π)λ−
7
2

f−1∑
m=1

m−
1
2σλ− 1

2
(m)σ 1

2−λ(f −m)Ψ−(λ;m/f ;h), (4.19)

H5(λ; f ;h) = 8(2π)λ−
7
2 f−

1
2σ 1

2−λ(f)ζ(λ− 1
2 )Ψ−(λ; 1;h), (4.20)

H6(λ; f ;h) = −4× the right side of (4.14), (4.21)

H7(λ; f ;h) = −π−1
∫ ∞
−∞

|ζ(1
2 + ir)|2|ζ(λ+ ir)|2
|ζ(1 + 2ir)|2 σ2ir(f)f−irh(r) dr, (4.22)
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where

Ψ+(λ;x;h) = −
∫

(β)
Γ( 1

2 − s)Γ(1− λ− s)cos(π(s+ 1
2 (λ+ 1

2 ))
cosπs

ĥ(s)xs ds, (4.23)

Ψ−(x;h) = cos( 1
2π( 1

2 − λ))
∫

(β)
Γ( 1

2 − s)Γ(1− λ− s) ĥ(s)
cosπs

xs ds (4.24)

with − 3
2 < β < 1 − λ . If we consider the limit as λ tends to 1

2 , then from
(4.15)–(4.24) we obtain the assertion of Lemma 3.8 of [Mo6].

We have

(ĥ)′( 1
2 ) = 2

∫ ∞
−∞

rh(r)
Γ′

Γ
(1

2 + ir) dr, (4.25)

and

ĥ(1− λ) =
∫ ∞
−∞

rh(r)
Γ(1− λ+ ir)

Γ(λ+ ir)
dr. (4.26)

Also,

Ψ+(λ;x;h) = − 1
πi

∫ ∞
−∞

rh(r) sinhπr (4.27)

×
∫

(β)
Γ( 1

2 − s)Γ(1− λ− s)Γ(s+ ir)Γ(s− ir) cos{π(s+ 1
2 (λ+ 1

2 ))}xs ds dr,

with 0 < β < 1− λ . Evaluating the inner integral, we have, for any x > 0,

Ψ+(λ;x;h) = −2πi
∫ ∞
−∞

rh(r)
coshπr

cosπ(ir − 1
2 (λ+ 1

2 )) (4.28)

× Γ( 1
2 + ir)Γ(1− λ+ ir)

Γ(1 + 2ir)
F ( 1

2 + ir, 1− λ+ ir; 1 + 2ir;−1/x)x−ir dr.

Then, by Gauss’ integral representation for F (see e.g., [L] or [WW]),

Ψ+(λ;x;h) = −2πi
∫ 1

0
{y(1− y)}− 1

2

(
1 +

y

x

)λ−1
(4.29)

×
∫ ∞
−∞

rh(r)
cosπ

(
ir − 1

2

(
λ+ 1

2

))

coshπr
Γ(1− λ+ ir)

Γ( 1
2 + ir)

(
y(1− y)
x+ y

)ir
dr dy,

which corresponds to (3.3.41) of [Mo6].
In what concerns Ψ− , for x > 1 we obtain in a similar fashion

Ψ−(λ;x;h) = 2πi cos( 1
2π( 1

2 − λ))
∫ ∞
−∞

rh(r)
cosh(πr)

(4.30)

× Γ( 1
2 + ir)Γ(1− λ+ ir)

Γ(1 + 2ir)
F ( 1

2 + ir, 1− λ+ ir; 1 + 2ir; 1/x)x−ir dr

= 2i cos( 1
2π( 1

2 − λ))
∫ 1

0
{y(1− y)}− 1

2

(
1− y

x

)λ−1

×
∫ ∞
−∞

rh(r)Γ( 1
2 − ir)Γ(1− λ+ ir)

(
y(1− y)
x− y

)ir
dr dy,



158 Aleksandar Ivić & Yoichi Motohashi

which corresponds to (3.3.43) of [Mo6]. Also,

Ψ−(λ; 1;h) =
2π cos( 1

2π( 1
2 − λ))

Γ( 3
2 − λ)

(4.31)

×
∫ ∞
−∞

rh(r) tanh(πr)Γ(1− λ+ ir)Γ(1− λ− ir) dr.

When 0 < x < 1, we argue as on p. 121 of [Mo6], to deduce that

Ψ−(x;h) = cos( 1
2π(1

2 − λ))
∫ ∞

0

{∫ ∞
−∞

rh(r)
(

y

1 + y

)ir
dr

}
(4.32)

×
{∫

(β)
xs(y(y + 1))s−1 Γ( 1

2 − s)Γ(1− λ− s)
Γ(1− 2s) cos(πs)

ds

}
dy,

with − 3
2 < β < 1− λ , β 6= − 1

2 .
We shall now derive an approximate functional equation for Hj(τ). The

expression (4.5) implies in particular that we may restrict ourselves to the case
εj = +1. Let us assume that

|κj −K| 6 G logK, (logK)2 < G < K1−δ (δ > 0). (4.33)

Take a large C > 0 and consider the integral

R :=
1

2πiµ

∫

(3)
Hj(w + τ)KwΓ(w/µ) dw (µ = C logK). (4.34)

We have
R =

∑

f63K

tj(f)f−τ exp(−(f/K)µ) +O(e−K). (4.35)

Shifting the path of integration in (4.34) to Rew = − 1
2µ and recalling the func-

tional equation for Hj(s) (see (3.24) of [Mo6]), we obtain

R = Hj(τ) +
∞∑

f=1

tj(f)fτ−1Rj(fK), (4.36)

where

Rj(x) : =
1

(2π)2(1−τ)πiµ
(4.37)

×
∫

(− 1
2µ)

(4π2x)wΓ(1− τ − w + iκj)Γ(1− τ − w − iκj)

× { cosh(πκj)− cos(π(w + τ))
}

Γ(w/µ) dw.
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By Stirling’s formula for the gamma-function the above integrand is

� (4π2x)−
1
2µ
(|w + iκj ||w − iκj |

) 1
2 (µ+1)−τ

exp(−π|w|/(2µ)) (4.38)

and thus
Rj(x) = O

(
K1−2τ (4π2xK−2)−

1
2µ
)
, (4.39)

where the implied constant is absolute. This allows us to truncate the last sum
over f at f = [3K] with an error which is � K−C for any fixed C > 0. Hence
we have proved

Lemma 10. For 1
2 < τ < 1 fixed and uniformly for all κj satisfying (4.33) and

εj = 1 ,

Hj(τ) =
∑

f63K

tj(f)f−τ exp(−(f/K)µ) (4.40)

−
∑

f63K

tj(f)fτ−1R(1)
j (fK) +O(K−

1
2C),

where C > 0 is any given constant and

R(1)
j (x) : =

1
(2π)2(1−τ)πiµ

(4.41)

×
−µ−1+iµ2∫

−µ−1−iµ2

(4π2x)wΓ(1− τ − w + iκj)Γ(1− τ − w − iκj)

× { cosh(πκj)− cos(π(w + τ))
}

Γ(w/λ) dw.

Stirling’s formula gives, for any N > 1 and for the values of w relevant in
(4.41),

log Γ(1− τ − w + iκj) = ( 1
2 − τ − w + iκj) log(1− τ − w + iκj) (4.42)

+ τ − 1 + w − iκj + 1
2 log(2π) +

2N∑
ν=1

bν(1− τ − w + iκj)−ν +O(K−2N− 1
2 ),

where bν ’s are absolute constants, and the implied constant depends only on N .
Therefore

log Γ(1− τ − w + iκj) = ( 1
2 − τ − w + iκj)

{
log(κj) + 1

2πi
}

(4.43)

− iκj + 1
2 log(2π) +

2N∑
ν=1

pν(w)κ−νj +O(K−2N (logK)12N+6)
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with certain polynomials pν of degree 6 ν + 1 with constant coefficients. Adding
to this the corresponding formula for Γ(1− τ − w − iκj), we have

log
{

Γ(1− τ − w + iκj)Γ(1− τ − w − iκj)
}

(4.44)

= (1− 2τ − 2w) log(κj)− πκj

+ log(2π) +
N∑
ν=1

p2ν(w)κ−2ν
j +O(K−2N (logK)12N+6).

This implies readily that the integrand of (4.41) can be replaced by

πκ1−2τ
j (4π2κ−2

j x)w
{

1 +
N∑
ν=1

qν(w)κ−2ν
j +O(K−N )

}
Γ(w/λ), (4.45)

where qν(w) are polynomials of degree 6 3ν with constant coefficients, and the
O -constant depends only on N . Then we expand each κ1−2τ−2w−2ν

j into a power
series in (1−(κj/K)2) = O(K−δ logK) and truncate it at the power N1 = [2N/δ] .
Rearranging the result of truncation we see that the integrand of (4.41) can be
written as

πK1−2τ (4π2K−2x)w
{
Q(w, 1− (κj/K)2) +O(K−N )

}
Γ(w/λ), (4.46)

where

Q(w, y) =
N1∑
ν=0

uν(w)yν , u0(w) = 1 +
N∑
ν=1

qν(w)K−2ν . (4.47)

Inserting (4.47) into (4.41) and restoring the range of integration to the whole
line Rew = −µ−1 , we get, uniformly for f 6 3K ,

R(1)
j (fK) =

(
K

π

)1−2τ N1∑
ν=0

Uν(fK)(1− (κj/K)2)ν +O(K−N ). (4.48)

Here N1 = [2N/δ] and

Uν(x) =
1

2πiµ

∫

(−µ−1)
(4π2K−2x)wuν(w)Γ(w/µ) dw, (4.49)

where up(w) is a polynomial of degree 6 2N1 , whose coefficients are independent
of κj and bounded by a constant depending only on δ , τ , and N . Hence, if εj = 1,
we have, for any N > 1 and µ = C logK with a sufficiently large C > 0,

Hj(τ) =
∑

f63K

tj(f)f−τ exp(−(f/K)µ) (4.50)

−
(
K

π

)1−2τ N1∑
ν=0

∑

f63K

tj(f)fτ−1Uν(fK)(1− (κj/K)2)ν +O(K−
1
5N +K−

1
2C)

with the implied constant depending only on δ , τ , C , and N .
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We shall evaluate asymptotically, as K →∞ ,

C(λ, τ ;K,G) :=
∞∑

j=1

αjHj(1
2 )Hj(λ)Hj(τ)h0(κj), (4.51)

where 1
2 < λ, τ < 1 initially, and the weight function will be

h0(r) :=
(
r2 +

1
4

){
exp

(
−
(
r −K
G

)2
)

+ exp

(
−
(
r +K

G

)2
)}

, (4.52)

provided that (4.33) holds. From (4.50) we obtain

C(λ, τ ;K,G) =
∑

f63K

f−τ exp(−(f/K)µ)H(λ; f ;h0) (4.53)

−
(
K

π

)1−2τ N1∑
ν=0

∑

f63K

fτ−1Uν(fK)H(λ; f ;hν) + o(1),

where H is defined by (4.7), and

hν(r) = h0(r)(1− (r/K)2)ν . (4.54)

To evaluate H(λ; f ;hν), we use (4.15). The contributions of (4.17), (4.18),
(4.20) and (4.21) are negligible, which can be confirmed in much the same way as
on pp. 128–129 of [Mo6]. Then, corresponding to (3.4.25) there, we have (d(n) ≡
σ0(n) is the number of divisors of n)

H(λ; f ;hν) = H1(λ; f ;hν) +O
(
d(f)(G+K

2
3 )K2(G/K)ν(logK)c

)
, (4.55)

+O


f 3

2K3G−3(G/K)ν logK
∑

m<f

m−2σλ− 1
2
(m)σ 1

2−λ(f −m)




with some constant c > 0, provided that

K
1
2 +δ < G < K1−δ. (4.56)

Note that (4.55) holds with λ = 1
2 , too, and that the estimation of the error terms

is not the best that our argument can attain. Also, we should remark that

H1(λ; f ;hν)� K3G(G/K)ν(log fK)σ 1
2−λ(f)f−

1
2 , (4.57)

uniformly for 1
2 6 λ < 1 and for all f > 1. In fact, when 1

2 + (logK)−1 6 λ < 1,
this follows from (4.16), (4.25), (4.26), and otherwise one may use the Taylor
expansion at λ = 1

2 .
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Inserting (4.55) in (4.53) we obtain

C(λ, τ ;K,G)

=
∑

f<3K

H1(λ; f ;h0)

(
f−τ exp(−(f/K)µ)−

(
K

π

)1−2τ

fτ−1U0(fK)

)
(4.58)

+O
(
K3−τG(logK)c

)

=
∞∑

f=1

H1(λ; f ;h0)

(
f−τ exp(−(f/K)µ)−

(
K

π

)1−2τ

fτ−1U0(fK)

)

+O
(
K3−τG(logK)c

)
,

provided that 1
2 6 λ, τ < 1 and

K
2
3 +δ < G < K1−δ. (4.59)

The extension of the summation to f > 3K can be performed in view of (4.49)
with an appropriate shift of the contour to the left.

This means that we have
∞∑

f=1

H1(λ; f ;h0)f−τ exp(−(f/K)µ) (4.60)

= − 1
2π4µ

ζ(λ+ 1
2 )(ĥ0)′( 1

2 )

×
∫

(3)
ζ(w + τ + 1

2 )ζ(w + λ+ τ)KwΓ
(
w

µ

)
dw

− 1
π2µ

(2π)2(λ−1)sec(πλ)ζ( 3
2 − λ)ĥ0(1− λ)

×
∫

(3)
ζ(w + τ + 1

2 )ζ(w + 1− λ+ τ)KwΓ
(
w

µ

)
dw.

Also,

∞∑

f=1

H1(λ; f ;h0)fτ−1U0(fK) (4.61)

= − 1
2π4µ

ζ(λ+ 1
2 )(ĥ0)′( 1

2 )

×
∫

(−3)
ζ( 3

2 − τ − w)ζ(1 + λ− τ − w)(4π2/K)wu0(w)Γ
(
w

µ

)
dw

− 1
π2µ

(2π)2(λ−1)sec(πλ)ζ( 3
2 − λ)ĥ0(1− λ)

×
∫

(−3)
ζ( 3

2 − τ − w)ζ(2− λ− τ − w)(4π2/K)wu0(w)Γ
(
w

µ

)
dw.
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Before specialising the above formula, note that

(ĥ0)′( 1
2 ) = 2iπ

3
2K3G+O(KG3). (4.62)

We then put λ = τ , 1
2 < τ < 1. Then the right side of (4.60) is asymptotically

equal to
2

π
3
2
ζ2(τ + 1

2 )ζ(2τ)K3G, (4.63)

and that of (4.61) to

− 2

π
3
2
ζ2(τ + 1

2 )K3G(4π2/K)
1
2−τu0(1

2 − τ)Γ
( 1

2 − τ
µ

)
. (4.64)

Inserting these expressions into (4.60) we find that

C(τ, τ ;K,G) = (1 + o(1))
2

π
3
2
ζ2(τ + 1

2 )ζ(2τ)K3G, (4.65)

which leads to (4.2). Namely, similarly as in [Iv9, eq. (7.10)-(7.11)], we note that
we have

2K0∫

K0

C(τ, τ ;K,G) dK

=
∑

j>1

αjHj(1
2 )H2

j (τ)
∫ 2K0

K0

(κ2
j + 1

4 ) exp(−(κj −K)2G−2) dK +O(1)

=
√
πG

∑

K0<κj62K0

αjHj( 1
2 )H2

j (τ)κ2
j + o(K4

0G).

On the other hand, from the main term on the right-hand side of (4.65) we obtain

2π−3/2ζ2(τ + 1
2 )ζ(2τ)

∫ 2K0

K0

K3G dK

= 1
2Gπ

−3/2ζ2(τ + 1
2 )ζ(2τ)((2K0)4 −K4

0 ).

Here we take G = K1−ε
0 say, then we replace K0 by K02−` and sum over ` > 1,

and finally replace K0 by K to obtain

∑

κj6K
αjHj( 1

2 )H2
j (τ)κ2

j =
(

1
2π
−2ζ2(τ + 1

2 )ζ(2τ) + o(1)
)
K4 (4.66)

as K → ∞ . The desired formula (4.2) follows then by partial summation from
(4.66).
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To prove (4.3), set λ = 1
2 , 1

2 < τ < 1. This case is treated in Section 3.3
of [Mo6], and we could appeal to Lemma 3.8 therein. But it is the same as to
use (4.60) and (4.61) with this specialisation. Thus, the right side of (4.60) with
λ = 1

2 is equal to

1
2π4µ

∫

(3)

{
2
(
ĥ0

)′(1
2

)(
log(2π)− cE − ζ ′

ζ

(
w + τ +

1
2

))
− 1

2

(
ĥ0

)′′(1
2

)}

× ζ2
(
w + τ +

1
2

)
KwΓ

(
w

µ

)
dw, (4.67)

and that of (4.61) to

1
2π4µ

∫

(−3)

{
2
(
ĥ0

)′(1
2

)(
log(2π)− cE − ζ ′

ζ

(
3
2
− τ − w

))
− 1

2

(
ĥ0

)′′(1
2

)}

× ζ2
(

3
2
− τ − w

)
(4π2/K)wu0(w)Γ

(
w

µ

)
dw, (4.68)

where cE is the Euler constant, the u0 is specialized accordingly, and

(ĥ0)′′(1
2 ) = 8iπ

3
2K3G logK +O(KG3 logK). (4.69)

Hence we have

C( 1
2 , τ ;K,G) = (1 + o(1))

4

π
3
2
ζ2(τ + 1

2 )K3G logK,

which implies (4.3) by the procedure used in the previous case. This completes the
proof of Theorem 2.

5. The asymptotics of the ΛΛΛ-function

We shall apply now Theorem 1 with a specific (Gaussian) exponential weight
function, namely

g(t) =
1

2
√
πG

{
exp

(
−
(
T − t
G

)2
)

+ exp

(
−
(
T + t

G

)2
)}

, (5.1)

which is a standard one, either in this or in a slightly changed form (without the
factor 1/(2

√
πG)). Obviously this choice of g satisfies the basic assumption in

Section 1.
The crucial thing needed in the estimation of E2(T, σ) and related quantities

is the function Λ(r; τ, g), defined by (2.8), and we proceed in this section to give



The fourth moment off the critical line 165

its asymptotic evaluation. The main formula is (5.14), but we have found it more
expedient to leave it in this form than to formulate a concrete theorem or lemma
which would provide the needed asymptotic evaluation. The form that will be
given in the sequel is sharper and more complete than the one that can be found
in [Mo6, Chapter 5]. We suppose that the parameters r,G satisfy

1� r 6 TG−1 log5 T, T ε 6 G 6 T 1−ε, (5.2)

which are the relevant ranges for our investigations. The case r < 0 is completely
analogous, and the range for r not covered by (5.2) is treated in [Mo6], where it is
shown that the contribution is negligible. In the case of the weight function (5.1)
(without the factor 1/(2

√
πG)) we shall have

gc(x) = 2
√
πGe−

1
4G

2x2
cos(xT ). (5.3)

However, to keep in tune with the notation of [Mo6], we omit 2
√
πG in subsequent

calculations. Moreover, the exponential factor in (5.3) shows that the contribution
of y > G−1 log T in (3.57) is negligible, so that by changing y to 1/y it is sufficient
to start with the evaluation of the integral

I :=
∫ G−1 log T

0
y2τ−3/2(1 + y)−τ cos(T log(1 + y)) exp(− 1

4G
2 log2(1 + y)) (5.4)

× Re
{
yir

Γ2( 1
2 + ir)

Γ(1 + 2ir)
F ( 1

2 + ir, 1
2 + ir; 1 + 2ir;−y)

}
dy,

where τ > 1
2 (τ 6= 1) is a given constant, and of course I depends on T, r,G and

τ . There are several ways to evaluate I asymptotically, but the simplest procedure
seems to use the following quadratic transformation formula (see [L, eq. (9.6.12)]),
which is valid if | arg(1− z)| < π, 2β 6= −1,−3,−5, . . . :

F (α, β; 2β; z) =
(

1 +
√

1− z
2

)−2α

(5.5)

× F
(
α, α− β + 1

2 ;β + 1
2 ;
(

1−√1− z
1 +
√

1− z

)2
)
.

Then the relevant part of I becomes

∫ G−1 log T

0
y2τ−3/2(1 + y)−τ cos(T log(1 + y)) exp(− 1

4G
2 log2(1 + y)) (5.6)

× Re

{
yir

Γ2( 1
2 + ir)

Γ(1 + 2ir)

(
1 +
√

1 + y

2

)−1−2ir

×F
(

1
2 + ir, 1

2 ; 1 + ir;
(

1−√1 + y

1 +
√

1 + y

)2
)}

dy.
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We recall (2.9), and insert it in (5.6) with α = 1
2 + ir, β = 1

2 , γ = 1 + ir ,

z =
(

1−√1 + y

1 +
√

1 + y

)2

� G−2 log2 T = o(1) (T →∞),

since 0 6 y 6 G−1 log T in (5.6). Note that, for k > 1,

∣∣∣∣
( 1

2 + ir)k
(1 + ir)k

∣∣∣∣ 6 1,
( 1

2 + ir)k
(1 + ir)k

=
(

ir

k + ir

)1/2(
1 +O

(
1
r

))

uniformly in k , with an appropriate choice of branch. Therefore the main contri-
bution to I will come from the constant term (i.e., unity) in the series expansion
(2.9), while the remaining terms will be of a similar nature, only of a lower order
of magnitude. The series can be truncated in such a way that the tails will make
a negligible contribution; this procedure will be repeatedly used without further
explicit mention in subsequent calculations. For example, we develop into series

the terms (1 + y)−τ and
(

1+
√

1+y
2

)−1
, noting that the main contribution will

again come from the constant term unity. Now we use Stirling’s formula for the
gamma-function in the form (t > t0 > 0, 0 6 σ 6 1)

Γ(s) =
√

2π tσ−
1
2 exp

(− 1
2πt+ it log t− it+ 1

2πi(σ − 1
2 )
) · (1 +Oσ

(
t−1)) , (5.7)

with the understanding that the O–term in (5.7) admits an asymptotic expansion
in terms of negative powers of t . Therefore we have

Γ2( 1
2 + ir)

Γ(1 + 2ir)
=
√
πr−1/2e−2ir log 2− 1

4πi ·
(

1 +O

(
1
r

))

for the gamma-factors in (5.6), where the O -term admits an asymptotic expansion.
In this way the problem is reduced to the evaluation of the integral

√
πr−1/2

∫ G−1 log T

0
y2τ−3/2 cos(T log(1 + y)) exp(− 1

4G
2 log2(1 + y)) (5.8)

× Re
{
yir exp

(
−2ir log 2− 2ir log

(
1 +
√

1 + y

2

)
− 1

4πi

)}
dy

=
√
πr−1/2

∫ G−1 log T

0
y2τ−3/2 cos(T log(1 + y)) exp(− 1

4G
2 log2(1 + y))

× cos
(
r log y − r log 4− 2r log

(
1 +
√

1 + y

2

)
− 1

4π

)
dy,

But as
cosα cosβ = 1

2 [cos(α+ β) + cos(α− β)],
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we have in fact to consider

√
πr−1/2e−ir log 4

∫ G−1 log T

0
y2τ−3/2 exp(− 1

4G
2 log2(1 + y))eiF±(y,r)− 1

4 iπ dy, (5.9)

with

F±(y; r, T ) := r log y − 2r log
(

1 +
√

1 + y

2

)
± T log(1 + y), (5.10)

so that
∂F±(y; r, T )

∂y
=
r

y
− r

1 + y +
√

1 + y
± T

1 + y
.

Note that in our range for y , which is 0 < y 6 G−1 log T , the derivative of F+ is
positive, so there will be no saddle point. Hence we shall discuss in detail only the
more difficult case of F− (henceforth denoted by F ), which has a saddle point
y0 , the root of

r

y
− r

1 + y +
√

1 + y
=

T

1 + y
.

This is equivalent to T 2y2 − r2y − r2 = 0, giving

y0 =
r

T

(√
1 +

r2

4T 2 +
r

2T

)
, (5.11)

so that y0 ∼ r/T as T →∞ . Then

F(y0) = r log y0 − 2r log
(

1 +
√

1 + y0

2

)
− T log(1 + y0).

Using (5.11) a calculation gives

r log y0 = r log
r

T
+
r2

2T
+O

(
r4

T 3

)
,

−2r log
(

1 +
√

1 + y0

2

)
= − r2

2T 2 −
r3

16T 2 +O

(
r4

T 3

)
,

−T log(1 + y0) = −r +
r3

24T 2 +O

(
r4

T 3

)
,

and the O -terms admit an asymptotic expansion in powers of r/T . Therefore we
obtain

F(y0)− r log 4 = r log
( r

4eT

)
+

N∑

j=3

cjr
jT 1−j +ON (rN+1T−N ) (5.12)
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for any given integer N > 3 and some effectively computable real constants
cj (c3 = −1/48). As

F ′′(y0) ∼ −T
2

r
(T →∞), (5.13)

it follows that the dominant contribution to I is a multiple of

T
1
2−2τr2τ− 3

2 exp
{− 1

4G
2 log2(1 + y0) + iF(y0)− ir log 4

}
(5.14)

= T
1
2−2τr2τ− 3

2

× exp
{
− 1

4G
2 log2(1 + y0) + ir log

( r

4eT

)
+ i

N∑

j=3

cjr
jT 1−j +ON (rN+1T−N )

}
.

This is understood in the following sense: the remaining terms in the evaluation of
I are either negligible, or similar in nature to (5.14) (meaning that the oscillating
exponential factor is the same, which is crucial), only of the lower order of magni-
tude than (5.14). We shall show now briefly show how the saddle point method
does indeed lead to this assertion.

To see this we turn back to the integral in (5.9). We use the techniques which
were used in establishing (7.1.30) and (7.1.31) of [Mo6]. With y0 as in (5.11) we
have that the relevant integral is equal to

y0e−πi/4
∫ ξ0

−ξ0
f0(ξ)eif(ξ) dξ (ξ0 = rε−1/2), (5.15)

plus as error term which is �ε exp(−rε). This error term is negligible if

r > (log T )C(ε) (5.16)

with C(ε) (> 0) sufficiently large. The functions appearing in (5.15) are (ξ is the
variable of integration)

f0(ξ) := y2τ−3/2 exp(− 1
4G

2 log2(1 + y)), y := y0 + y0ξe−πi/4, (5.17)

f(ξ) := F−(ξ; r, T ) = r log y − 2r log
(

1 +
√

1 + y

2

)
− T log(1 + y),

where we assume that (5.1) and (5.16) hold. This enables us to replace f0(ξ) with

y
2τ−3/2
0 exp(− 1

4G
2 log2(1 + y0)),

on expanding f0(ξ) into its Taylor series at y0 . Likewise, since F ′(y0) = 0,

f(ξ) = F(y0 + y0ξe−πi/4) = F(y0) + 1
2 iy

2
0ξ

2(−F ′′(y0)) +G(ξ; r, T, y0),
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say, where G can be expanded into Taylor series and

G(ξ; r, T, y0)� y3
0ξ

3
0ry
−3
0 = r3ε−1/2.

After this the ensuing integrals are evaluated by using the formula (proved by
induction on k )

∫ Ξ0

−Ξ0

ξ2ke−
1
2 cξ

2
dξ = 2k+ 1

2 Γ(k + 1
2 )c−

1
2−k +Ok(c−1Ξk−1

0 e−
1
2 cΞ

2
0), (5.18)

provided that
k = 0, 1, 2, . . . , c > 0, Ξ0 > 0, Ξ0

√
c > 1. (5.19)

In our case
c = −y2

0F
′′(y0) > 0, Ξ0 = rε−1/2, Ξ0

√
c � rε,

so that (5.19) is satisfied. Collecting all the estimates, we see that the major
contribution to I is indeed furnished by (5.14).

In the case when the integral in (5.9) has no saddle point, i.e., the case of
F+ , we turn the segment of integration by the angle r−1/2 , say, to obtain that
the contribution of the integral is in this case negligible.

In the case when (5.16) fails, more precisely when

|r| 6 (log T )C(ε),

we apply the technique of [Mo6, Lemma 5.2], to see that the integral in question
in the above range is � T

1
2−2τ , which is sufficiently sharp for our purposes.

6. The weighted fourth moment when 1
2 < σ < 3

4
1
2 < σ < 3

4
1
2 < σ < 3

4

With the use of Theorem 1 and the asymptotics of Section 5 we can derive the
explicit formula for the fundamental function

I2(T, τ,G) :=
1√
πG

∫ ∞
−∞
|ζ(τ + it+ iT )|4e−(t/G)2

dt (6.1)
(

1
2 < τ < 3

4 , T
1/3+ε 6 G 6 T 1−ε

)
.

This formula, as in the case when τ = 1/2 (see [I2], [Mo6]), can be integrated over
T . It will then lead to explicit results on the function E2(T, σ), the error term
in the asymptotic formula for

∫ T
0 |ζ(σ + it)|4 dt . Our result on I2(T, σ) and its

integral is given by
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Theorem 3. If I2(T, σ,G) is given by (6.1) , 1
2 < σ < 3

4 , T
1/3+ε 6 G 6 T 1−ε ,

Y0 = (κj/T )(
√

1 + (κj/4T )2 + κj/(2T )), then we have

I2(T, σ,G) ∼ O(1) (6.2)

+ C(σ)T
1
2−2σ

∑

κj6TG−1 log T

αjκ
2σ−3/2
j H2

j ( 1
2 )Hj(2σ − 1

2 )e−
1
4G

2 log2(1+Y0)

× sin
(
κj log

κj
4eT

+ c3κ
3
jT
−2
)
.

We also have, for Ȳ0 = (κj/V )(
√

1 + (κj/4V )2 + κj/(2V )), and V 1/3+ε 6 G 6
V 1−ε (D > 0) ,

V∫

0

I2(T, σ;G) dT ∼ ζ4(2σ)
ζ(4σ)

V +
V

3− 4σ

(
V

2π

)2−4σ
ζ4(2− 2σ)
ζ(4− 4σ)

(6.3)

+ V 2−2σ(a0(σ) + a1(σ) log V + a2(σ) log2 V )+

+ C(σ)V
3
2−2σ

∑

κj6V G−1 log T

αjκ
2σ−5/2
j H2

j ( 1
2 )Hj(2σ − 1

2 )e−
1
4G

2 log2(1+Ȳ0)

× cos
(
κj log

( κj
4eV

)
+ c3κ

3
jV
−2
)

+O(G) +O(V 1/3 logD V )

with suitable constants C(σ), C1(σ) , and aj(σ) , which may be explicitly evaluated.
The meaning of the symbol ∼ is that besides the spectral sums in (6.2) -(6.3) a
finite number of other sums are to appear, each of which is similar in nature to
the the corresponding sum above, but of a lower order of magnitude.

Proof of Theorem 3. The meaning of the symbol ∼ was already explained
after (5.14). Each of the omitted sums is either negligibly small, or similar in
structure to the ones appearing above, namely it has the same oscillatory factors
as the corresponding sums above. When estimated, their contribution will be (by
a power of T or V ) smaller than the contribution of the sums in (6.2) and (6.3).

To prove Theorem 3, we use (2.3)-(2.8) of Theorem 1. The derivation of (6.2)
is similar to the proof of Theorem 5.2 of [I2] or Theorem 5.1 of [Mo6], starting
from the spectral decomposition of L(g; τ, τ) when τ = 1/2. Thus we shall be
relatively brief, noting that the sum in (6.2) comes from the discrete spectral part
(2.5) and (5.14). We shall need (5.14) with τ = σ, 1

2 < σ < 1. The weight function
g will be (5.1), hence

gc(x) = e−
1
4G

2x2
cos(xT ). (6.4)

In view of the expressions for M∗` (` = 0, . . . , 6) (see (3.74)–(3.89)) of the main
term (cf. Zr(τ, g) in (2.4)) will be O(1), as will also be the contribution of Zh(τ, g)
in (2.7). The contribution of Zc(τ, g), given by the integral in (2.6), is estimated
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by the use of (5.14). It will be O(1) plus the term which is

� log2 T

∫ TG−1 log T

−TG−1 log T
|ζ( 1

2 + ir)|4|ζ(2σ − 1
2 )|2T 1/2−2σ(|r|+ 1)2σ−3/2 dr

� (TG−1)
5
4 +2σ− 3

2T
1
2−2σ logC T

= T 1/4G1/4−2σ logC T 6 1

for G > T 1/3 , since σ > 1
2 . Here we used the trivial bound 1/|ζ(1

2 + it)| � log |t| ,
coupled with the Cauchy-Schwarz inequality for integrals and the bounds (see [I1])

∫ T

0
|ζ( 1

2 + it)|8 dt� T 3/2 logC T,
∫ T

1
|ζ(τ + it)|4 dt� T ( 1

2 < τ 6 1).

To prove (6.3), we integrate first the spectral decomposition of Theorem 1
from V to 2V , eventually replacing V by V 2−j and summing over j ∈ N . When
we apply (5.14) and integrate, we essentially have to integrate T

1
2−2τ−ir over T ,

which accounts for the increase in order of T/κj in (6.3), and one can check that
integration will transform the sine into cosine. Here care should be exerted when
one computes the main term on the right-hand side of (6.3). This is given (cf.
M(pτ ; g)) by eqs.(3.74)–(3.89). In the evaluation we make repeatedly use of the
formula (see [I2, Section 5.1])

Γ(k)(s)
Γ(s)

=
k∑

j=0

bj,k(s) logj s+ c−1,ks
−1 + . . .+ c−r,ks−r +Or(|s|−r−1) (6.5)

for any fixed integers k > 1, r > 0, where each bj,k (∼ bj,k for a suitable constant
bj,k ) has an asymptotic expansion in non-positive powers of s . It transpires that
one encounters integrals of the type

1√
πG

∫ ∞
−∞

logr(1
2 + iT + it)e−(t/G)2

dt (6.6)

=
1√
π

∫ ∞
−∞

logr( 1
2 + iT + iuG)e−u

2
du

=
1√
π

∫ log T

− log T
logr( 1

2 + iT + iuG)e−u
2

du+OA(T−A),

for any fixed A > 0. For |u| 6 log T one has the power series expansion

logr( 1
2 + iT + iuG) = logr(iT )

+
r∑

k=1

(
r

k

)
(log iT )r−k

(
uG

T
+

1
2iT
− 1

2

(
uG

T
+

1
2iT

)2

+ . . .

)k
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which is inserted in (6.6). The evaluation is completed by applying (5.18). The
main term in (6.3) is the same one as in (6.2) (with V replacing T ), and the
constant standing in front of the term T 3−4σ was first explicitly evaluated by
Kačėnas [K1], [K2]. The contributions of Zh(τ, g) and Zc(τ, g) will be absorbed
by the error terms after integration. This ends our discussion of Theorem 3.

Next, we consider E2(T, 3
4 ) by using (3.88)–(3.90). We obtain, with suitable

constants Aj , which may be explicitly evaluated,

∫ T

0
|ζ( 3

4 + it)|4 dt =
ζ4(3

2 )
ζ(3)

T (6.7)

+ T 1/2(A0 +A1 log T +A2 log2 T ) + E2(T, 3
4 )

with
E2(T, 3

4 ) � T 1/2 log3 T. (6.8)

Note that the bound (6.8) for the error term is, by a log-factor, larger than the
order of the second main term in (6.7). Indeed, it is very plausible that the bound
(6.8) is far from the truth and that we have

E2(T, σ) �ε T
3/2−2σ+ε ( 1

2 < σ < 3
4 ) (6.9)

and
E2(T, σ) �ε T

ε ( 3
4 6 σ < 1). (6.10)

Here and later ε denotes arbitrarily small, positive constants, not necessarily the
same ones at each occurrence, and f �ε g means that the �–constant depends
on ε . Also note that C will denote a generic positive constant.

The conjectures (6.9)-(6.10) were made in [I6]. They are very strong, since
they imply that ζ( 1

2 + it) �ε |t|1/8+ε and ζ(σ + it) �ε |t|ε for σ > 3
4 . They are

the analogues of the conjectures for the true order of the error term E1(T, σ) in
(1.5) (see [Ma]). What seems possible to prove at present for the range 3

4 6 σ < 1
is (cf. [I6, Th. 2])

∫ T

0
|ζ(σ + it)|4 dt =

ζ4(2σ)
ζ(4σ)

T +O(T 2−2σ log3 T ), (6.11)

which is far from the conjectured bound (6.10). In view of (6.11) there seems to be
no point in further estimation of E2(T, σ) when 3

4 < σ < 1, since the bounds that
seem obtainable from the spectral decomposition are weaker than (6.11). When
σ = 1 we have (see [I3])

∫ T

1
|ζ(1 + it)|4 dt =

ζ4(2)
ζ(4)

T +O(log4 T ),

so that this case is covered, too (ζ4(2)/ζ(4) = π2/72).
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7. The fourth moment when 1
2 < σ < 3

4
1
2 < σ < 3

4
1
2 < σ < 3

4

We have prepared the groundwork for the results on E2(T, σ), the error term for
the fourth moment off the critical line (see (1.6)), in the previous sections. Now
we can proceed with the statement of our results.

Teorem 4. If σ is a fixed number such that 1
2 < σ < 3

4 , and E2(T, σ) is defined
by (1.6) , then with suitable constants aj(σ) we have

∫ T

0
|ζ(σ + it)|4 dt =

ζ4(2σ)
ζ(4σ)

T +
T

3− 4σ

(
T

2π

)2−4σ
ζ4(2− 2σ)
ζ(4− 4σ)

(7.1)

+ T 2−2σ(a0(σ) + a1(σ) log T + a2(σ) log2 T ) + E2(T, σ),

where with some C > 0

E2(T, σ) � T 2/(1+4σ) logC T ( 1
2 < σ < 3

4 ). (7.2)

Moreover,
E2(T, σ) = Ω±(T

3
2−2σ) ( 1

2 < σ < 3
4 ). (7.3)

More precisely, there exist constants A = A(σ) > 1 and B = B(σ) > 0 such that,
for T > T0(σ) , every interval [T, AT ] contains points t1 = t1(σ) and t2 = t2(σ)
such that

E2(t1, σ) > Bt
3
2−2σ
1 , E2(t1, σ) < −Bt

3
2−2σ
1 ( 1

2 < σ < 3
4 ). (7.4)

Remarks. As usual, f(x)=Ω±(g(x)) means that we have lim supx→∞f(x)/g(x)>
0 and lim infx→∞ f(x)/g(x) < 0 for a given g(x) > 0 (x > x0). Note that
3 − 4σ > 2/(1 + 4σ) for 1

2 < σ < 1+
√

2
4 and that 2 − 2σ > 2/(1 + 4σ) for

σ < 3
4 . Thus our bound for the error term E2(T, σ) is already larger than the

second main term in (1.6) unless 1
2 < σ < 1+

√
2

4 , but the bound in question is
probably much too large (recall the conjectural bounds (6.9)–(6.10) for the order
of E2(T, σ)).

Theorem 5. Let E2(T, σ) be given by (1.6) . If σ is a fixed number such that
1
2 < σ < 3

4 , then for suitable C = C(σ) > 0 we have

∫ T

0
|E2(t, σ)|4σ dt� T 2 logC T. (7.5)

We also have, for any constant A > 1 ,

∫ T

0
|E2(t, σ)|A dt� T 1+A( 3

2−2σ). (7.6)



174 Aleksandar Ivić & Yoichi Motohashi

Note that when σ = 1
2 , (7.5) reduces to
∫ T

0
E2

2(t) dt� T 2 logC T, (7.7)

where E2(T ) = E2(T, 1
2 ) is the error term in the formula for the fourth moment

of |ζ( 1
2 + it)| . The bound (7.7) is the sharpest one known (see [IM2], [Mo6]) and

essentially best possible, since we have (see [I7])
∫ T

0
E2

2(t) dt� T 2. (7.8)

The lower bound in (7.6), when A = 2, σ = 1
2 , reduces to (7.7). Note that the

conjecture (6.9) would furnish the upper bound
∫ T

0
|E2(t, σ)|A dt�ε T

1+A( 3
2−2σ)+ε, (7.9)

which is (up to ‘ε ’) the same as the lower bound (7.6). The upper bound in
(7.5), on the other hand, is much weaker than (6.9). This reflects, in general, the
situation with E2(T, σ): as σ increases from 1

2 to 3
4 , the quality of the bounds

(either pointwise or in the mean square sense) decreases. The same phenomenon
also occurs with bounds for the mean square of ζ(s) off the critical line (see [Ma]).

Finally we remark that, by Hölder’s inequality for integrals, (7.5) implies the
mean square bound

∫ T

0
E2

2(t, σ) dt� T 1+1/(2σ) logC T, (7.10)

which may be compared to (7.7).

8. Proof of the bounds when 1
2 < σ < 3

4
1
2 < σ < 3

4
1
2 < σ < 3

4

In this section we shall prove Theorem 4 and Theorem 5, formulated in the prece-
ding section. First we prove (7.1)-(7.2). We rewrite (6.3) of Theorem 3 as

∫ T

0
I2(t, σ;G) dt = M(T, σ) + S(T, σ;G) +R(T, σ;G), (8.1)

say, where the main term is

M(T, σ) :=
ζ4(2σ)
ζ(4σ)

T +
T

3− 4σ

(
T

2π

)2−4σ
ζ4(2− 2σ)
ζ(4− 4σ)

(8.2)

+ T 2−2σ(a0(σ) + a1(σ) log T + a2(σ) log2 T ),

S(T, σ;G) := C(σ)T
3
2−2σ

∞∑

j=1

αjκ
2σ−5/2
j H2

j ( 1
2 )

×Hj(2σ − 1
2 )e−

1
4G

2 log2(1+Y0) cos
(
κj log

( κj
4eT

)
+ c3κ

3
jT
−2
)

(8.3)
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is the spectral part, and the rest (error term) is

R(T, σ;G) := O(G) +O(T 1/3 logD T ). (8.4)

We suppose that T 1/3+ε 6 G = G(T ) 6 T 1−ε and put first in (8.1)

T1 = T −G log T, T2 = 2T +G log T.

Then

∫ T2

T1

I2(t, σ;G) dt =
∫ ∞
−∞
|ζ(σ + iu)|4

(
1√
πG

∫ T2

T1

e−(t−u)2/G2
dt

)
du

>
∫ 2T

T

ζ(σ + iu)|4
(

1√
πG

∫ 2T+G log T

T−G log T
e−(t−u)2/G2

dt

)
du.

But for T 6 u 6 2T we have, by the change of variable t− u = Gv ,

1√
πG

∫ 2T+G log T

T−G log T
e−(t−u)2/G2

dt =
1√
π

∫ (2T+u)/G log T

(T−u)/G−log T
e−v

2
dv

=
1√
π

∫ ∞
−∞

e−v
2

dv +O

(∫ ∞
log T

e−v
2

dv
)

+O

(∫ − log T

−∞
e−v

2
dv

)

= 1 +O(e− log2 T ),

since t− u 6 0, 2T − u > 0. Therefore, by (8.1) and the mean value theorem, we
obtain

∫ 2T

T

|ζ(σ + it)|4 dt 6
∫ T2

T1

I2(t, σ;G) dt+O(1) (8.5)

= M(2T, σ)−M(T, σ) +O(G)

+ S(2T +G log T, σ;G)− S(T −G log T, σ;G)

+R(2T +G log T, σ;G)−R(T −G log T, σ;G).

A lower bound of a similar type for the first integral in (8.5) follows by the same
procedure if we take

T1 = T +G log T, T2 = 2T −G log T.

Putting together the bounds we obtain the following lemma, which is the analogue
of [I2, Lemma 5.1] or [IM3, Lemma 3].
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Lemma 11. With the notation introduced in (8.1)−(8.2) and, for T 1/3+ε 6 G 6
T 1−ε , we have

E2(2T, σ)− E2(T, σ) (8.6)

� |S(2T +G log T, σ;G)|+ |S(2T −G log T, σ;G)|
+ |S(T +G log T, σ;G)|+ |S(T −G log T, σ;G)|
+O(G) +O(T 1/3 logD T ).

To return to the proof of (7.1)-(7.2), note that the S -sums can be truncated
at TG−1 log T with a negligible error. We estimate the exponential factors trivially,
and then use the Cauchy-Schwarz inequality and the bound (4.2). Thus we have

|S(2T +G log T, σ;G)|+ |S(2T −G log T, σ;G)|
+ |S(T +G log T, σ;G)|+ |S(T −G log T, σ;G)|
� T

3
2−2σ(TG−1 log T )2σ− 1

2 logC T

6 TG
1
2−2σ logC+1 T.

This gives, by Lemma 11,

E2(2T, σ)− E2(T, σ)� (TG
1
2−2σ +G+ T 1/3) logC T � T

2
1+4σ logC T (8.7)

with the choice
G = T

2
1+4σ .

From (8.7) the bound (7.2) easily follows. Note that an explicit value C = C(σ)
in Theorem 4 can also be worked out without trouble.

To prove the omega result (7.3) we argue similarly as in the case of the proof
of the omega-result (see [I7], [Mo4], [Mo6])

E2(T ) = Ω±(T 1/2). (8.8)

Instead of the (modified) Mellin transform

Z2(s) :=
∫ ∞

1
|ζ( 1

2 + ix)|4x−s dx (Re s > 1) (8.9)

used for the proof of (8.8), we need to use the function

Z2(s, τ) :=
∫ ∞

1
|ζ(τ + ix)|4x−s dx (1

2 < τ < 1, Re s > 1).

The spectral decomposition of Z2(s, τ) is effected much in the same way as was the
spectral decomposition of Z2(s) (see [Mo4], [Mo6]). The major difference relevant
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for the omega results is that, in the case of Z2(s) the simple poles are located
at s = 1

2 ± iκj , while in the case of Z2(s, τ) the simple poles are located at
s = 3/2 − 2τ ± iκj . Hence, instead of (8.8), we obtain the omega result (7.3). In
the course of the proof one needs the non-vanishing of Lσ(κ) for infinitely many κ

(see (4.1)), which follows from (4.3) of Theorem 2. The function Z2(s, τ) admits
meromorphic continuation over C where, unless s lies in a neighborhood of its
pole, it is of polynomial growth in |s| for a fixed σ . This follows analogously as in
[Mo6] and [IJM]. The crucial result is analogue of Lemma 2 of [I7], which in this
case will imply that

∫ ∞
0

∫ t

0
E2(u, σ) du · e−t/T dt (8.10)

∼ T 7
2−2σRe




∞∑

j=1

αjH
2
j ( 1

2 )Hj(2σ − 1
2 )R1,σ(κj)



 (T →∞),

where R1,σ(κj) �ε exp(−( 1
2π − ε)κj). From (8.10) we obtain (7.4) with the aid

of ( [I7], Lemma 3). With (7.4) at our disposal, we prove easily (7.3). Let t1 be as
in (7.4). Then

At
5
2−2σ
1 <

∫ t1

0
E2(t, σ) dt 6

(∫ t1

0
|E2(t, σ)|a dt

)1/a

t
(a−1)/a
1

for a > 1 by Hölder’s inequality, and for a = 1 it is trivial. In view of T 6 t1 6 BT

we obtain

AaT 1+a( 3
2−2σ) 6 Aat

1+a( 3
2−2σ)

1 6
∫ t1

0
|E2(t, σ)|a dt 6

∫ BT

0
|E2(t, σ)|a dt.

Changing T to T/B we obtain (7.3).
It remains to prove (7.5) of Theorem 5. We shall follow the proof of [Mo6,

Theorem 5.3], making the necessary modifications. We wish to obtain an upper
bound for R , the number of well-spaced points {tr} (r = 1, . . . , R) for which
E2(tr, σ) > V > 0 (the case when E2(tr, σ) 6 −V is analogously treated, so we
may consider only the former case), where

T 6 t1 < · · · < tR 6 2T, tr+1 − tr > V log−C−1 T, (8.11)

T
1

4σ logC2 T 6 V 6 T
2

1+4σ logC3 T,

for suitable Cj > 0. We put

U = 2−`tr (` = 1, . . . , L), G = V log−C4 T, 2−LT � T (4σ+1)/(8σ),
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which gives

E2(tr) =
L∑

`=1

R∑
r=1

{
E2(21−`tr, σ)− E2(2−`tr, σ)

}
+O(T 1/(4σ) logC T )

by (7.2). Therefore we obtain

1
2RV 6

L∑

`=1

R∑
r=1

{
E2(21−`tr, σ)− E2(2−`tr, σ)

}
, (8.12)

and we now apply Lemma 11. We may truncate each sum over κj so that κj 6
TG−1 log T , and also expand into Taylor series the factor

exp
(
ic3κ

3
j (U ±G log T )−2)

and higher power exponentials coming from (5.14), noting that the main contribu-
tion will come from the constant term, namely unity. This is important, since this
procedure allows us to relax the condition G > V 1/3+ε in (6.3) in such a way that
G and U lie in a permissible range. Instead of W (K, `; z) (cf. [Mo6, eq. (7.2.19)])
we have (τ(r, `) = 21−` +G log T, Re z = 1/ log T ) now

W (K, `; z) :=
∑

K<κj62K

αjH
2
j (1

2 )|Hj(2σ − 1
2 )|κ2σ−1

j

∣∣∣∣∣
R∑
r=1

τ(r, `)
3
2−2σ+z+iκj

∣∣∣∣∣

� K2σ−1
∑

K<κj62K

αjH
2
j ( 1

2 )|Hj(2σ − 1
2 )|
∣∣∣∣∣
R∑
r=1

τ(r, `)
3
2−2σ+z+iκj

∣∣∣∣∣ .

To the sum over κj we apply the Cauchy-Schwarz inequality, noting that for σ > 1
2

∑

K<κj62K

αj |Hj( 1
2 )Hj(2σ − 1

2 )|2

6


 ∑

K<κj62K

αjH
4
j ( 1

2 )
∑

K<κj62K

αjH
4
j (2σ − 1

2 )




1/2

� K2 logC K,

since both sums above are bounded by K2 logC K . For the sum with H4
j ( 1

2 ) this
is [Mo6, Theorem 3.4], and the other sum is treated analogously. This yields

W 2(K, `; z)� K4σ logC K
∑

K<κj62K

αjH
2
j ( 1

2 )
∣∣∣
R∑
r=1

τ(r, `)
3
2−2σ+z+iκj

∣∣∣
2
. (8.13)
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With (8.13) we obtain, on applying [Mo6, eq. (5.6.3)] (this is a variant of the
spectral large sieve), the uniform bound

W 2(K, `; z)� K4σ+1 logC K(K + TV −1)RT 3−4σ2−`.

With the aid of (8.12) this yields, similarly as in [Mo6, Chapter 5]

RV � max
K6TG−1 log T

K−3/2(K2σ+1 + T 1/2V −1/2K2σ+ 1
2 )R1/2T 3/2−2σ logC T

� R1/2TV
1
2−2σ logC T.

Therefore we obtain
R� T 2V −1−4σ logC T, (8.14)

which easily leads to (7.2). The part where |E2(t, σ)| 6 T 1/(4σ) logC T is trivial,
so we may restrict integration to the set S , where |E2(t, σ)| > T 1/(4σ) logC T .
Consider the subset SV of S , where V 6 |E2(t, σ)| < 2V, t ∈ S ∩ [ 1

2T, T ] . We
divide the interval [ 1

2T, T ] into subintervals of length V logC T , allowing the end
subintervals to be possibly shorter. Then the number R = RV of those subintervals
(considering separately subintervals with even and odd indices) which contain a
point from SV is bounded by (8.14). Hence we have

∫

SV
|E2(t, σ)|4σ dt� RV V logC TV 4σ � T 2 logC T,

and since there are O(log T ) choices for V , we have

∫ T

1
2T
|E2(t, σ)|4σ dt� T 2 logC T.

Replacing T by T2−j and summing the above bounds over j ∈ N we obtain (7.5).
The proof of Theorem 5 is complete.
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Birkhäuser, 2000, pp. 241–286.

[Mo1] Y. Motohashi, ‘Spectral mean values of Maass wave form L-functions’, J.
Number Theory 42 (1992), 258–284.

[Mo2] Y. Motohashi, ‘An explicit formula for the fourth power mean of the Riemann
zeta-function’, Acta Math. 170 (1993), 181–220.



The fourth moment off the critical line 181

[Mo3] Y. Motohashi, ‘The mean square of Hecke L-functions attached to holo-
morphic cusp forms’, Kokyuroku Res. Inst. Math. Kyoto Univ. 886 (1994),
214–227.

[Mo4] Y. Motohashi, ‘A relation between the Riemann zeta-function and the hyper-
bolic Laplacian’, Annali Scuola Norm. Sup. Pisa, Cl. Sci. IV ser. 22 (1995),
299–313.

[Mo5] Y. Motohashi, ‘The Riemann zeta-function and the non-Euclidean Lapla-
cian’, Sugaku Expositions, AMS 8 (1995), 59–87.

[Mo6] Y. Motohashi, ‘Spectral theory of the Riemann zeta-function’, Cambridge
University Press, Cambridge, 1997.

[Mo7] Y. Motohashi, ‘A note on the mean value of the zeta and L-functions. XIV’,
Proc. Japan Acad. 80A (2004), 28–33.

[WW] E.T. Whittaker and G.N. Watson, ‘A Course of Modern Analysis’, Cambridge
University Press (4th. ed.), London, 1963.
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