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One essential part of Elkies’ algorithm for computing the group

order of an elliptic curve defined over a finite field is the de-

termination of the eigenvalue of the Frobenius endomorphism.

Here we compare from a practical point of view several strate-

gies for this search: the use of rational functions, the use of di-

vision polynomials, the babystep-giantstep method, and a new

modification of this method that avoids the need for two fast

exponentiations.

1. INTRODUCTIONElliptic curves over �nite �elds have gained a lotof attention in public key cryptography in recentyears. Nowadays several institutions are standard-izing such systems; see [IEEE 2000], for example.Therefore the question arises how one can �nd ellip-tic curves for which the discrete logarithm problemis supposedly hard. In [M�uller and Paulus 1998], theauthors solve this parameter search by computingthe group order of randomly chosen elliptic curves.Group order computations for elliptic curves havemade astonishing progress in the last few years; see,for example [Blake et al. 1999; Lehmann et al. 1994;M�uller 1995; Lercier 1997]. The Atkin{Elkies al-gorithm [Atkin 1988; 1992], briey reviewed in thenext section, proved to be very e�cient in prac-tice; for a detailed description see [Blake et al. 1999;M�uller 1995]. One essential part of it is the deter-mination of the eigenvalue of the so called Frobe-nius endomorphism modulo suitable small primes.In this paper we compare several strategies for �nd-ing this eigenvalue in practice.We restrict our observations to elliptic curves de-�ned over �nite prime �elds of large characteristic,but very similar algorithms are also usable for smallcharacteristic �elds. The paper is structured as fol-lows: Section 2 gives a short introduction to ellip-tic curves de�ned over �nite �elds of characteris-tic greater three and the Atkin{Elkies algorithm for
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point counting. In Section 3, we give an overviewon the four di�erent algorithms of this paper, andwe give average case running times for all these algo-rithms. Sections 4, 5, and 6 describe each of these al-gorithms in detail. Finally we describe an importantsubalgorithm of these methods, a fast probabilisticsearch strategy in a table of rational functions.
2. THE ATKIN–ELKIES ALGORITHMLet F q be the �nite �eld with q elements, and letp > 3 be its (prime) characteristic. Let E be anelliptic curve de�ned over F q by its short Weierstrassequation y2 = x3 + a4x+ a6; (2–1)where a4; a6 2 F q, and the discriminant 4a34+27a26 isnonzero. Let F q be the algebraic closure of F q. Fora �eld K, F q � K � F q, the set E(K) of K-rationalpoints consists of the a�ne solutions (x; y) 2 K2of (2{1), together with the point O \at in�nity" ob-tained by considering the projective closure of (2{1).The set E(K) has a group structure (usually ad-ditively written) given by the \tangent and chordmethod" [Connell 1996], with O acting as the iden-tity element. The sum of two given points can becomputed using the following simple formulas and afew trivial cases:� The negative of a point P = (x; y) 2 E(K) is�P = (x;�y) 2 E(K).� Given points P1 = (x1; y1) and P2 = (x2; y2), withP1 6= �P2, we compute the sum (x3; y3) asx3 = �x1�x2+�2 and y3 = �y1+��(x1�x3);

(2–2)where
� =

8>><>>:
y1 � y2x1 � x2 if x1 6= x2,3x21 + a42y1 if x1 = x2.

The algorithms of Atkin [1988; 1992] and Elkies[n.d.] solve a fundamental problem: Given a �nite�eld F q and an elliptic curveE = (a4; a6) 2 F 2q;

�nd the number of F q-rational points on E. A de-tailed description of both algorithms and their im-plementation can be found in [M�uller 1995] (or inshort form, [Lehmann et al. 1994]), and we justsketch the basic ideas here. Both algorithms useproperties of the so called Frobenius endomorphism:�E : E(F q) �! E(F q)(x; y) 7�! (xq; yq):The basic idea of these algorithms is the compu-tation of the group order modulo su�ciently manysmall primes l, and then use the Chinese Remain-der Theorem to determine the group order. Theprimes l can be divided into two classes: for so calledAtkin primes, there is no subgroup of E(F q) of or-der l which is invariant under the Frobenius endo-morphism, whereas for Elkies primes there existsat least one such subgroup C. Therefore �E(Q) =� �Q for all points Q 2 C and some integer � 2f1; : : : ; l�1g. We denote � the eigenvalue of �Emodulo l. To determine � (which directly inducesthe group order modulo l), the algorithm of Elkiesconsists of two steps:
1. Determine for some generating point Q 2 C thepolynomial

fC(X) = (l�1)=2Yi=1 �X � x(iQ)� 2 F q[X];
where x(H) denotes the x-coordinate of a pointH .

2. Use fC(X) to determine �.In this paper we focus on the second step of Elkies'algorithm. On average, this part takes about thirtyto forty percent of the total running time of thepoint counting algorithm.
3. EIGENVALUE SEARCH ALGORITHMSIn this section we give a short overview of the fouralgorithms that we will discuss in this paper, andpresent run time data for them. Detailed descrip-tions of the di�erent methods can be found in thefollowing sections.The basic idea of all algorithms for �nding theeigenvalue � is that we can transform the equation�E(Q) = � �Q for points Q 2 C into polynomialequations modulo fC(X). This transformation was
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�rst given by Schoof [1985]. Thus we have to checkwhich integer 1 � � � l�1 satis�es(Xq; Y q) � ��(X; Y )mod�fC(X); Y 2 �X3 � a4X � a6�; (3–1)where ��(X;Y ) denotes the �-th multiple of a formalpoint (X;Y ) on E. Once we �nd an integer � in thegiven range with equivalence of x- and y-coordinatein (3{1) we have determined the eigenvalue of �E.From a practical point of view however, it is su�-cient to check only equivalence of the y-coordinate of(3{1). Although unproven, we never found a coun-terexample. Since the y-coordinate y(�P ) of �Pis �y(P ), we compute the right side of (3{1) for1 � � � (l�1)=2 and test whether the y-coordinateor its negative equals Y q.We will examine four algorithms for �nding theeigenvalue �:
1. the rational function method,
2. the division polynomial method,
3. the babystep-giantstep method, and
4. a modi�ed babystep-giantstep method.The �rst two are standard algorithms for the givenproblem. Since they are rather slow for large primesl, the usage of Shanks' babystep-giantstep algorithmwas suggested to improve the running time. The lastalgorithm is based on a new idea and described forthe �rst time in this paper.Table 1 gives average running times for all thesealgorithms, for 50 eigenvalue computations of ran-domly chosen curves de�ned over a 50-digit and a100-digit prime �eld. It shows that the modi�edbabystep-giantstep algorithm introduced here hasthe least average running time already for relativelysmall primes l. Table 2 shows similar data for vari-ants of the four algorithms discussed here, applica-

ble to elliptic curves de�ned over �elds of character-istic two.All experimental results in this article were ob-tained with the point counting program eco prime(eco gf2n in characteristic 2), contained in the LiDIApackage [LiDIA 2000]. The eco prime program wasused on an Intel Celeron 300A processor with 64 MBof main memory.
4. RATIONAL FUNCTIONS AND DIVISION

POLYNOMIALSWe describe briey two standard methods for �nd-ing the eigenvalue in Elkies algorithm: the ratio-nal function method and the division polynomialmethod.
Using Rational FunctionsThe rational function method is directly based onthe addition formulas given in (2{2). In [Connell1996] it is shown that the i-th multiple of a formalpoint (X;Y ) can be represented asi��X; Y � = �h1;i(X); Y �h2;i(X)�;where the hj;i(X) 2 F q(X), for j = 1; 2, are rationalfunctions. Assume we know the rational functionsrepresenting the two points i�(X;Y ) and r �(X;Y ).Then we can determine the rational function repre-sentation of (i+r)�(X;Y ) by substituting the coordi-nates into the addition formulas (2{2). By countingbasic polynomial operations for rational functionswe can perform an addition of di�erent points with2 squarings and 19 multiplications modulo fC(X),doubling a point needs 4 squarings and 13 multi-plications modulo fC(X), and the addition of theformal point (X;Y ) only requires 2 squarings and 7multiplications. Here, we do not count linear oper-ations like multiplication with a scalar.modi�ed modi�edprime rational division babystep- babystep- prime rational division babystep- babystep-l function polynom. giantstep giantstep l function polynom. giantstep giantstep101 6.6 4.6 7.3 3.8 101 18.8 14.5 25.5 13.1211 51.6 30.8 28.8 17.1 211 134.1 70.0 92.5 50.0307 125.1 72.0 61.1 36.6 307 315.5 158.2 178.9 105.2401 131.9 83.3 73.1 54.3 401 293.8 193.6 225.4 141.6

TABLE 1. Average running time in seconds for the eigenvalue search of 50 randomly chosen curves, de�ned over a50-digit (left) and over a 100-digit (right) prime �eld.
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modi�edprime rational division babystep- babystep-l function polynom. giantstep giantstep101 50.7 11.8 19.3 6.8211 201.1 72.8 97.2 42.2307 514.2 171.7 219.4 89.9401 987.9 323.1 355.4 127.2
TABLE 2. Average running time in seconds for theeigenvalue search of 50 randomly chosen curves, de-�ned over the �eld F 2165 (chosen because 2165 has 50decimal digits).All the polynomials can be reduced by fC(X) andY 2 � X3 � a4X � a6, so that their X-degree andY -degree is at most (l�1)=2� 1 and 1, respectively.Rational functions are especially useful if memory isvery restricted. Combined with fast multiplicationmethods using addition-subtraction chains (see, e.g.,[Gordon 1998]) only 3 formal points (or equivalently12 polynomials in the variable X) have to be stored.

Using Division PolynomialsSchoof [1985] used division polynomials to computei �(X;Y ) for 1 � i � (l�1)=2. These polynomialsare de�ned as follows, where  i should be read as i(X;Y ): 0 = 0; 1 = 1; 2 = 2Y; 3 = 3X4 + 6a4X2 + 12a6X � a24; 4 = 4Y ��X6 + 5a4X4 + 20a6X3 � 5a24X2� 4a4a6X � 8a26 � a34�; 2i =  i2Y �� i+2 2i�1 �  i�2 2i+1� for i � 3; 2i+1 =  i+2 3i �  3i+1 i�1 for i � 2:

To overcome recursion in the computation of divi-sion polynomials, we compute division polynomialswith growing index and store all polynomials thatwill be needed later (together with their square andcube). The computation of a new division polyno-mial then takes at most 3 multiplications modulofC(X) (plus a squaring and one more multiplica-tion for the square and cube of it, if needed). Thenwe can compute i�(X;Y ) as
i�(X;Y ) = �X �  i�1 i+1 2i ;  i+2 2i�1� i�2 2i+14Y  3i � :

(4–1)Thus, to check a list of m candidates for the eigen-value of Frobenius with maximal element �m, weneed at most 4�m + 2m multiplications and �msquarings modulo fC(X), using a table with at most3�m=2 polynomials of degree at most (l�1)=2� 1.As Table 1 shows, the division polynomial methodis always faster than the rational function method.The random access memory of today's computers islarge enough that table storage requirements do notprevent the faster method from being usable evenfor giant group order computations. Table 3 givesa more detailed comparison of the running time ofboth methods. It lists the minimal, maximal, andaverage time for �nding the eigenvalue in 50 ran-domly chosen eigenvalue computations for a �niteprime �eld with 50-digit prime characteristic, and50 for a �eld with 100-digit prime characteristic.
5. A BABYSTEP-GIANTSTEP METHODThe fast exponentiation part becomes less impor-tant the bigger the prime l becomes. Thereforefaster methods for �nding the correct value out ofa list of candidates can further improve the runningfast expo- fast expo-l rational division nentia- l rational division nentia-function polynomial tion Y q function polynomial tion Y q101 2:5 6:6 10:9 2:5 4:6 7:3 2:6 101 10:8 18:8 27:5 10:2 14:7 20:1 10:1211 8:8 51:6 102:0 9:0 30:8 48:6 8:8 211 36:9 134:8 220:4 36:8 70:0 117:3 36:7307 16:7 125:1 275:8 16:7 72:0 127:1 16:5 307 66:6 315:5 591:9 66:4 158:2 287:2 66:4401 18:5 131:9 224:3 18:5 83:3 149:5 18:5 401 76:2 293:8 497:0 75:9 193:6 342:8 75:6

TABLE 3. Minimal, average, and maximal time in seconds for �nding the eigenvalue of 50 randomly choseneigenvalue computations for curves de�ned over a 50-digit (left) and a 100-digit (right) prime characteristic,together with the time for computing Y q.
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time. This section describes one such method, basedon the babystep-giantstep idea of Shanks.Shanks' algorithm applies in many situations inwhich we have a search problem in a large list ofcandidates connected by algebraic relations. Herethe idea works as follows: Let 1 � �1 < � � � < �mbe a list of m candidates for the eigenvalue �. SetK = �p�m=2 �. Then we try to determine integers0 � j � K and �K � i � K such that(Xq; Y q)� j �(2K)�(X;Y ) � i�(X;Y )mod�fC(X); Y 2 �X3 � a4X � a6�:Given such integers, we directly can deduce � �j(2K) + i mod l. The following lemma proves theexistence of such integers.
Lemma 5.1. Let �m be a positive integer and set K =�p�m=2 �. For each integer � with 1 � � � �m,there exist integers i; j with 0 � i; j � K, such thateither � = j (2K) + i or � = j (2K)� i.
Proof. Division with remainder, where the remainderis chosen as absolute smallest integer, yields � =j (2K) + i, with �K � i � K. We havej = (�� i)=(2K) � (�+K)=(2K)� �m=(2K) + 1=2 � K + 1=2:Hence, 0 � j � K. �Elliptic curves o�er the advantage that we can checkthe two points i �(X;Y ) and �i �(X;Y ) simultane-ously for free. To determine integers i and j forthe Frobenius eigenvalue �, the algorithm �rst com-putes all points i�(X;Y ) for 0 � i � K and storesthe y-coordinates together with the correspondingindex i in a table (the babysteps). Then all thepoints on the left hand side of the shown equationare computed (the giantsteps); for each point wecheck whether its y-coordinate already shows up inthe babystep table. If so, we have found i and j.This idea leads to the following algorithm.
Algorithm 5.2 (Babystep-giantstep).

Input: maximum candidate �m for eigenvalue; Elkiespolynomial fC(X)
Output: eigenvalue �
1. set K = dp�m=2e
2. for i = 0 to K

a. compute y-coordinate of i�(X;Y ) mod fC(X)
b. store y-coordinate at index i in a table

3. compute point (Xq; Y q) mod fC(X)
4. for j = 0 to K

a. compute y-coordinate of(Xq; Y q)� j �(2K)�(X;Y ) mod fC(X)
b. if y-coordinate is stored in table at index i

return � = 2jK + i
c. if �(y-coordinate) is stored in table at index i

return � = 2jK � iFrom this description it directly follows that at most2K � 1 � 2 �p(l�1)=2 � � 1 point additions of for-mal points are needed. For large l, this numberis signi�cantly smaller than the expected numberof point additions in the rational function methodand of iterations in the division polynomial method,which is (l�1)=4. This fact explains the faster av-erage run time of Algorithm 5.2 (compared to therational function and division polynomial method)shown in Tables 1.It follows from the analysis of the costs of pointoperations in Section 4, that the computation of thepoints i�(X;Y ) needed in the babysteps should bedone with division polynomials and equation (4{1).Assume that we �nd an integer s such that the setof eigenvalue candidates modulo s is small. Then itis advantageous to choose K \near" �p�m=2 �, butdivisible by s. Then we can exclude several possi-ble values for i mod s, and we only have to considerindices i which are elements of the small set of can-didates modulo s (note that K � 0 mod s).An important algorithmic question in Algorithm5.2 is the implementation of the commands in line(4b) and (4c). Note that all the points computed ineither the babysteps or the giantsteps are rationalfunctions, where numerator and denominator are re-duced by fC(X) and Y 2�X3�a4X�a6. Thereforethere remains the problem how to check in an e�-cient way whether two rational functions are equiv-alent modulo (fC(X); Y 2�X3�a4X�a6). We willdescribe a new fast probabilistic algorithm for thisproblem in Section 8. This probabilistic algorithmimproves the overall performance of Algorithm 5.2signi�cantly, as can be seen in Table 6.A serious drawback of Algorithm 5.2 is the factthat we need both polynomials Xq and Y q to de-termine the y-coordinate of the \giantstep points"(Xq; Y q)� j(2K)�(X;Y ) in step (4a). Thus we haveto perform two fast polynomial exponentiations, one
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for Y q mod (fC(X); Y 2�X3�a4X�a6), and one forXq mod fC(X). Thus the speed advantages givenby the smaller number of point additions diminishes.
6. A MODIFIED BABYSTEP-GIANTSTEP ALGORITHMIn this section we present a new idea similar to thebabystep-giantstep idea in Section 5, which does nothave the disadvantage of two fast exponentiations.The modi�ed babystep-giantstep algorithm uses thefact that for most integers l; � we can �nd smallintegers i; j such that � = 2�i �j mod l, and so2i �(Xq; Y q) = j �(X;Y )mod �fC(X); Y 2 �X3 � a4X � a6�: (6–1)From the addition formulas (2{2), the advantage ofthis idea becomes clear: computing the x-coordinateof 2i�(Xq; Y q) can be done without knowledge of Y q.The formula (2{2) for computing the x-coordinateof twice a formal point P only contains y(P )2, whichcan be substituted with the right-hand side of thecurve equation. With a test for the x-coordinate of(6{1) we can then determine the eigenvalue, up tothe sign.This idea leads to the following algorithm. As-sume that we know bounds KB and KG, respec-tively, such that for every eigenvalue candidate �0there exist integers 0 � i � KB and 1 � j � KGwith 2i�0 � j mod l. Then we �rst compute thex-coordinates of the left-hand side of (6{1) for all0 � i � KB (the babysteps) and store the rationalfunctions (together with corresponding indices i) ina table. Then we test the right-hand side of (6{1)for all odd 1 � j � KG (the giantsteps).
Algorithm 6.1 (Modified babystep-giantstep).

Input: bounds KB;KG for number of babysteps andgiantsteps; Elkies polynomial fC(X)
Output: ��
1. compute Xq mod fC(X)
2. for i = 0 to KB

a. compute x-coordinate of 2i�(Xq; �) mod fC(X)
b. store x-coordinate at index i in table

3. for j = 1 to KG
a. compute x-coordinate of j �(X;Y ) mod fC(X)
b. if x-coordinate is stored in table at index i

return � = �2�i �j mod l

Our earlier analysis of the costs of point operations(Section 4) shows that the computation of step (3a)should be done with division polynomials. Thereremains then the question about the optimal choicefor the bounds KB;KG and the expected/maximalnumber of operations which are performed by Algo-rithm 6.1. Since the computational costs (in poly-nomial multiplications, squarings) for step (2a) and(3a) are di�erent, we use the weighted cost functioncost(i; j) = i�c1+ j �c2, where c1 and c2 are the costsof step (2a) and (3a), respectively. For any eigen-value candidate, we determine then all possible val-ues for i; j (note that there are several possibilitiesto choose i; j), and we choose the pair with minimalcosts. We do this computations for all eigenvaluecandidates and set the bounds KB ;KG correspond-ingly. Since l is rather small, this computation canbe done \brute force" (trying all possibilities).Table 4 lists a few values for KB;KG. Moreoverwe present the expected (under the assumption thatwe have no information about �; that is to say,all integers 1, . . . , l�1 have the same probabilityof being the eigenvalue) and the maximal numberof point additions needed. The expected/maximalnumber of point additions is computed by countingthe number of necessary polynomial multiplicationsand squarings, and then dividing by the correspond-ing values for point addition given in the beginningof Section 4.Table 4 shows that the expected number of pointadditions in Algorithm 6.1 is approximately equal tothe number of babysteps in Algorithm 5.2, the maxi-mal number is only about twice the number of baby-steps. This statement is also true for other primes l.Therefore modi�ed babystep-giantstep (Algorithm6.1) has an advantage over standard babystep-giant-step (Algorithm 5.2) in that although the number
exp. # of max. # of K inl KB KG additions additions Alg. 5.2101 12 10 6.7 9.6 7211 22 16 10.9 16.4 10307 23 25 13.2 21.6 12401 42 32 18.6 32.1 14

TABLE 4. Optimal values for number of babystepsand giantsteps in Algorithm 6.1, and expected andmaximal number of point additions.
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of expected point additions is the same, only onefast exponentiation is needed. A disadvantage ofAlgorithm 6.1 is its ambiguous output. Section 7addresses the problem of computing the sign of theeigenvalue.
Running TimesTable 1 showed that the modi�ed babystep-giantstepalgorithm 6.1 is the fastest of all search algorithmsdescribed in this paper. Table 5 presents more de-tailed data on Algorithm 5.2 and 6.1. Again 50 ran-dom eigenvalue computations were done for a 50-digit and a 100-digit prime �eld.
7. FINDING THE SIGN OF AN EIGENVALUEIn this section we will present two algorithms tocompute the sign of the eigenvalue of Frobenius. Weassume that we already know the eigenvalue modulothe sign.
Dewaghe’s Algorithm for Finding the SignWe �rst present a generalized version of a theoremof Dewaghe [1998] and show how this theorem canbe used to compute the sign of the eigenvalue forprimes l � 3 mod 4.
Theorem 7.1. Let l be an odd prime. Assume that� is an eigenvalue of the Frobenius endomorphism,and g(X) 2 F q[X] is a divisor of degree d of thecorresponding Elkies polynomial fC(X). Thenres�g(X); X3 + a4X + a6�(q�1)=2 = �d:
Proof. Let P 2 C be a nontrivial point. It fol-lows from [V�elu 1971] that all the roots of fC(X)are given as the x-coordinates of points i �P with1 � i � (l�1)=2. We can therefore �nd an inte-ger 1 � r � (l�1)=2 such that x(r �P ) is a root of

g(X). Since g(X) is a divisor of fC(X) de�ned overF q, we have g(Xq) = g(X)q, so the Frobenius mappermutes the roots of g(X). Therefore the elementsof the sequence (x(�jE(r �P )))j�0 = (x((r�j)�P ))j�0are roots of g(X), and the sequence is periodic withperiod length d.We examine the order e of � modulo l. Becausethe period length is d, we have e � d, and x(r�P ) =x(�e �r �P ) = x(�e�d �r �P ). We conclude for thepoints, that r�P = ��e�d�r�P , so �2(e�d) = 1 mod l.Therefore the order of � divides 2(e � d), whichmeans that there is an integer k with ke = 2(e� d).Because d � 1, we have 0 � ke < 2e, which implies0 � k � 1. As a consequence, the order of � is eitherd or 2d.If we de�ne S = fr�j ; 0 � j < dg, all the roots ofthe polynomial g(X) are given as x(s�P ) for s 2 S.A basic result for resultants givesres�g(X); X3 + a4X + a6�=Ys2S �x(s�P )3 + a4x(s�P ) + a6�:Therefore we deduce (noting that q is odd)res�g(X); X3 + a4X + a6�(q�1)=2= res �g(X); X3 + a4X + a6�(q2�q)=2=Ys2S �x(s�P )3 + a4x(s�P ) + a6�(q2�q)=2
=Ys2S yq2(s�P )yq(s�P ) =Ys2S y(�2 �s�P )y(��s�P )= y(�d+1 �r �P )y(��r �P ) = �d;where the last transformation holds because, as al-ready shown, either the order of � is d, so �d = 1, orit is 2d, so �d = �1 and y(�d+1�r�P ) = y(���r�P ) =�y(��r �P ). �babystep-giantstep mod. babystep-giantstep babystep-giantstep mod. babystep-giantstepl (Algorithm 5.2) (Algorithm 6.1) l (Algorithm 5.2) (Algorithm 6.1)101 5:0 7:3 9:0 5 :0 2:5 3:8 4:2 2 :4 101 20:5 25:5 28:3 20 :3 10:2 13:1 14:0 10 :2211 15:5 28:8 35:9 16 :5 9:0 17:1 19:2 7 :8 211 68:1 92:5 106:4 65 :9 34:4 50:0 55:0 32 :1307 31:3 61:1 80:9 31 :2 14:9 36:6 43:1 14 :8 307 126:2 178:9 228:3 126 :1 71:2 105:2 116:6 60 :1401 35:0 73:1 102:1 34 :6 20:4 54:3 63:5 16 :4 401 144:6 225:4 281:7 142 :8 75:8 141:6 162:4 67 :7

TABLE 5. Minimal, average, and maximal running time in seconds for Algorithm 5.2 and 6.1 for 50 randomlychosen eigenvalue computations over a prime �eld with 50-digit (left) and 100-digit (right) prime charatersitic.In italics we give the average time to compute (Xq; Y q) (Algorithm 5.2) or Xq (Algorithm 6.1).
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Dewaghe derived from this idea an easy method todetermine the sign of the eigenvalue of the Frobe-nius endomorphism for primes l � 3 mod 4. Thenwe can choose g(X) = fC(X), and �deg(g(X)) directlycorresponds to the Jacobi symbol for �. Since forprimes l � 3 mod 4, �1 is a nonsquare, exactly oneof the two elements � and �� is a square modulol. Thus Theorem 7.1 shows that a resultant com-putation (which needs only O(l) operations in F q)uniquely determines the sign of the eigenvalue.For primes l � 1 mod 4, this fact is no longer true,and the sign of the eigenvalue can no longer be com-puted in this way. It should however be noted thatonly half of the elements in (Z =lZ )� are squares suchthat a resultant computation with g(X) = fC(X)can be used to lower the number of candidates forthe eigenvalue search by a factor two. Before westart with the search for the eigenvalue with one ofthe algorithms described in this paper, we computethe resultant res(fC(X); X3+ a4X + a6), which willexclude half of the eigenvalue candidates.
A Factorization Approach for Finding the SignIn this section we show how a proper divisor g(X)of the Elkies polynomial can be computed and usedto determine the sign of the Frobenius eigenvalue,even for primes l � 1 mod 4. Instead of computingXq mod fC(X) in Algorithm 6.1, we choose a ran-dom element a 2 F �q and compute the polynomial

h(X) � (X + a)(q�1)=2 mod fC(X):Note that the computation time for this fast ex-ponentiation is essentially the same as for comput-ing Xq mod fC(X). Given h(X), we can determineXq mod fC(X) with one more squaring, one mul-tiplication and an addition (note that (X + a)q �Xq + aq � Xq + a mod fC(X)). Then we can com-pute �� with Algorithm 6.1.Let d be the least common multiple of the ordersof � and �� modulo l, divided by two if even. Then
Xqd � X�(��)d �(X;Y )� � X mod fC(X);and therefore fC(X) must have a factor of degreed. If d is reasonably small, we use h(X) to searchfor a factor of fC(X). As in the case of polynomial

factorization methods (see [Cantor and Zassenhaus1981], for example), we hope thatgcd�(X + a)(qd�1)=2 � 1; fC(X)�= gcd�h(X)1+q+q2+���+qd�1� 1; fC(X)�gives a nontrivial factor g(X) of fC(X). If we �ndsuch a nontrivial divisor, the following methods canbe used to determine the sign of the eigenvalue ofFrobenius. If the orders of � and��modulo l do notboth divide d, then we can use a resultant computa-tion with g(X) as described in Theorem 7.1 to deter-mine the sign. Otherwise we test the y-coordinateof (3{1), but fC(X) is replaced by its divisor g(X)such that computation is speeded up. We computeY q mod (g(X); Y 2 � X3 � a4X � a6) and comparewith y(��(X;Y )) mod (g(X); Y 2�X3� a4X � a6).If both rational functions are equal mod g(X), weknow that � is the eigenvalue, otherwise �� is thecorrect result.Unfortunately the integer d is quite large in mostcases, and the extra time to factor fC(X) seemsto be \wasted" just for determining the sign of theeigenvalue. In this case it seems to be better in prac-tice to \accept" the nonuniqueness of the result.
8. PROBABILISTIC FAST SEARCH IN A TABLE OF

RATIONAL FUNCTIONSIn the giantstep part of Algorithms 5.2 and 6.1 wehave to check whether for a given rational functiona(X)=b(X) and a given table of rational functionsuj(X)=vj(X), j = 1; : : : ; k; there exists an index1 � i � k witha(X)b(X) � ui(X)vi(X) mod fC(X): (8–1)This equation is equivalent toa(X)�vi(X)� b(X)�ui(X) � 0 mod fC(X); (8–2)but a test based on (8{2) would require 2k multi-plications of polynomials for only one search. Analternative to this obvious solution is the computa-tion of inverses for vj(X) (during the computationof the table) and b(X) using an extended gcd al-gorithm. To transform a table of size k we needk polynomial inversions and multiplications; eachsearch needs one inversion, one multiplication and k
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polynomial comparisons only. We will list runningtimes for this variant in Table 6.
A Probabilistic AlgorithmWe now describe a di�erent probabilistic approachwhich is based on an idea of Victor Shoup. Thismethod will �nd every equality in (8{1), but it ad-ditionally \�nds" a few spurious values| it gives noassurance that (8{1) really is ful�lled. But this canbe easily checked by two polynomial multiplicationswith the denominators.Let d = deg(fC(X)) and w 2 F dq be a random vec-tor. In the following, we represent each residue classof the ring F q[X]=(fC(X)) by its unique element ofdegree less than d. If a(X) is such an element, thena 2 F dq denotes the coe�cient vector of the polyno-mial a(X). We de�ne the mapLw : F q[X]���fC(X)� �! F qg(X) 7�! g � w;where � is the inner product between the coe�cientvector g and the vector w.
Lemma 8.1. Let w 2 F dq be a random vector . Themap Lw just de�ned is linear . Ifa(X)�v(X)� b(X)�u(X) 6� 0 mod fC(X);then Lw�a(X)�v(X)� b(X)�u(X)� 6= 0with probability 1� q�1.
Proof. The �rst observation follows from the linearityof the inner product. For proving the second obser-vation, we count the number of \bad vectors" w asqd�1. �The map Lw can therefore be used to check (withhigh probability) whether (8{2) is satis�ed or not. If(8{2) is not satis�ed, then with high probability Lwis nonzero. If however the result of Lw is zero, wecheck (8{2) with two multiplications modulo fC(X).This strategy obviously depends on a fast way toevaluate the map Lw. Using the linearity of Lw, wegetLw�a(X)�vi(X)� b(X)�ui(X) mod fC(X)�= Lw�a(X)�vi(X) mod fC(X)��Lw�b(X)�ui(X) mod fC(X)�:

Therefore, we have reduced the problem of comput-ing Lw to the problem of computing the slightly dif-ferent functionLa(X);w�v(X)� := Lw�a(X)�v(X) mod fC(X)�for a �xed polynomial a(X) 2 F q[X]. De�ne thed� d-matrixMa(X) :=� a(X) ��� a(X)�X ��� � � � ��� a(X)�Xd�1 �;where the coe�cient vector of a(X)�Xi mod fC(X)forms the i-th column of Ma(X) (indexing columnsand rows of the matrix from zero). The followingtheorem shows how this matrix Ma(X) can be usedto compute the function La(X);w.
Theorem 8.2. Any polynomial v(X)2F q[X]�=(fC(X))satis�es La(X);w�v(X)� = �MTa(X) �w�� v:
Proof. The coe�cient vector of the image of any poly-nomial v(X) under the mapF q[X]��fC(X)� �! F q[X]��fC(X)�;v(X) 7�! v(X)�a(X)can be computed as Ma(X) �v. Then we get (withMi;j being the entry in row i and column j ofMa(X))La(X);w�v(X)� = Lw�a(X)�v(X)� = �Ma(X) �v�� w= d�1Xj=0� d�1Xi=0 Mj;i �vi��wj

= d�1Xi=0 vi ��d�1Xj=0 Mj;i �wj�= �MTa(X) �w�� v: �In our application, the random vector w and thepolynomial a(X) are �xed for one search, whereasv(X) changes for any rational function stored in thetable. Therefore the evaluation of La(X);w(v(X)) formany polynomials v(X) can be split into two parts:�rst we compute and store the vectorMTa(X)�w, thenwe use Theorem 8.2 to determine La(X);w(v(X)) forall polynomials v(X). This idea leads to the follow-ing algorithm for fast probabilistic search in a tableof rational functions.
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Algorithm 8.3 (Fast search in rational function table).

Input: a rational function a(X)=b(X); a table of ra-tional functions uj(X)=vj(X) for 1 � j � k; poly-nomial fC(X)
Output: index i such that (8{1) is ful�lled, or \nomatch found"
1. choose a random vector w 2 F dq
2. compute vectors va =MTa(X)�w and vb =MTb(X)�w
3. for i = 1 to k

if va � vi = vb � ui
if a(X)�vi(X)� b(X)�ui(X) � 0 mod fC(X)

return i
4. return \no match found"
Theorem 8.4.Algorithm 8.3 needsO�(d2+dk) log(q)2�bit operations to check equation (8{1).
Proof. The computation of the matrix Ma(X) forgiven a(X) can essentially be done as one polyno-mial multiplication modulo fC(X) (note that mul-tiplication with a linear polynomial is cheaper thana general polynomial multiplication). Therefore thecomputation of the vectors va and vb can be done inO(d2) operations in F q. For k evaluations of La(X);wwe have to compute k inner products which needO(dk) operations in F q. Each operation in F q canbe done with O(log(q)2) bit operations. �In a practical implementation, a speed advantagecan be gained by choosing the vector w not ran-domly, but as the �rst unit vector. Then the com-putation of the matrix Ma(X) can be speeded up bya factor approximately two, since we only have tocompute the �rst row of matrix Ma(X). So, for thecolumn i, not all the coe�cients of a(X)�X i have tobe determined, but only coe�cients that are neededfor a column of bigger index. Thus the larger theindex of the column to compute, the smaller thenumber of coe�cients which have to be updated.
Practical Comparison of Extended GCD and Probabilistic

MethodWe've implemented the two algorithms of Section 8.Table 6 shows the average time needed for k searchesin a table of size k, obtained from 50 eigenvalue com-putations of randomly chosen elliptic curves de�nedover prime �elds of 50-digit and 100-digit character-istic. The table suggests that the new probabilisticsearch algorithm is at least three times faster than

the extended gcd approach. Moreover almost all therunning time of Algorithm 8.3 goes into the precom-putation in step 2 (computation of the matrixMa(X)and the vector va =MTa(X) �w).
9. CONCLUSIONWe have compared four di�erent methods for �ndingthe eigenvalue of the Frobenius endomorphism, animportant part in point counting algorithms. Ourtimings indicate that the new babystep-giantstepalgorithm 6.1, together with the fast table searchmethod of Section 8, is the best method for �nd-ing eigenvalues if the prime l is reasonably large(say, bigger than 100) and l � 3 mod 4. For primesl � 1 mod 4 however, its nonunique output com-plicates predictions about the optimal eigenvaluesearch method. If the characteristic of the �eld ishuge, it may be favorable to use either the divi-sion polynomial or the babystep-giantstep methodinstead; for medium sized �elds, our LiDIA imple-mentation eco prime prefers still to use Algorithm6.1. So it remains to answer the open questionwhether there is an equivalent to Dewaghe's methodto determine the sign of an eigenvalue for primesl � 1 mod 4 without factoring the Elkies polyno-mial.
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