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We describe an algorithm which has enabled us to give a com-

plete list, without repetitions, of all closed oriented irreducible

three-manifolds of complexity up to 9. More interestingly, we

have actually been able to give a name to each such manifold,

by recognizing its canonical decomposition into Seifert fibered

spaces and hyperbolic manifolds.

The algorithm relies on the extension of Matveev’s theory of

complexity to the case of manifolds bounded by suitably marked

tori, and on the notion of assembling of two such manifolds. We

show that every manifold is an assembling of manifolds which

cannot be further disassembled, and we prove that there are sur-

prisingly few such manifolds up to complexity 9.

Our most interesting experimental discovery is that there are 4

closed hyperbolic manifolds having complexity 9, and they are

the 4 closed hyperbolic manifolds of least known volume. All

other manifolds having complexity at most 9 are graph mani-

folds.

1. INTRODUCTIONThis paper is devoted to the theoretical descriptionand illustration of results of an algorithm which hasenabled us to give a complete list, without repeti-tions, of all closed oriented irreducible 3-manifoldsof complexity up to 9. More interestingly, we haveactually been able to give a \name" to each suchmanifold, that is, to recognize its canonical decom-position into Seifert �bered spaces and hyperbolicmanifolds already considered by other authors. Thecomplexity we have in mind is that introduced byMatveev [1990], given by the minimal number ofvertices of a simple spine (and, as Matveev provedin the same work, equal to the minimal number oftetrahedra in a triangulation). See also [Matveevand Fomenko 1988].Our algorithm relies on a structural result on closedthree-manifolds. Namely, we show that all closedthree-manifolds can be obtained by combining, in asuitable sense, building blocks taken from a certain
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list which, at least up to complexity 9, is dramat-ically shorter than the list of all manifolds. Thebuilding blocks are called bricks, they are boundedby tori, and these tori carry a \marking" given by anembedded trivalent graph. Moreover, the combina-tion of two bricks corresponds to the identi�cationof two boundary tori. The main de�nitions and re-sults of the theory of decomposition into bricks arestated in the rest of the present introduction andproved in the body of the paper.Before turning to bricks, we mention the mostinteresting experimental results about complexity9 which our algorithm has allowed us to discover.Recall �rst that it was already known to Matveev[1990] that up to complexity 8 all manifolds aregraph-manifolds; tables up to complexity 6 are in[Matveev 1998], and up to 7 in [Ovchinnikov 1997].Now, we can show that there are 1156 manifolds ofcomplexity nine, 272 of them are lens spaces, 863are more general graph-manifolds which do not con-tain nonseparating tori, 17 of them are torus bundlesover S1, 10 of them are graph-manifolds with graphgq q , and there are also 4 closed hyperbolic mani-folds. More importantly, these 4 manifolds turn outto be precisely those of least known volume [Hodg-son and Weeks 1994], in accordance with the ideasabout complexity and volume stated in [Matveevand Fomenko 1988].
1A. Bricks and Assemblings of BricksWe will work throughout in the PL category, and bymanifold we will always mean a compact orientablethree-manifold, possibly with boundary. We will calltriod the graph with two vertices and three edgesall joining one vertex to the other one. Note thata triod � can be embedded in a torus T so thatT n � is an open 2-disc. A pair (M;X) is said tobe a manifold with triods if M is a manifold withboundary consisting of tori T1; : : : ; Tn and X is aset of triods f�1; : : : ; �ng, with �i embedded in Ti sothat Ti n �i is a disc. The case where n = 0 andX = ?, so M is closed, is admitted.Let X be the set of all manifolds with triods (upto equivalence induced by homeomorphism of man-ifolds). If M has nonempty boundary consistingof tori, then there are in�nitely many inequivalentways to embed triods in these tori, so there are in-�nitely many inequivalent pairs (M;X) based on the

sameM . On the contrary, ifM is closed, then thereis a unique element (M;?) 2 X based onM . There-fore the set of all closed orientable manifolds can beviewed as a subset of X.We will now describe three operations on X andstate the crucial properties of a complexity functionon X introduced and discussed in detail below inSection 2.
Connected sum. The operation of connected sum \farfrom the boundary" obviously extends from mani-folds to manifolds with triods. Namely, given (M;X)and (M 0; X 0) in X, we de�ne (M;X) # (M 0; X 0) as(M #M 0; X [X 0), where M #M 0 is one of the twopossible connected sums of M and M 0 (recall thatour manifolds are orientable but not oriented). Ofcourse (S3;?) 2 X is the identity element for oper-ation #. We will call a pair (M;X) prime if M is;that is, if (M;X) cannot be expressed as a connectedsum of pairs di�erent from (S3;?).
Assembling. Given (M;X) and (M 0; X 0) in X, we picktriods �i 2 X and �0i0 2 X 0 and choose a homeomor-phism  : Ti ! T 0i0 such that  (�i) = �0i0 . We canthen construct the manifold with triods (N;Y ) =(M [ M 0; (X [ X 0) n f�i; �0i0g). We call this anassembling of (M;X) and (M 0; X 0) and we write(N;Y ) = (M;X) � (M 0; X 0). Of course two givenelements of X can only be assembled in a �nite num-ber of inequivalent ways.Operation � has an identity element, and in aspecial case it is the inverse operation of #. Belowwe will need to exclude these types of assembling,so we describe them in detail. First, setB0 = �T � [0; 1]; f� � f0g; � � f1gg�;where T is the torus and � � T is a triod such thatT n� is a disc (B0 is well-de�ned up to equivalence).Of course if we assemble any (M;X) 2 X with B0we get (M;X) again.Let H be the solid torus and let (H; f�g) and(H; f�0g) be elements of X based on H . Assumethat there exists a homeomorphism @H ! @H withsuch that  (�) = �0 and that performing the assem-bling (H; f�g)� (H; f�0g) along  gives (S3;?) as aresult. Then for any (M;X) 2 X we have((M;X) # (H; f�g))� (H; f�0g) = (M;X)if we use the same  .
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This discussion motivates the following de�nition.An assembling (M;X)� (M 0; X 0) is called trivial if,up to interchanging (M;X) and (M 0; X 0), one of thefollowing holds:� (M 0; X 0) = B0, or� (M 0; X 0) = (H; f�0g) is a solid torus with triod,and (M;X) can be decomposed as (M;X) =(N;Y ) # (H; f�g) so that (N;Y ) 6= (S3;?) andthe assembling identi�es � to �0 and (H; f�g) �(H; f�0g) = (S3;?).
Self-assembling. Given (M;X) 2 X, we pick two dis-tinct triods �i; �i0 inX, we choose a homeomorphism : Ti ! Ti0 such that  (�i) and �i0 intersect trans-versely in two points, and we construct the manifoldwith triods(N;Y ) = �M ; X n f�i; �i0g�:We call this a self-assembling of (M;X) and wewrite (N;Y ) = �(M;X). As above, only a �nitenumber of self-assemblings of a given element of Xare possible.In the sequel it will be convenient to refer to acombination of assemblings and self-assemblings ofpairs just as an assembling. Note that of course wecan do the assemblings �rst and the self-assemblingsin the end.
A complexity on X. One of the main ingredients ofthe present paper is the extension of Matveev's def-inition of complexity [1990] from closed manifoldsto manifolds with triods. We warn the reader thatMatveev's complexity c(M) is de�ned also when Mhas nonempty boundary, but our de�nition will bedi�erent in this case, namely we will have c(M;X) =c(M) only when X = ?; that is, when M is closed.The key properties of c, proved below, are additiv-ity with respect to connected sum and subadditivitywith respect to assembling. More precisely, we willconstruct in Section 2A a function c : X ! N andshow in Section 2B that it enjoys the following prop-erties:
1. c(M;?) = c(M) for any (M;?) 2 X;
2. c((M;X) # (M 0; X 0)) = c(M;X) + c(M 0; X 0);
3. c((M;X)�(M 0; X 0)) � c(M;X)+c(M 0; X 0), andif equality holds and the assembling is nontrivial,then (M;X) � (M 0; X 0) is prime if and only ifboth (M;X) and (M 0; X 0) are;

4. c(�(M;X)) � c(M;X)+6, and if equality holds,�(M;X) is prime if and only if (M;X) is;
5. for any n � 0 there is only a �nite number ofprime pairs (M;X) 2 X with c(M;X) � n.Now let Xpr � X be the set consisting of prime pairs.An assembling is called sharp if it is nontrivial andthe inequality of point (3) above is actually an equal-ity. Similarly, a self-assembling is sharp if in (4) wehave an equality. We will say that a prime pair(M;X) 2 Xpr is a brick if it cannot be expressedas the result of a sharp assembling or a sharp self-assembling. The following easy result will be provedin Section 2A (one could actually also deduce it fromproperty (5), but we will refrain from doing this):
Lemma 1.1. The pair B0 is the only (M;X) 2 X suchthat c(M;X) = 0 and X contains at least two triods .Induction on complexity now readily implies the fol-lowing:
Proposition 1.2. Every prime manifold with triods canbe obtained as a sharp-assembling of some bricks .We de�ne now B � Xpr as the set of all bricks, andnote that B naturally splits as B0 t B1, where B0is the set of all (M;X) 2 B with X = ? (thatis, M is closed). Pairs in B0 cannot be used foran assembling or self-assembling, since they have noboundary. Let Bjn � Bj, for j = 0; 1, and Xn � X bethe subsets consisting of pairs having complexity n.Proposition 1.2 and the properties of c stated abovenow imply thatXpr�n = B0�n [ �Jk(B1 � � � � �Bh) :Bi 2 B1�n; P c(Bi) + 6k � n	:If one can give an unambiguous name to eachclosed �k(B1 � � � � � Bh), then the set of all closedprime manifolds having complexity at most n is eas-ily constructed from B�n by listing the (�nite num-ber of) closed manifolds obtained in this way, andby then removing duplicates. For n � 9 it turns outthat B�n consists of a very few atoroidal manifolds(with triods), and it is experimentally not so hardto give a name to each closed manifold of the form�k(B1�� � ��Bh). We will provide more details be-low on the recognition issue (after listing the bricksexplicitly), but we want to emphasize here that the
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(M;X) c(M;X) M X c(M)B0 0 D1 � S1 f(1; 0); (0; 1); (�1;�1)g 0f(1; 0); (0;�1); (�1; 1)gB1 0 D0 � S1 f(1; 0); (0; 1); (�1;�1)g 0B2 0 D0 � S1 f(0; 1); (1; 1); (�1;�2)g 0B3 1 D1 � S1 f(1; 0); (0; 1); (�1;�1)g 0f(1; 0); (0; 1); (�1;�1)gB4 3 D2 � S1 f(1; 0); (0; 1); (�1;�1)g 0f(1; 0); (0; 1); (�1;�1)gf(1; 0); (0;�1); (�1; 1)gB5 8 (D0; (2; 1); (3; 1)) f(1;�1); (5;�4); (�6; 5)g 0B6 8 M212 f(1; 0); (0;�1); (�1; 1)g 2B7 9 M314 f(1; 0); (0;�1); (�1; 1)g 3B8 9 M421 f(1; 0); (0; 1); (�1;�1)g 4f(1; 0); (0; 1); (�1;�1)gB9 9 M631 f(1; 0); (0;�1); (�1; 1)g 6f(1; 0); (0;�1); (�1; 1)gf(1; 0); (0;�1); (�1; 1)gB10 9 M631 f(1; 0); (0;�1); (�1; 1)g 6f(1; 0); (0;�1); (�1; 1)gf(1; 0); (0; 1); (�1;�1)g
TABLE 1. Bricks up to complexity 9.vast majority of computer time in the implementa-tion of our algorithm was taken by the determina-tion of bricks. Taking the list of bricks for granted,the reader could with some patience reproduce thelist of manifolds by himself.

1B. Bricks and Manifolds up to Complexity 9The algorithm that will be explained in Section 3has enabled us to explicitly �nd B0�9 and B1�9. Theformer consists of 19 closed manifolds that naturallycome in two families Ci;j and Ek, and the latter con-sists of only 11 manifolds with triods, denoted byB0; : : : ; B10 (where B0 is the same as de�ned above).The elements of B0�9 are all Seifert �bered over S2with 3 exceptional �bers. In order to describe the el-ements of B1�9 we need a way to encode the possibleways a triod can sit in a torus.
Remark 1.3. Let T be a torus. Let T be the setof unordered triples fa; b; cg of elements of H1(T ),such that every pair of elements in fa; b; cg generatesH1(T ), and a+ b+ c = 0. Let � � T be a triod suchthat T n � is a disc: inside � we can �nd 3 distinct

closed curves, which can be oriented in order to forma triple fa; b; cg 2 T. The only two triples we can getlike this are fa; b; cg and f�a;�b;�cg. Conversely,each triple fa; b; cg 2 T determines a triod � � T .It follows that triods (up to isotopy) are in one-to-one correspondence with elements of T=Z 2, wherethe nontrivial element of Z 2 acts mapping fa; b; cgto f�a;�b;�cg.
Bricks. In Table 1 we list the elements in B1�9, as pro-duced by our algorithm, where Dk is the disc withk holes, and the usual notation for Seifert manifoldsand cusped hyperbolic manifolds [Callahan et al.1999] is employed. Note that c(M) 6= c(M;X) isthe complexity of M in the usual sense [Matveev1990], de�ned for any compact three-manifold. Ev-eryM turns out to be atoroidal. In order to describetriods as elements in T, we must �x a basis (�i; �i)for H1(Ti) for each Ti in @M . WhenM is Seifert, byremoving �bered neighbourhoods of the exceptional�bers we get Dk � S1 with the product �bration.Then we choose �i to be a �ber and �i to be a com-ponent of @Dk � fpointg, with orientations chosen
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so that (�i; �i) is a positively oriented basis. WhenM is hyperbolic we choose �i and �i to be the basisused by SnapPea. In both cases, taking (��i;��i)instead of (�i; �i) as a basis does not make any dif-ference, since triples in T are de�ned up to sign.
From bricks to manifolds. As pointed out above, a listof all closed orientable prime manifolds with com-plexity at most 9 can be compiled by listing and rec-ognizing all closed manifolds obtained by assemblingbricks B1; : : : ; Bh of B�9 and then self-assembling ktimes, with P c(Bi) + 6k � 9. We explain here thepoints which make this listing and recognition fea-sible. Note �rst that, by the bound on complexity,only a few assemblings, and no self-assembling, willinvolve B5; : : : ; B10. We also know that B0 must notbe used for assemblings. Moreover we can eliminatefrom the list all assemblings which we know a priorinot to be sharp. For instance we have the following(proved in Section 2):
Proposition 1.4. If (M;X) 2 Xpr and (M;X)�B1 issharp, then (M;X) is either B1 or B2.Concerning recognition, we note now that the ef-fect of assembling B2 or B3 is very easy to describe.Since B2 is a solid torus, the assembling with B2along some boundary component Ti corresponds toa Dehn �lling of Ti. Finitely many di�erent �llingsare possible, and they are determined by the posi-tion in Ti of the triod �i. NowB3 �= �T � [0; 1]; f�0 � f0g; �1 � f1gg�with �0 6= �1. (Even if in Table 1 the triples describ-ing the triods are the same, the triods are not thesame, because they lie on di�erent boundary com-ponents, so the bases of homology are di�erent dueto orientation.) More precisely, the assembling withB3 along Ti corresponds to changing the position ofthe triod �i as in Figure 1. Summing up, the suc-cessive assembling along Ti of some B3's followed bythe assembling of one B2 still corresponds to a Dehn�lling of Ti. One actually sees that all Dehn �llingscan be generated like this, but of course the boundon complexity allows to consider only �nitely manyof them.Turning to B4 and B5, we note that they naturallycome with a Seifert �bered structure, so any man-ifold generated by B2; : : : ; B5 is a graph manifold,whose graph and gluing matrices are easily deduced

FIGURE 1. The e�ect of an assembling with B3.from the pattern of assemblings giving the mani-fold. Since there are algorithms checking whethertwo such set of data give the same manifold, recog-nition is not a problem at this level.Getting to assemblings involving B6; : : : ; B10, one�rst notes that they can only be assembled with B2and B3, and not in many ways. Next, one checks bydirect comparison with the tables in [Hodgson andWeeks 1994] that 4 of the resulting manifolds arethe 4 hyperbolic closed manifolds with least knownvolume. The following fact (proven in Section 5)concludes our investigation:
Proposition 1.5. Let M be a closed manifold of com-plexity up to 9 obtained by assembling a brick infB6; : : : ; B10g and some B2's and B3's . Then ei-ther M is one of the 4 hyperbolic manifolds just de-scribed , or the assembling is not sharp.
Manifolds. Table 2 contains the data our algorithmhas allowed us to discover about closed orientableprime manifolds having complexity c for c � 9.We have divided the manifolds into three groups,given respectively by the elements which may beobtained by sharp-assembling B0; : : : ; B10 but with-out self-assembling, by those which require a self-assembling, and by those of B0. The three groupshave been further split to give a more precise ideaof which bricks are needed to generate a manifold:in particular, the vast majority of manifolds (with11 exceptions out of 1156 manifolds in complexity9) are obtained assembling fB2; B3; B4g, and only afew manifolds actually require a self-assembling. Animportant convention in the table is that manifoldsalready considered in a certain line are not consid-ered again in subsequent lines: some manifolds canbe split into bricks in distinct ways.It follows from the topology of the bricks that theelements of hB2; B3inonself are all lens spaces, thoseof hB2; B3; B4inonself and hB2; B3; B5inonself are moregeneral graph-manifolds whose graph is a tree, thoseof hB3iself are torus bundles over S1 and those of
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vertices 0 1 2 3 4 5 6 7 8 9hB1inonself 2hB2inonself 2hB2; B3inonself 2 3 6 10 20 36 72 136 272hB2; B3; B4inonself 2 8 33 97 292 856hB2; B3; B5inonself 1 3hB2; B3; B6inonself 2hB2; B7inonself 1hB2; B8inonself 1hB0iself 4hB3iself 3 3 7hB2; B4iself 10Ci;j 1 1 2 2 1 2 3 3Ek 1 0 1 1 1total 4 2 4 7 14 31 74 175 436 1156
TABLE 2. Manifolds up to complexity 9.hB2; B4iself are graph-manifolds with graph gq q . Asalready mentioned, and explained in detail below inSection 5, the elements of B0 (namely the Ci;j's andEk's) are all Seifert �bered over S2 with 3 excep-tional �bers.

2. THE COMPLEXITY FUNCTIONWe now extend Matveev's complexity [1990] to man-ifolds with triods, and we state and prove its prop-erties.
2A. Definition of ComplexityA compact polyhedron P is called simple if the linkof every point of P can be embedded in the spacegiven by a circle with three radii. The points havingthe whole of this space as a link are called vertices :they are isolated and therefore �nite in number.Let (M;X) be a manifold with triods. A sub-polyhedron P of M is said to be a skeleton of thepair (M;X) if� P [ @M is simple;� M n (P [ @M) is an open ball;� P \ @M = X.Note that each open disc Ti n �i is automaticallyadjacent to the ball M n (P [ @M), P is simple,

and the vertices of P cannot lie on @M . Note alsothat when #X = 1 then P is a spine of M (thatis, M collapses onto P ), and when #X = 0 (thatis, when M is closed) then P is a spine in the usualsense [Matveev 1990], namely M n fpointg collapsesonto P . When #X � 2, then M does not collapseonto P .
Remark 2.1. It is easy to prove that every (M;X) 2X has a skeleton: take any simple spine Q of M nfpointg, so that M n Q = @M � [0; 1) [ B3, andassume that the various �i� [0; 1)'s are incident in ageneric way to Q and to each other (here of coursethe �i's are the triods in X). Taking the union ofQ with the �i� [0; 1)'s we get a simple Q0 such thatM n (Q0 [ @M) consists of #X + 1 balls. Then weget a skeleton of (M;X) by puncturing #X suitablychosen 2-discs embedded in Q0, so to get one ballonly in the complement.
Remark 2.2. A de�nition of skeleton analogous toour one was given in [Turaev and Viro 1992] forany compact manifold with any trivalent graph inits boundary. The notion of complexity we will nowintroduce extends to any such object.We say that a skeleton of (M;X) is nuclear if itdoes not collapse to a subpolyhedron which is also
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a skeleton of (M;X). We say that a skeleton P of(M;X) 2 X is minimal if it is nuclear and no otherskeleton of (M;X) has fewer vertices. We de�ne nowthe complexity c(M;X) as the number of vertices ofany minimal skeleton of (M;X).
Examples with complexity zero.� It is well-known [Matveev 1990] that the onlyclosed prime manifolds having complexity zeroare S3, S2 � S1, R P3 , and L3;1.� The trivial elementB0 = �T � [0; 1]; f� � f0g; � � f1gg�has complexity zero, since it has the simple skele-ton � � [0; 1] � T � [0; 1], which has no vertices.� Let H be the solid torus, let D be a meridinaldisc properly embedded in H and let � � @H bea triod containing @D, as in Figure 2-left. ThenD [ � is a skeleton of B1 = (H; f�g), which hastherefore complexity zero.

FIGURE 2. The minimal skeleta of B1 and B2.
� Let H be the solid torus again, and let P be theM�obius strip with one tongue shown in Figure 2-centre, embedded inH as in Figure 2-right. SinceP has no vertices and it is a skeleton for B2 =(H; fP \ @Hg), then c(B2) = 0.
2B. Properties of ComplexityOf course we have c(M;?) = c(M), property (1) ofour list from page 209. We prove in this subsectionthe other properties of c. This will require, togetherwith some ad hoc methods, the extension to ourcontext of some techniques used in [Matveev 1990].In the course of our arguments we will give severalde�nitions used elsewhere in the paper, and we willprove other facts stated above.
Finiteness. The proof of property (5) of complexityrequires a careful discussion of the topological prop-erties of minimal skeleta.A simple polyhedron Q is called quasi-standard ifthe link of every point is either a circle, or a circle

with a diameter, or a circle with three radii (neigh-bourhoods of points of the three types are shown inFigure 3).

FIGURE 3. Typical neighbourhoods of points in aquasi-standard polyhedron.A simple polyhedron Q is called quasi-standardwith boundary if in addition to these three typesof points we have points having as a link either aclosed segment or the union of 3 closed segmentswith one common endpoint. Assuming Q to bequasi-standard with boundary, we denote by V (Q)the set of points (called vertices above) whose linkis a circle with three radii, and by S(Q) the unionof V (Q) with the set of points whose link is a circlewith a diameter. We also denote by @Q the points ofthe two new types declared legal when passing from`quasi-standard' to `quasi-standard with boundary.'Moreover, we call 1-components of Q the connectedcomponents of S(Q) nV (Q) and 2-components of Qthe connected components of Qn(S(Q)[@Q). If the2-components of Q are open discs (and hence arecalled just faces), and the 1-components are opensegments (and hence called just edges), then we callQ a standard polyhedron with boundary. For shortwe will often just call Q a standard polyhedron, andpossibly specify that @Q should or not be empty.We state now several easy facts concerning nu-clear skeleta, and prove a crucial result concerningminimal skeleta.
Remark 2.3. Let (M;X) be a manifold with triodsand let P be a nuclear skeleton of (M;X). Then,up to rearranging the components T1; : : : ; Tn of @M ,we have that P = Q [ s1 [ � � � [ sm [K, where:
1. Q is a quasi-standard polyhedron with boundary@Q � X;
2. For i = 1; : : : ;m we have that si � �i is a seg-ment and Q[ si appears near Ti precisely as theminimal skeleton of B1 appears near @B1 (seeFigure 2-left); for i > m we have @Q � �i;
3. K is a graph with K \ (Q [ s1 [ � � � [ sm) �niteand K \ V (Q [ @M) empty.
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Remark 2.4. Every (M;X) 2 X has a minimal skele-ton P 0 = Q [ s1 [ � � � [ sm [K 0 as above, where inaddition K 0 \ @M = ?. This is because, withoutchanging #V (P ), we can take the ends of K lyingon @M and make them slide over Q [ s1 [ � � � [ smuntil they reach �M . Note that the regular neigh-bourhood of �i 2 X in P 0 is now either a product�i� [0; 1] or the union of an annulus and a segment,as for B1.
Remark 2.5. If P is a nuclear and standard skele-ton of (M;X) then it is properly embedded, namely@P = @M \ P = X, and P [ @M is standard with-out boundary. Moreover P [ @M is a spine of amanifold bounded by one sphere and some tori, so�(P [ @M) = 1. Knowing that S(P [ @M) is 4-valent and denoting by F (P ) the set of faces of P ,we also see that #F (P )�#V (P ) = #X + 1.
Theorem 2.6. Let (M;X) 2 X be prime and let P bea minimal skeleton of (M;X). Then:
1. If c(M;X) > 0 then P is standard ;
2. If c(M;X) = 0 and X 6= ? then(M;X) 2 fB0; B1; B2g;and P is the skeleton described in Section 2A(which is standard for B0 and B2 only);
3. If c(M;X) = 0 and X = ? then(M;X) 2 fS3; S2 � S1; L3;1; R P3gand P is not standard .
Proof. Our argument closely follows [Matveev 1990].We can �rst rule out the case (M;X) = (S2 �S1;?), because for it we only need to show that P isnot standard. But a standard polyhedron withoutboundary must have vertices, while c(S2�S1;?) =0. So we proceed assuming that M is irreducible.We will now prove that if P is not standard then(M;X) 2 fB1; S3; L3;1; R P3g, and that P is as inSection 2A when (M;X) = B1. To conclude we willlater show that if P is standard and c(M;X) = 0then (M;X) 2 fB0; B2g and P is as prescribed.Suppose then P is not standard. First, if P is apoint then (M;X) = (S3;?). Suppose now P has a1-dimensional part. So, let e � P be a segment dis-joint from the 2-dimensional part of P . If e � @M ,looking at the ball M n (P [ @M), we deduce thatthere is a properly embedded disc in M intersecting

P in a point of e. By irreducibilityM is then a solidtorus, so (M;X) = B1 and P is as in Figure 2-left.If e � �M , looking at the ball M n (P [ @M) again,we see that there is a sphere S � M intersectingP in one point of e. By irreducibility S bounds aball B, and P \B is easily seen to be a spine of B.Nuclearity now implies that P \B contains vertices,so P nB is a skeleton of (M;X) with fewer verticesthan P . A contradiction.We have shown so far that P is quasi-standard un-less (M;X) is S3 or B1. Since P is not standard, ei-ther a 2-component f is not a disc, or a 1-componentis a circle. In the �rst case, either f = S2, orf = R P2 , or f contains a simple closed curve  whichis nontrivial and orientation-preserving in f . In the�rst two cases we have respectively P = S2, whichis impossible, and P = R P2 , so (M;X) = R P3 . Thethird case is impossible: looking once more at theballM n (P [@M), we deduce that there is a sphereS � M intersecting P in , and again S = @B. Asabove, P \B is a spine of B. By minimality P \Bcannot contain vertices. It follows that P \ B is adisc, which contradicts the choice of . Finally, if a1-component of P is a circle but all 2-componentsare discs, then P must be the \triple hat," a skeletonof L3;1.We are left to analyze the case where P is stan-dard and c(M;X) = 0, so X 6= ?. Now, if � 2 Xand p is a vertex of �, then the three faces of Pincident to p are the same as those incident to theother vertex of �. Moreover, since V (P ) = ?, againthe same faces are incident to the endpoint of theedge of P which starts at p. It easily follows thatF (P ) � 3, but F (P ) = 1 + #X by Remark 2.5, so#X is either 1 or 2. It is now a routine matter tocheck that (M;X) is respectively B2 or B0, with Pas prescribed. �The next two results show respectively property (5)of complexity and Lemma 1.1. (The �rst result ac-tually uses also Lemma 3.1 below.)
Corollary 2.7. For any n � 0, only �nitely many pairsin Xpr have complexity n.
Corollary 2.8. B00 = ? and B0 = B10 = fB0; B1; B2g.
Proof. There are no closed bricks of complexity zero,since (S2 � S1;?), (S3;?), (R P3 ;?), and (L3;1;?)can be obtained assembling respectively two copies
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of B1, two copies of B1, one copy of B1 and one ofB2, and two copies of B2. Moreover B0, B1, and B2are not nontrivial assemblings of each other, and theconclusion follows. �
Subadditivity under (self-)assembling. Suppose (M;X)and (M 0; X 0) are two pairs, and let (N;Y ) be ob-tained by assembling them. Let P and P 0 be min-imal skeleta respectively of (M;X) and (M 0; X 0).The assembling is de�ned by an identi�cation  :Ti ! T 0i0 with  (�i) = �0i0 . Using Remark 2.3 we seethat P [ P 0 is simple, so it is a skeleton of (N;Y ),and that no new vertices appear. It follows thatc(N;Y ) � c(M;X) + c(M 0; X 0).Let (M;X) be a pair and let (N;Y ) be obtainedfrom (M;X) via a self-assembling, determined by amap  : Ti ! Ti0 such that  (�i) intersects trans-versely �i0 in two points. If P is a minimal skeletonof (M;X) as in Remark 2.4, then P [ Ti � N is askeleton for (N;X). Moreover P [ Ti has at most6 vertices more than P (2 from the vertices of �i, 2from those of �i0 , and 2 from  (�i) \ �i0). It followsthat c(N;Y ) � c(M;X) + 6.
Normal surfaces. Let (M;X) be a manifold with tri-ods and let P be a nuclear skeleton of (M;X). Thesimple polyhedron P [@M is now a spine ofM witha ball B � M removed. Choose a triangulation ofP [ @M , and let �P be the handle decompositionof M n B obtained thickening the triangulation ofP [@M , as in [Matveev 1990]. In this paragraph wewill study closed normal surfaces in �P . A connectednormal surface S is parallel to the boundary when itis obtained by taking one boundary component andpushing it a bit inside �P . In our case, we have onesuch surface for each Ti, and one for @B.Two preliminary results are needed to prove ourmain statement on normal surfaces. The �rst onerefers to another situation, very often considered be-low, where a normal surface naturally arises.
Proposition 2.9. Let (M;X) be a manifold with triodsand let Q �M be a quasi-standard polyhedron withQ \ @M = @Q � X. Assume M n Q has two com-ponents N 0 and N 00. Then the faces of Q that sep-arate N 0 from N 00 form a closed orientable surface�(Q) � Q �M that cuts M into two components .
Proof. Let e be an edge of Q, and let ff1; f2; f3g bethe triple of (possibly not distinct) faces of Q inci-

dent to e. The number of fi's that separate N 0 fromN 00 is even; it follows that �(Q) is a surface awayfrom V (Q) [ @Q. Let Ti be a boundary componentof M , containing the triod �i 2 X. Since Ti n �i isa disc, which is adjacent either to N 0 or to N 00 (sayN 0), then each 2-component of Q incident to �i hasN 0 on both sides. So �(Q) is not adjacent to @Q.Finally, since �(Q) intersects the link of each vertexeither nowhere or in a loop, then �(Q) is a closedsurface.The surface �(Q) cutsM in two components (andis thus orientable, since M is) because N 0 and N 00lie on opposite sides of �(Q). �
Lemma 2.10. Let P be a standard and nuclear skele-ton of a pair (M;X). If #V (P ) > 0 then every faceof P is incident to at least one vertex .
Proof. Assume a face f of P contains no vertices,and let f be incident to the triods �i1 ; : : : ; �ik . Then@f[�i1[� � �[�ik is a connected component of S(P [@M), but P [@M is standard without boundary byRemark 2.5, so S(P [ @M) = @f [ �i1 [ � � � [ �ik ,whence S(P ) � @f and V (P ) = ?. A contradiction.�We go back now to the situation where P is a nuclearskeleton of (M;X).
Lemma 2.11. Let F be a closed normal surface in�P . Assume that no component of F is boundary-parallel . Then there exists a simple polyhedron PFembedded in M , with #V (PF ) � #V (P ), such thatPF \@M = X and M n(PF [@M) is an open regularneighbourhood of F . Moreover , if P is standard and#V (P ) > 0 then #V (PF ) < #V (P ).
Proof. Being normal, F is determined by an integerattached to each 2-component of P [ @M . Now wecut P [ @M open along F as explained in [Matveev1990]: if a 2-component bears an integer n we re-place the component by n+1 parallel ones. We geta polyhedron P 0 �M which contains @M , such thatM n P 0 is the disjoint union of an open ball B andan open regular neighbourhood N of F in M . Byremoving from each torus Ti � @M the open discTi n �i we get a polyhedron P 00 intersecting @M inX. Now we puncture a 2-component which sepa-rates B from N and claim that the polyhedron PFis as desired. Only the inequalities between V (P )and V (PF ) are nonobvious.



216 Experimental Mathematics, Vol. 10 (2001), No. 2

By construction we have #V (PF[@M) � #V (P[@M). Consider now a vertex v of P [@M containedin Ti � @M . Of the six germs of 2-component ofP [ @M at v, three are actually the same Ti n �i, sotheir coe�cient in F is the same, say �. Call �, ,and � the coe�cients of the other three germs of 2-component at v. As we cut P [ @M along F we seethat v disappears if and only if (up to permutation)� =  > �. If v does not disappear then � =  = �is even. Then we set k = � � �=2 and note thatv remains on @M if and only if k = 0. Now letv0 be the other vertex of P [ @M on Ti. Since thecoe�cients (�; �; �; �; ; �) are the same at v0, wededuce that either v and v0 both disappear, or theyboth stay on @M , or they both move to �M . In thelast case, however, one sees that F has k componentsparallel to Ti, which is absurd. So both v and v0disappear in P 00 (either already in P 0 or when weremove Ti n�i). This shows that #V (P 00) � #V (P ),so #V (PF ) � #V (P ).Now suppose that P is standard. Then P 00 isthe union of a quasi-standard polyhedron P 000 andsome arcs in X. The 2-components of P 00 whichseparate B from N are the same as those of P 000,so they give a closed surface � � P 00 by Proposi-tion 2.9. Since no component of F is parallel to@B or to one of the Ti's, the 2-component f ofP 00 punctured to get PF cannot be a closed sur-face. Now if @f contains vertices of P 00, we see that#V (PF ) < #V (P 00) � #V (P ), whence the conclu-sion. Suppose on the contrary that @f contains acircle  � S(P 00) with  \ V (P 00) = ?. The processof cutting P [ @M along F allows us to de�ne a lo-cal injection  : P 0 ! P [ @M , and that P 00 � P 0.Now, if  () contains some vertex of P then this ver-tex has disappeared in the passage from P to P 00,whence the conclusion. If  () \ V (P ) = ? thenwe consider the 2-component g of P 00 n� incident to and note that  (g) must be a face of P withoutvertices, which is absurd by Lemma 2.10. �
Theorem 2.12. If (M;X) 2 X has a standard minimalskeleton, it is prime.
Proof. For c(M;X) = 0 it was shown during theproof of Theorem 2.6 that (M;X) is B0 or B2, sowe suppose c(M;X) > 0. By contradiction, assumeM is not prime and let P be a standard minimalskeleton of (M;X). Then �P contains an essential

normal sphere S. Such a sphere cannot be parallelto the boundary in �P . Applying Lemma 2.11 weget PS � M with #V (PS) < #V (P ), PS \ @M =X, and M n (PS [ @M) �= S � (0; 1). Since (S nfpointg) � (0; 1) is an open 3-ball, adding to PS ageneric segment isotopic to fpointg � (0; 1) we geta skeleton for (M;X) with as many vertices as PS.This contradicts minimality of P . �
Additivity under connected sum. Again we follow [Mat-veev 1990] quite closely. Let (M;X) and (M 0; X 0) bemanifolds with triods, and set (N;Y ) = (M;X) #(M 0; X 0). Let P and P 0 be skeleta of (M;X) and(M 0; X 0), respectively. If we take points p 2 P andp0 2 P 0 which are not vertices and we join them witha segment, we get a skeleton of (N;Y ). This impliesthat c(N;Y ) � c(M;X) + c(M 0; X 0).We prove the opposite inequality. Let P be aminimal skeleton of (N;Y ). Since (N;Y ) is notprime, there is an essential normal sphere S in �P .We assume �rst that S is separating. Let (N1; Y1)and (N2; Y2) be obtained by cutting (N;Y ) alongS and gluing in balls. The polyhedron PS givenby Lemma 2.11 is now the disjoint union of twopolyhedra P1 and P2 such that Pi is a skeleton of(Ni; Yi). Moreover #V (PS) = #V (P1) + #V (P2) �#V (P ). Therefore c(N1; Y1) + c(N2; Y2) � c(N;Y ),whence c(N1; Y1) + c(N2; Y2) = c(N;Y ). If S isnon-separating we again consider PS and puncture asuitable region, deducing a decomposition (N;Y ) =(N1; Y1) # (S2 � S1;?) on which complexity is ad-ditive. We can now go on �nding essential spheres,and additivity eventually follows from uniqueness ofthe decomposition into primes.
Sharp (self-)assemblings. We are now in a position toprove the second half of properties (3) and (4) ofcomplexity. The case of self-assembling is actuallyeasier, so we start from it. Let a sharp (N;Y ) =�(M;X) be performed along  : Ti ! Ti0 . Let Pbe a minimal skeleton of (M;X) as in Remark 2.4.Then P [ Ti is a minimal skeleton of (N;Y ), and itis easy to see that P is standard if and only if P [Tiis. Moreover, by Theorem 2.6 and Theorem 2.12, Pis standard if and only if (M;X) is prime (because#X � 2) and P [Ti is standard if and only if (N;Y )is prime (because c(N;Y ) > 0). This shows thedesired conclusion that (M;X) is prime if and onlyif (N;Y ) is.
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To deal with assembling, we need two preliminaryresults. The �rst one, together with Theorem 2.6,implies Proposition 1.4.
Lemma 2.13. Let (M;X) 2 X be prime and assumec(M;X) > 0. Then no assembling (M;X) � B1 issharp.
Proof. Let P be a minimal skeleton for (M;X), whichis standard by Theorem 2.6, and let P 0 be the min-imal skeleton of B1. Then P [ P 0 is a skeleton for(M;X) � B1 with minimal number of vertices, butP [ P 0 is not nuclear: there is a face f of P , gluedto the free segment of P 0, which is incident to somevertex of P by Lemma 2.10. By collapsing f wewould get a skeleton with fewer vertices, which isabsurd. �
Lemma 2.14. Let P be a minimal skeleton of (M;X) 2Xpr with c(M;X) > 0. Then, for each �i 2 X, thethree faces of P incident to �i are distinct from eachother .
Proof. By Theorem 2.6, P is standard. Suppose aface f is incident more than once to some �i. Let �be an arc in f having endpoints p0 and p1 in two dis-tinct edges of �i. Of the two essential closed curves� such that � \ �i = fp0; p1g we choose the one forwhich a regular neighbourhood of � [ � in P doesnot contain M�obius strips. Now � is cut by fp0; p1ginto components �0 and �1. Since M n (P [ @M)is a ball, we can glue to both curves � [ �i a disc,and the two discs together form a disc D �M with@D = �. Since � is essential, M is a solid torus and(M;X) = B1. �Now let (N;Y ) = (M;X) � (M 0; X 0) be a sharpassembling along some map  : Ti ! T 0i0 . Recallthat we want to show that (N;Y ) is prime if andonly if both (M;X) and (M 0; X 0) are. If (N;Y ) isprime, we consider the prime factorization of (M;X)and (M 0; X 0), and note that  assembles one factorW of (M;X) to one factor W 0 of (M 0; X 0). If W �W 0 6= (S3;?), then, since (N;Y ) is prime, (M;X) =W and (M 0; X 0) =W 0, and we are done. Otherwise,up to permutation, (M;X) = Z#W and (M 0; X 0) =W 0. By additivity of c under # and Theorem 2.6,Wand W 0 are solid tori, and the assembling is trivial.Now let (M;X) and (M 0; X 0) be prime. If c(N;Y )vanishes then c(M;X) = c(M 0; X 0) = 0, so (M;X)

and (M 0; X 0) are solid tori by Theorem 2.6. It fol-lows that (N;Y ) is a lens space, so it is prime. As-sume on the contrary that c(N;Y ) is positive. Upto permutation, c(M;X) > 0. Let P and P 0 be min-imal skeleta of (M;X) and (M 0; X 0) respectively, soP [ P 0 is a skeleton of (N;Y ) with minimal numberof vertices. If (M 0; X 0) = B1, we get a contradictionto Lemma 2.13. Otherwise Theorem 2.6 implies thatP and P 0 are standard. To conclude that (N;Y ) isprime, using Theorem 2.12, we only need to showthat P [ P 0 is standard. This is not a priori obvi-ous, because some annular component could appear,but Lemma 2.14 applied to P shows that they ac-tually do not, and our argument is complete.
Remark 2.15. Given (H; f�g) 2 X with H the solidtorus, it is easy to see that there are in�nitely many(H; f�0g)'s such that (H; f�g)� (H; f�0g) = (S3;?),so ((M;X) # (H; f�g))� (H; f�0g) = (M;X)for any (M;X). However, the only assemblings ofthis sort on which complexity is additive are thosewhere c(H; f�g) = c(H; f�0g) = 0. This can onlyhappen if f(H; f�g); (H; f�0g)g is either fB1; B1g orfB1; B2g, so these are the only cases which our def-inition of trivial rules out from the notion of sharpassembling.
3. THE ALGORITHM TO FIND BRICKSWe will explain in this section how we have beenable to determine B�9.
3A. Properties of Minimal Skeleta of BricksWe will introduce in this subsection two more bricksB3 and B4, besides the B0, B1 and B2 already de-�ned above. Then we will state some results givingstrong restrictions on the shape of minimal skeletaof bricks di�erent from B0; : : : ; B4. Later we will de-scribe the operations which we actually have carriedout by computer to determine B�9.
Minimal skeleta for B3 and B4. We de�ne B3 and B4 asthe elements of X based on D1 � S1 and D2 � S1respectively, where Di is the disc with i holes, andthe boundary triods are as decribed in Table 1 (Sec-tion 1B). A skeleton for B3 is given by the unionof an annulus D1 � fpointg and a ribbon, glued as
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FIGURE 4. Minimal skeleta for B3 and B4. In the 3-dimensional (gray) pictures the segment and the Y on thetop are identi�ed with the corresponding segment and Y on the bottom.in Figure 4-left. Similarly, a skeleton for B4 is givenby the union of D2 � fpointg and a polyhedron asin Figure 4-right, glued as shown. This implies thatc(B3) � 1 and c(B4) � 3. Since B3 is prime and itis not B0, B1, or B2, we have c(B3) = 1 by Theo-rem 2.6-(2). Using Theorem 2.6-(1) and checking byhand all standard P 's with #V (P ) = 1 and @P 6= ?,we see that B3 is a brick and actually B11 = fB3g.For B4 we need:
Lemma 3.1. Let (M;X) be prime and di�erent fromB0; : : : ; B3. Then c(M;X) � #X.
Proof. Of course we can assume X 6= ?. SinceB1�1 = fB0; : : : ; B3g and the inequality is easy forany nontrivial assembling of B0; : : : ; B3, we also as-sume c(M;X) � 2.Suppose now that a face f is incident to two dis-tinct triods �i; �i0 2 X. Then there is an arc � � f ,properly embedded in f , with endpoints p 2 �i; p0 2�i0 , and two essential loops  � Ti and 0 � Ti0 suchthat \�i = fpg, 0\�i0 = fp0g. SinceM n(P [@M)is a ball, there is an annulus A properly embeddedin M , with @A =  [ 0 and A \ P = �. If someface g 6= f is incident to the same �i and to someother �i00 , we can construct an annulus B in the sameway. Moreover @B = � [ �00 with #( t �) = 1. Ir-reducibility allows to assume that A \B is just onesegment, hence �i0 = �i00 , and then to show thatM = T � [0; 1]. So #X = 2, but we are assumingc(M;X) � 2, and the conclusion holds in this case.By Lemma 2.14, P has distinct faces f (1)i , f (2)i , f (3)iincident to each �i. By what already shown we canassume up to permutation that f (2)i and f (3)i are not

incident to any other triod in X. So P containsat least 2 # X + 1 distinct faces. By Remark 2.5,#F (P )=#V (P )+#X+1, so #V (P )�#X. �
Proposition 3.2. c(B4) = 3 and B4 is a brick .
Proof. B4 is prime and #X(B4) = 3, so c(B4) = 3 bythe previous lemma. If B4 were not a brick then itwould split as Bi�B(1)�� � ��B(k) with i 2 f1; 2; 3g.In all cases we must have #X(B(j)) > c(B(j)) forsome j, which contradicts the previous lemma. �
Superstandard skeleta.A standard polyhedron P (withboundary) is called superstandard if every face of Pis incident to @P along one segment at most. Forsuch a P , it is easy to prove that S(P ) must beconnected if P is. The minimal skeleta of B0; : : : ; B4we have already described are not superstandard.The following theorem will be proved in Section 4.
Theorem 3.3. Let (M;X) be a brick di�erent fromB0; : : : ; B4. Then every minimal skeleton of (M;X)is superstandard .
Corollary 3.4. Let (M;X) be a brick di�erent fromB0; : : : ; B4. Then c(M;X) � 2 #X � 1.
Proof. Let P be a minimal skeleton of (M;X). ByRemark 2.5 we have #F (P ) � #V (P ) = #X + 1.Now P is superstandard, so each edge in X deter-mines a di�erent face of P . Then #F (P ) � 3 #X,and the conclusion follows. �
Enumeration of bricks. Let (M;X) be a brick di�er-ent from B0; : : : ; B4, and let P be one of its mini-mal skeleta. We will call a �lling of P any of the(�nitely many) polyhedra obtained by glueing to P
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one copy of the M�obius strip with one tongue alongeach of the boundary triods of P (so #X strips inall are glued to P ). Since the M�obius strip with onetongue is a skeleton of the pair B2 based on the solidtorus, a �lling of P is automatically a skeleton of a(possibly nonsharp) assembling of (M;X) with #Xcopies of B2, hence of a closed manifold (N;?) 2 Xobtained by Dehn-�lling all boundary componentsof M . The glueing function  used to de�ne the�lling of one component Ti of @M must map thetriod �i � Ti to the triod of B2, so indeed there are�nitely many possibilities. Since P is superstandardby Theorem 3.3, it is easy to see that the �llings ofP are standard.We will call a loop in P a subpolyhedron  � Phomeomorphic to S1 which intersects S(P ) trans-versely (in particular  \ V (P ) = ?). The lengthl() of  is the number of its intersections with theedges of P . We denote by R() a regular neighbour-hood of  in P . The core of the M�obius strip haslength 1 in the M�obius strip with one tongue. Thefollowing result will be shown in Section 4.
Theorem 3.5. Let (M;X) be a brick di�erent fromB0; : : : ; B4. Let P be a minimal skeleton of (M;X)and let Q be any �lling of P . Let L(Q) be any setof representatives of the ambient isotopy classes oflength-1 loops in Q. Then:
1. The elements of L(Q) are pairwise disjoint , andR() is a M�obius strip with one tongue for all 2 L(Q);
2. L(Q) consists of #X loops and P = QnR(L(Q)).
Remark 3.6. The theorem's conclusion (1) implies:� for every edge e of Q, there is no face f of Qtriply incident to e;� if f is doubly incident to e and @f is given anyorientation, then e is induced the same orienta-tion twice;� if f1 is doubly incident to e1 and f2 is doublyincident to e2, with e1 6= e2, then f1 6= f2.In addition, taking point (2) of Theorem 3.5 forgranted, superstandardness of P (stated by Theo-rem 3.3) means the following:� with the notation above, for i = 1; 2, let gi be theface other than fi incident to ei; then f1; f2; g1; g2are pairwise distinct.

We state now a result on the singular set S(Q) of a�lling Q of a minimal skeleton P , noting �rst thatS(Q) depends on P only and it is a 4-valent graph(because @Q = ?). We refer again to Section 4 forthe proof.
Theorem 3.7. Let (M;X) be a brick with nonzerocomplexity . Let P be a minimal skeleton of (M;X),and let Q be a �lling of P . Then S(Q) is connectedand satis�es the following :
1. No pair of edges disconnects S(Q).Suppose in addition either that every torus in M isseparating or that c(M;X) � 9. Then:
2. If a quadruple of edges disconnects S(Q), thenone of the two resulting components must be ofone of the forms shown in Figure 5.

FIGURE 5. If 4 edges disconnect S(Q), then one ofthe two pieces is of one of these types.An important tool of our search for bricks is thefollowing nonminimality criterion, proved in Sec-tion 3B. We say that a loop  in a skeleton P of(M;X) 2 X bounds an external disc if there existsa closed disc D � M with @D =  and D \ P = .A loop is fake if it is contained in the link of somepoint of P .
Theorem 3.8. Let P be a standard skeleton of a mani-fold with triods . If P contains a non-fake loop whichbounds an external disc and has length at most 3,then P is not minimal .
Computer search for bricks. To �nd B�9 n fB0; : : : ; B4gwe have �rst listed by computer the 4-valent graphssatisfying the conditions of Theorem 3.7. For eachsuch graph �, using [Benedetti and Petronio 1995],we have then determined the standard spines Q ofclosed manifolds with S(Q) �= � and satisfying theconditions of Remark 3.6. Then we have tested theQ n R(L(Q))'s for minimality using Theorem 3.8.The result has been a very short list of skeleta, butactually not all of them were minimal, and somepairs of them were minimal skeleta of the same el-ement of X. To eliminate nonminimal and dupli-cate skeleta we have therefore used certain moves
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on polyhedra which are known to transform a skele-ton P into another skeleton P 0 of the same (M;X).Namely, we have used the Matveev{Piergallini moveand some disc-replacement moves involving discs oflength at most 4 (see [Matveev 1990] for de�nitions).The result has been a list of minimal skeleta of pair-wise distinct elements of Xpr, but a few non-brickswere still present. To get rid of them we have usedvery technical extra criteria (such as Theorem 4.14below). The fact that the list of 30 elements even-tually obtained cannot be further reduced, so all itselements are indeed bricks, follows from the (easy)fact that no element of the list is obtained via asharp-assembling from the other ones.
Remark 3.9. The bound c(M;X) � 9 in Theorem 3.7is de�nitely not sharp, and we actually conjecturethe theorem to be true for any complexity. More-over, if an assembling of some bricks is a manifoldin which each torus is separating, then the samehappens in the individual bricks. Therefore, if onewants to search for closed atoroidal manifolds only,the search for bricks can be restricted to those inwhich each torus is separating, to which the wholeof Theorem 3.7 applies.We explain now how Theorem 3.7 helps saving spacein the search for bricks, by ruling out most graphsas possible S(Q)'s. Namely, let K be the set of all4-valent graphs, let Kbrick � K consist of all S(Q)'swhere Q is a �lling of some minimal skeleton of somebrick, and letH � K consist of the graphs satisfyingboth the constraints of Theorem 3.7. We know thatKbrick � H � K (at least in complexity up to 9, orfor bricks in which all tori are separating). Table 3lists, up to 10 vertices, the number of elements ofeach of these sets, showing that indeed #H is a lotsmaller than #K, and not so far from #Kbrick. Westill have not determined the bricks with 10 vertices.
3B. The Nonminimality CriterionWe prove here Theorem 3.8.
Remark 3.10. Let (M;X) 2 X be given together witha standard skeleton P . A closed surface F � P con-tains a graph H = F \ S(P ) with vertices havingvalency 3 and 4. If F is orientable, then we canchoose a transverse orientation and give each edgee of H a red or black color, depending on whether

P locally lies on the positive or on the negative sideof F near e. A vertex with valency 3 is adjacentto edges with the same color, and a vertex with va-lency 4 is adjacent to two opposite red edges andtwo opposite black ones.
Proof of Theorem 3.8. Consider an external disc Dbounded by a loop as in the statement. If we addD and remove a face in �(P [ D) we get anotherskeleton of P . We prove now that there is a facein �(P [ D) incident to more than l(@D) distinctvertices. This shows that P is not minimal.We consider the graphH = S(P [D) \ �(P [D);which contains @D. By Proposition 2.9, the surface�(P [D) is orientable; we can then choose a trans-verse orientation and color the edges as explained inRemark 3.10. Suppose by contradiction that eachface f � �(P [D) meets at most l(@D) vertices.A vertex in @D has valency 4 if and only if it isadjacent to two distinct edges in @D with distinctcolors. If l(@D) = 1, then the only vertex containedin @D would have valency 3, as in Figure 6-(1). Sof1 would meet at least 2 distinct vertices.If l(@D) = 2, then the two vertices adjacent to@D have the same valency. Suppose they both havevalency 4, as in Figure 6-(2). Since each fi meetsat most 2 vertices, then H is as in Figure 6-(3),but M n (P [ D) would have 3 components. Sup-pose both vertices of D have valency 3: then H isas in Figure 6-(4), and @D is fake. Both cases areexcluded.If l(@D) = 3, either all vertices met by @D havevalency 3, or two of them have valency 4. Supposethe �rst case holds. If a face fi meets 2 distinctvertices only, then the other two faces adjacent toD coincide, as in Figure 6-(5), and meet more than3 vertices. So each fi meets 3 distinct vertices, andH is the 1-skeleton of the tetrahedron �(P [D) asin Figure 6-(6); hence @D is fake, which is absurd.vertices 1 2 3 4 5 6 7 8 9 10K 1 2 4 10 28 97 359 1635 8296 48432H 1 1 1 2 4 11 27 57 205 1008Kbrick 1 1 1 2 3 1 4 9 13 ?

TABLE 3. Graphs which are singular sets of bricks.
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FIGURE 6. Possible con�gurations for �(P [ D) inthe proof of Theorem 3.8.Finally, suppose two vertices have valency 4 andone has valency 3 as in Figure 6-(7); since f2 is inci-dent to at most 3 distinct vertices, then the distinctedges e1; e2 have one common endpoint; for the samereason the edges e1; e3 have one common endpoint.ThenH is as in Figure 6-(8); but this is absurd sinceM n (P [D) would have at least 3 components. �
4. MINIMAL SKELETA OF BRICKSIn this section we prove Theorems 3.3, 3.5, and 3.7.This requires the introduction of several ideas notmentioned yet. The crucial point of our work willbe the analysis of the intersection between a minimalskeleton and a closed orientable surface. We warnthe reader that the proofs of Theorems 4.6 and 4.14given below are long and not very much illuminat-ing by themselves, so they can be skipped at �rst.We will only consider in this section bricks havingpositive complexity, without further notice. So allminimal skeleta will be standard by Theorem 2.6.
4A. TracesLet (M;X) be a manifold with triods and let P be astandard skeleton of (M;X). A closed surface F ��M is said to be simply transverse to P if:

1. F is transverse to P ;
2. The intersection of F with M n P consists of a�nite number of discs.The �rst condition implies that Y = P \F is a �nitetrivalent graph disjoint from V (P ), whose verticeslie precisely at the intersection of Y with the edgesof P and appear as in Figure 7-left. Such a graph iscalled the trace of F .
Remark 4.1. Let a trivalent graph Y � P n V (P )be given, in such a way that Y \ S(P ) consists ofall the vertices of Y , each appearing as in Figure 7-centre. We show that Y is the trace of an essentiallyunique simply transverse surface F � M . First, wecan uniquely �nd a surface N(Y ) with boundary,transverse to P , which collapses to Y (seeN(Y ) nearan edge of P in Figure 7-right). The boundary ofN(Y ) consists of a �nite number of circles that lieon the boundary of a sub-ball B0 of B. Now we canuniquely glue disjoint discs properly embedded inB0 to these circles, thus getting the desired closedsurface F .
4B. Traces with 2 Vertices

Lemma 4.2. Let (M;X) be a brick and let P be aminimal skeleton of (M;X). Let Y � P be the traceof an orientable surface F �M . Then each edge ofY has distinct endpoints .
Proof. Suppose s is an edge of Y with common end-points; since F is orientable, the regular neighbour-hood of s in F is an annulus, so there is a com-ponent D0 � F n Y with @D0 = s. Then @D0 isa length-1 loop; this is impossible by Theorem 3.8,since length-1 loops are never fake. �Let P be a standard skeleton of some (M;X) 2 Xand let �i 2 X be the triod contained in Ti � @M .Pushing �i a bit inside �P we get the trace Y of atorus parallel to Ti. Therefore we say that such a Yis parallel to the boundary (of P ).

FIGURE 7. A simply transverse surface, its trace, and its reconstruction from the trace.
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Proposition 4.3. Let (M;X) be a brick , equipped witha minimal skeleton P . Let Y be the trace of an ori-entable surface F . If Y has two vertices , it is a triodand one of the following cases occurs :
1. F is a nonseparating torus ;
2. Y is parallel to the boundary ;
3. F is a sphere and Y is the link of a point inS(P ) n V (P ).
Proof. First, Y is a triod by Lemma 4.2. There aretwo possibilities for the regular neighbourhoodN(Y )of Y in F , which are shown in Figure 8 and leadto a sphere and a torus respectively. In the �rstcase F n Y contains three external discs Di withe(Di) = 2. By Theorem 3.8 all the loops @Di arefake, so Y = lk(p) for some p 2 S(P ) n V (P ).

FIGURE 8. The two possibilities for an orientableN(Y ) when Y is a triod.In the second case, let F be separating, and letN1 and N2 be the manifolds into which F separatesM . Set Pi = Ni \ P for i = 1; 2. Then (M;X)is obtained by assembling the manifolds with tri-ods (N1; X1) and (N2; X2), where Xi = [@Pi fori = 1; 2. Moreover Pi is a skeleton of (Ni; Xi), whichimplies that this assembling is sharp unless it is triv-ial. Since (M;X) is a brick, the assembling is triv-ial. Now, P1 and P2 are standard, so (M1; X1) and(M2; X2) are prime by Theorem 2.12. Therefore, theassembling must be of the �rst trivial type, namely(N1; X1) must be B0 up to permutation. Hence P1is the unique minimal skeleton of B0, homeomor-phic to �� [0; 1]. It follows that Y is parallel to theboundary in P . �
Corollary 4.4. Let P be a minimal skeleton of a brick .Then there is no embedded face in P incident to 3or fewer vertices . Moreover , for every edge e of P ,the three faces of P incident to e are distinct fromeach other .
Proof. Let f be an embedded face with 3 or fewervertices. A loop in P very close to @f and disjoint

from f bounds a disc D parallel to f . Moreoverl(@D) � 3 and @D is not fake since M n (P [ @M)has only one component.Let f � P be a face incident at least twice toan edge e of P . It follows that there is a length-1loop  � P intersecting e once. Length-1 loops arenever fake, so, by Theorem 3.8,  does not bounda disc. Therefore its regular neighbourhood R()is a M�obius strip with one tongue, and @R() is atrace with two vertices of the disconnecting torus inM which bounds the regular neighbourhood of  inM . Proposition 4.3 implies that @R() is boundary-parallel, so P has no vertices. �
Co-disconnecting surfaces. Let P be a standard skele-ton of (M;X) 2 X. Let Y � P be the trace of asimply transverse orientable surface F . Every com-ponent D of F n Y is an open disc; its boundary isthe union of two parts @1D and @2D, where @iD isthe closure of the union of all edges of Y adjacent itimes to D. If we add D to P we do not get a sim-ple polyhedron, unless @2D = ?. It is neverthelesseasy to see that Proposition 2.9 holds for P [D too,namely:
Proposition 4.5. Let B0 and B00 be the balls given byM n (P [D). The faces of P [D that separate B0from B00 form a closed orientable surface �(P[D) �P [D �M which cuts M into two components .
Proof. The proof of Proposition 2.9 works away from@2D. We only need to show that �(P [ D) is asurface near @2D: let f 0 and f 00 be the faces otherthan D incident to an edge e � @2D. Since F isorientable, f 0 is adjacent to B0 on both sides and f 00is adjacent to B00 on both sides (or the converse).Therefore f 0 and f 00 are disjoint from �(P [ D),and �(P [D) is a closed surface. �In the setting above we de�ne �D � P as�(P [D) nD;and call it the co-disconnecting surface ofD. Propo-sition 4.5 shows that �D is a compact surface withboundary @1D. For a subpolyhedron K � P we willdenote from now on by R(K) and RM(K) the regu-lar neighbourhoods ofK in P and inM respectively.
Theorem 4.6. Under the assumptions of Proposition4.3, assume that c(M;X) � 9. Then Y cannot bethe trace of a nonseparating torus .
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Proof. By contradiction let Y = T\P with T nonsep-arating, and put D = T n Y . The co-disconnectingsurface �D � P is by Proposition 4.5 a closed ori-entable surface, which is nonempty since �D [ Tdisconnects M , whereas T does not. We assumethat #(V (P ) \ �D) is minimal among all mimimalskeleta of (M;X) for which there exists a nonsepa-rating torus whose trace is a triod.We focus now on a component � of �D. Choos-ing a transverse orientation for � as in Remark 3.10,we can trace on � two trivalent graphs Y+ and Y�which intersect transversely. These graphs representthe way the rest of P glues to �, and the sign + or� depends on whether P locally lies on the positiveor on the negative side of �. We show now severalproperties of the triple (�; Y+; Y�) which do not re-quire the bound 9 on complexity. Only later will weuse this bound.
1. � n Y� consists of planar surfaces. Given a pointp of � n (Y+ [ Y�) there are two points p+; p�of @RM(P ) closest to p, with p+ on the positiveside of � and p� on the negative side. It is nothard to show that the map p 7! p+ extends to ahomeomorphism of �nY+ onto an open subset of@RM(P ) �= S2, and similarly for Y�.
2. The components of @R(Y�) \ � bound discs inM . This follows from the same argument justexplained.
3. � n (Y+ [ Y�) consists of discs. This is because� � P , Y+ [ Y� = � \ S(P ), and P is standard.
4. If a component of � n R(Y�) is not a disc thenits boundary loops are essential in �. We refer toY+. If one of them is not, it is very easy to seethat there is a disc � in � such that Y+\@� = ?but Y+\� 6= ?, so in particular Y+\� containsvertices of P . The move suggested in Figure 9then contradicts minimality of P .

5. Not all the components of R(Y�) \� are planar.Again we refer to Y+. By contradiction, frompoints 1 and 2 and the irreducibility of M , wewould readily get that � bounds a handlebody,but � is nonseparating.
6. Every component of Y+ intersects Y�, and con-versely. Otherwise, since � is connected, therewould exist a component of � n (Y+ [ Y�) withdisconnected boundary, contradicting point 3.
7. Y+ \ Y� contains at least two points. Assumethere is only one point v (a crossing between Y+and Y�). If a face f of � is incident to v, then itmust be multiply incident, because faces containan even number of quadrivalent vertices (withmultiplicity). If two instances of f are adjacentto each other at v, we �nd in the closure of f alength-1 loop bounding an external disc, whichcontradicts minimality. If two instances of f areopposite at v, then for the same reason there isanother face g doubly incident to v, and g 6= f .Now in the closure of f [ g we can easily �nda length-2 loop bounding an external disc whichmeets edges opposite at v. By minimality theloop must be fake, so these edges must actuallybe the same. Orientability of � then implies thatf = g: a contradiction.
8. A component of Y� that is a circle intersects Y�in at least 4 points. This readily follows fromCorollary 4.4 and minimality, because this circleis precisely the boundary of a face of P .
9. There are no squares as in Figure 10-left occur-ring in (�; Y+; Y�). If one such square exists,we can correspondingly apply to P one move asin Figure 10-right. The result is a new minimalskeleton P 0 on which T still has trace Y , but#(V (P 0) \ �0D) < #(V (P ) \ �D)|a contradic-tion.

FIGURE 9. A move that reduces complexity.
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FIGURE 10. Forbidden squares (with black Y+ andgray Y�), and moves (with shadowed �).We show now how to conclude, using the fact that#V (P ) � 9. It follows from point 5 that both Y+and Y� have vertices. Being trivalent, they havean even number of them, and the total is at most9�2 = 7 by point 7. So up to permutation we can as-sume that Y+ has 2 vertices. In particular R(Y+)\�has only one non-planar component, which is home-omorphic to a punctured torus (with a component ofY+ sitting as a triod in this torus). From point 8 wededuce that Y+ can have at most one circular com-ponent, and it is now easy to deduce from point 1that � indeed is a torus. Point 4 then implies thatY+ consists of the triod only. In the rest of our proofwe will always depict � cut open along Y+. So � ap-pears as a hexagon, and we denote by � its interior.To conclude the proof we will �rst show that Y�also has 2 vertices, and then that it appears in oneof the two shapes shown in Figure 11. This indeedyields a contradiction to the fact that (M;X) is abrick, since Y�\Y+ consists of two points, so cuttingP along � we see that (M;X) can be obtained viaa sharp self-assembling.

FIGURE 11. Con�gurations that correspond to a self-assembling.So, let Y� have 4 vertices. We claim that all thecomponents of Y� \ � are trees. If one of them isnot then there is a face of P inside � and boundedby Y�. Then either this face has � 3 vertices, whichcontradicts Corollary 4.4, or it is a square of the

�rst forbidden type. Our claim is proved. Now notethat if Y� \� has � components then it has 4 + 2�free endpoints, which give 2+ � vertices in P . SinceY+ has 2 vertices and Y� has 4, we deduce that� = 1 and that Q = P n RP (�) has no vertices.Moreover Q is connected and standard, and @Q �=Y+ t Y�. It is not hard to show that with theseconstraints the only possibility for Q is as shownin Figure 12, so @RM(Q) has two components. Inaddition, also � n Y� consists of discs (as � n Y+),and we get a contradiction because @RM(Q) shouldthen be a sphere with some holes.

FIGURE 12. A polyhedron without vertices.We can now assume that Y� has two vertices, andshow that it appears as in Figure 11. Knowing al-ready that � n Y� is a disc, it is enough to showthat Y� \� is connected. Suppose by contradictionthat Y� \ � is disconnected. Then there exists anarc � properly embedded in � which separates twocomponents of Y�\�. Consider the endpoints of �.By minimality of P , they cannot belong to the sameedge of �, nor to two adjacent ones, otherwise wecould make Y� slide on � and reduce the number ofvertices, as in Figure 13.The ends of � also cannot belong to two edgesadjacent to one and the same edge, as in Figure 14-left.To see this, consider how many vertices of Y� canlie in �0. If there are no vertices at all, then either aface of P contained in �0 has less than 4 vertices orthere is a square of the second forbidden type. If Y�has both vertices in �0, then again �0 contains eithera small face or a forbidden square. These cases areexcluded, so there is one vertex of Y� in �0, and theonly possible case is shown in Figure 14-center. Nowwe let Y+ slide over � as shown in Figure 14-right.The result is a new minimal skeleton P 0 on whichT still has trace Y , but �0D now contains one of the
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FIGURE 13. Moves reducing complexity.

FIGURE 14. More moves reducing complexity.forbidden squares of Figure 10, which contradictsminimality of #(V (P ) \ �D).We are left to show that the endpoints of � alsocannot belong to opposite edges of � (Figure 15-left).

FIGURE 15. Conclusion of Step 3.Denote by � and �0 the number of ends of Y� \�on e\�0 and on e0 \�0 respectively. If � = �0 then� can be isotoped so to give rise to a length-1 loopin P bounding an external disc: a contradiction. If� = 0 or �0 = 0 then we can replace � by a curve dis-joint from Y� and having ends on edges of � whichare not opposite, so we get back to a case alreadyruled out. So up to permutation we can assume that� � 2. Now the face of P containing the portion ofarc �0 shown in Figure 15-right must meet anotheredge of Y+ = @�, otherwise it is either small or for-bidden (recall that Y� has 2 vertices only). So �0extends to a properly embedded arc disjoint fromY�. Either �0 belongs to a case already ruled out,or the corresponding � + �0 is smaller, and a con-tradiction is reached anyway. This eventually showsthat Y� is connected, and the proof is complete. �

4C. Moves on TracesThe key step to check the properties of bricks willbe Theorem 4.14 stated below. We introduce heremore new notions which will be used to prove it.Let P be a standard skeleton of a manifold withtriods (M;X). Given the trace Y of a surface F ,there are some obvious moves that transform Y intoanother trace Y 0 of a surface F 0 isotopic to F . Threesuch moves, denoted by J1, J2 and J3 and collec-tively called J-moves, are shown in Figure 16. Sincewe will be concerned with traces of (transversely)orientable surfaces only, we can ask a J-move totransform a trace Y into a trace Y 0 disjoint from Y .Let [Y; Y 0] be the sub-polyhedron which lies betweenY and Y 0. A sequence of moves Y1 ! � � � ! Yn iscalled a ow if each move Yi ! Yi+1 is a J-moveand [Yi�1; Yi] \ [Yi; Yi+1] = Yi for all i, namely, ifthe moves are performed towards the same normaldirection to Yi for all i.
Remark 4.7. A move J1 is determined by an edge sof Y and a vertex v of P such that s � lk(v), or

FIGURE 16. The moves J1; J2; J3.
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equivalently by the cone vs from v based on s (atriangle). We will sometimes say that the move isperformed along the triangle.
Remark 4.8. If a move J1 transforms a trace Y of Finto a trace Y 0 of F 0 then there is a natural bijectionbetween the components of F nY and those of F 0nY 0.Let Y be the trace of a surface F . Given a compo-nent D of F n Y , we denote by e(D) the number ofedges of Y adjacent to D, counted with multiplicity(an edge of Y is counted twice if it has D on bothsides).
Lemma 4.9. Let P be a minimal skeleton of a brick .Let Y � P be the trace of an orientable surface F ,and let D be a component of F nY . Consider a moveJ1 determined by an edge s � @D of Y and a vertexv of P , call Y 0 the resulting trace and D0 the disccorresponding to D. Then e(D0) < e(D) if e(D) < 6and e(D0) � e(D) if e(D) = 6.
Proof. The trace Y 0 is obtained from Y as shown inFigure 17; it follows from the �gure that if e(D0) >e(D) then D1 = D2 = D 6= D3 and if e(D0) = e(D)then D = D1 or D = D2. By Lemma 4.2 the edgesof Y have distinct ends. Using this fact one easilysees that e(D) > 6 if D1 = D2 = D 6= D3 ande(D) � 6 if D = D1 or D = D2, and the conclusionfollows. �

FIGURE 17. A move J1 at the level of traces.
Good discs. Let Y be the trace of a surface F . Wesay that a disc D � F nY is good if all discs in F nYother than D are contained in the same componentof M n (P [D).
Remark 4.10. If F has 2 discs, these discs are good.
Remark 4.11. If F is orientable, then RP (Y ) �= Y �[�1; 1]. Recall that @�D = @1D. Now it is not hardto show that if D is good then the identi�cationRP (Y ) �= Y � [�1; 1] can be chosen so that �D \RP (Y ) �= @1D � [0; 1], and the converse holds if Fis connected. In other words, when F is orientable

and connected, we have that D is good if and onlyif �D lies on a de�nite side of Y in P .
Lemma 4.12. Under the assumptions of Lemma 4.9,suppose that D is good and that �D and the trianglevs lie on the same side of Y in P . Then D0 is goodand �D0 = �D n [Y; Y 0].
Proof. The condition that �D and sv lie on the sameof side of Y means that Y , during its transformationinto Y 0, is pushed towards �D, and the conclusionis obvious. �
4D. Traces with 4 VerticesWe prove here the key result needed to establish theproperties of bricks.
Remark 4.13. If a polyhedron P is superstandard(with boundary), it can be uniquely reconstructedfrom the regular neighbourhood R(S(P )) of S(P )in P , by gluing discs to each circle in @R(S(P )),because the rest of @R(S(P )) can be identi�ed to@P . Therefore here and in the sequel we will de-scribe such P 's by drawing @R(S(P )) in R 3. Three-dimensional pictures will be needed when P is onlystandard.
Theorem 4.14. Let P be a minimal skeleton of a brick(M;X), and let Y � P be a trace with 4 vertices ofan orientable connected surface F . If F is separat-ing , then Y is a boundary component of a polyhedronof one of the following types :
1. RP (v) for some v 2 V (P ) (type 1.1), or RP (�)for an arc � properly embedded in a face of P(type 1.2);
2. RP () for a length-2 loop , which is fake if itbounds an external disc;
3. one of the 5 polyhedra shown in Figure 18, whoseboundary has two components : Y and a triod�i � @P ;
4. a polyhedron as in Figure 19, with 1 (left) or more(right) vertices .

FIGURE 20. Types A and B for Y .
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FIGURE 18. Polyhedra of type 3: segments (in the �rst 3 pictures) and Y 's on the top are identi�ed to thecorresponding ones on the bottom.

FIGURE 19. Polyhedra of type 4.If F is not separating , it is a torus and there is aminimal skeleton P 0 of (M;X) on which F has atriod as a trace.Moreover , only two types A and B of Y are pos-sible, as shown in Figure 20. The polyhedra of types1.1, 3.3, and 3.4 have boundaries of type A, thoseof types 1.2, 3.1, 3.2, 3.5, and 4 have boundaries oftype B; a polyhedron of type 2 has boundary of typeA if it is a M�obius strip with two tongues , of type Botherwise.
Proof. It is enough to show that one of the followingmust hold:(I) F is a nonseparating torus, and F has a triod asa trace on some P 0;(II) Y bounds one of the polyhedra of type 1-4.

So we assume (I) does not hold and show (II). Ourargument is long and organized in many steps. We�rst describe the overall scheme by stating with-out proof �ve assertions. Later we will provide fullproofs. LetD � F nY be a component having loweste(D).
Fact 1. If e(D) 2 f2; 3g then Y bounds a polyhedronof type 1, 2, 3.1, 3.2, or 3.3.Suppose then that e(D) � 4. Since Y is trivalentit has 6 edges, so �(F ) = d � 2, where d is thenumber of components of F n Y . Each componentis incident to at least 4 vertices, so 2 � 6 � 4 � d,whence d � 3. It easily follows that F is a torusand d = 2. Then F n Y consists of two discs D =D1 and D2, both good by Remark 4.10. Recalling

FIGURE 21. Embeddings of type A and B.
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from Lemma 4.2 that all edges of Y have distinctendpoints one easily sees that only the types A andB for Y are possible. The restriction that e(D) �4 then implies that up to homeomorphism there isonly one possible con�guration (F; YA) and only one(F; YB), as shown in Figure 21. If Y is of type A wehave e(D) = 4, otherwise we have e(D) = 6, andthe two discs of F are completely symmetric.Figure 21 also contains notation used through-out the proof (note that s1; : : : ; s4 are the edges in@1D = @�D both in case A and in case B). Let fi bethe face of �D n S(P ) incident to si. Moreover, letgj be the face of P incident to tj . Since D is good,we have g1; g2 6� �D. Finally, let ei be the edge ofP which contains pi.
Fact 2. Either the faces f1; f2; f3; f4; g1; g2 are all dis-tinct or Y bounds a polyhedron of type 2 or 4.1.Assuming that Y does not bound a polyhedron oftype 2 or 4.1, it follows that the segments ei \ �Dfor i = 1; : : : ; 4 are distinct. Then let vi 2 V (P ) bethe endpoint of ei \ �D not lying on D.
Fact 3. Up to symmetry we have v1 = v2 in case Aand either v1 = v2 or v1 = v3 in case B.Now set u = s1 in case A, and either u = s1 or u =t1 in case B, depending on whether v1 = v2 or v1 =v3, so there are two edges of P [ D which start atthe endpoints of u and both end at v1. These edgesare e01 = e1\�D and e0m = em\�D, with m 2 f2; 3gdepending on the case. Recall now that if two edgesend at the same vertex then one face incident to the�rst edge is also incident to the second one. Sincewe are assuming that the fi's and gj's are distinct,we deduce that u [ e01 [ e0m bounds a disc of P [D,which is a triangle; that is, u � lk(v1). FollowingRemark 4.7 we can then perform a J1-move to whichLemma 4.9 and Lemma 4.12 apply. Denoting by D0the disc corresponding to D after the move, we havee(D0) � e(D), and equality can hold only if Y is oftype B.
Fact 4. If e(D0) < e(D) then Y bounds a polyhedronof type 3.4 or 3.5.
Fact 5. If e(D0) = e(D) then Y bounds a polyhedronof type 4.2.Proving these �ve assertions establishes the theo-rem; we turn to this task.

Proof of Fact 1. By Theorem 3.8 the loop @D is fake,and we can perform a move Je(D) as explained inSection 4C. The result is a trace Y 0 with 2 ver-tices of a surface F 0 isotopic to F . By Proposi-tion 4.3 either F 0 is a nonseparating torus, or Y 0 isboundary-parallel, or we have Y 0 = @R(p) for somep 2 V (P ) n S(P ). In the �rst case, up to isotopingF 0 back to F , getting an isotopic copy P 0 of P , weget a contradiction to our initial assumption. In theother cases we have to see which polyhedra can re-sult from an inverse Je(D) move applied to �i� [0; 1]or to R(p). It is now rather easy to examine allpossibilities and check the assertion.
Proof of Fact 2. Of course no fi can be equal to a gj ,because fi � �D and gj \ �D = ?. We �rst showthat if two fi's coincide then Y bounds a polyhe-dron of type 2 or 4.1. We refer to Figure 21 for thenotation.Corollary 4.4 implies that two adjacent fi's cannotcoincide. Up to symmetry, the only cases we areleft to deal with are A-(f1=f3), B-(f1=f3), and B-(f2=f3). In all cases we will show that Y bounds apolyhedron of type 2 or 4.1. The key point will beto exhibit two loops that must be fake because ofTheorem 3.8.Case A-(f1=f3) is seen in Figure 22-left: since�0 and �00 are fake, one sees easily that Y = @R(),where R() is a M�obius strip with two tongues (Fig-ure 22-right).Case B-(f1=f3) is similar; see Figure 23-left. Wehave Y = @R(), where R() is an annulus with twotongues on opposite sides (Figure 23-right).In case B-(f2=f3) we consider the loops of Fig-ure 24-left. Since �0 and �00 are fake we deduce thatall the edges ei \�D end at the same vertex v, such

FIGURE 22. Proof of Fact 2: �rst case.
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FIGURE 23. Proof of Fact 2: second case.

FIGURE 24. Proof of Fact 2: third case.that s2; s3 � lk(v). We can then apply a move J1whose e�ect on Y is shown in Figure 24-right.The result is a trace Y 0 which falls into case A-(f1=f3). So Y 0 = @R() with R() a M�obius stripwith two tongues. Recalling that the inverse of a J1-move is again a J1-move, we only need to considerwhich such moves can be applied to R(). The moveis determined by the edge of @R() which disappearsduring the move: of the 6 edges of @R(), 4 lead toa situation in which e(D) = 3, so we exclude them.The other 2 edges are actually symmetric, and theresult is of type 4.1.To conclude the proof of Fact 2 we must show thatif the fi's are distinct then g1 6= g2. If Y is of typeB then g1 has a certain component of M n (P [D)on both sides, and g2 has the other one, so g1 6= g2.Assume in case A that g1 = g2. Referring to Fig-ure 21 let qj be the midpoint of tj, and join q1 toq2 by an arc � in g1 = g2. There are 4 distinct arcs�1; : : : ; �4 � Y having endpoints q1 and q2 and inter-secting S(P ) twice. For two of them the polyhedronR(� [ �i) is an annulus with 2 tongues on the sameside. Then some � [ �i is fake, which is in contrastwith the fact that the fi's are distinct.

Proof of Fact 3. We start with case A. Assumethat v1 6= v2, and put P 0 = (P [ D) n f1. If f1 isincident to x di�erent vertices of P then #V (P 0) =#V (P ) + 4 � 2 � x. Since P is minimal we havex � 2. On the other hand f1 is incident to v1 andv2, so x = 2. Now Figure 25 shows a triod � in P 0,trace of a torus parallel to F . By Proposition 4.3,either F is nonseparating or � is boundary-parallel.In the �rst case we get a contradiction to the initialassumption. In the second case we deduce that f1is incident to v3 and v4, so fv3; v4g � fv1; v2g. Soeither v3 = v4, or v4 = v1, or v3 = v1 6= v4 = v2.In all cases but the last one the conclusion is thedesired one up to symmetry. Concentrating on the

FIGURE 25. A triod � � P 0.
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last case, we note that f1 [ � � � [ f4 is a surface nearv1 and v2, and that the fi's and gj 's are all distinct.From these facts it is not hard to deduce that v1 andv2 appear as in Figure 26.

FIGURE 26. The vertices v1 and v2.The �gure readily implies that f2 = f4: a contra-diction.The proof in case B is similar, except that D can-not be used directly: a perturbed version D0 as inFigure 27-left must be employed. We are again sup-posing here that v1 6= v2, so f1 is incident to x � 2vertices of P , but now #V (P 0) = #V (P )+6�3�x.Since P is minimal we have x � 3, so x 2 f2; 3g. We�rst claim that we can suppose x = 3 up to symme-try. By contradiction, assume that both f1 and f2are incident to exactly 2 vertices. We deduce thatthe situation is as in Figure 27-right, where we alsoshow a face f incident twice to an edge, which isabsurd by Corollary 4.4.Our claim that x = 3 up to symmetry is proved, so#V (P 0) = #V (P ) and P 0 is minimal too. A �gurevery similar to Figure 25 shows that a triod mustexist in P 0, and allows to conclude as above thateither F is separating or f1 is incident to v3 and v4.So either v3 = v4, which gives the desired conclusion

FIGURE 27. The perturbed disc D0 (left), and a facef doubly incident to an edge (right).

up to symmetry, or fv3; v4g \ fv1; v2g 6= ? (recallthat f1 is incident to exactly 3 vertices). If v3 = v1 orv4 = v2 we get the desired conclusion. Otherwise wecan assume up to symmetry that v1 = v4. So e1 ande4 have a common vertex in P , which implies thatthere is a face incident to both. But e1 is adjacentto f1; f2; g1 and e4 is adjacent to f3; f4; g2, and thefi's and gj 's are distinct, so we get a contradiction.
Proof of Fact 4. If Y is of type A, then e(D0) = 3, soby Fact 1 (and its proof) Y 0 bounds a polyhedron Qof type 3.3 or of type 1, but the latter is impossiblebecause Y 0 is the trace of a torus. We only need toconsider which J1-moves can be applied to a Q oftype 3.3. By Lemma 4.12 the move actually takesplace towards the exterior of Q (that is, its resultcontains 2 vertices of P ). The move is determinedby the edge of @Q which disappears during the move:of the 6 edges in @Q, 3 lead to a situation in whiche(D) = 2, so we exclude them. The other 3 edges areactually symmetric, and the result is a polyhedronof type 3.4.If Y is of type B, then u must be an edge in@2D (otherwise e(D0) = e(D)), so Y 0 is of type A.Moreover Y 0 is the trace of a torus. Combining Fact2 and the part of Fact 4 already established we seethat Y 0 = @Q with Q either of type 3.4 or a M�obiusstrip with two tongues (type 2). However, if wedenote by f 0i the faces of �D0 incident to D0, byLemma 4.12 we have f 0i � fi up to permutation,so the f 0i 's are distinct. This shows that type 2 isimpossible, and again we are left to analyze whatcan we get from a Q of type 3.4 by a move J1 whichtakes place towards the exterior. Of the 6 edges of@Q, 4 lead to a situation in which e(D) = 3, sowe exclude them. The other 2 edges are actuallysymmetric, and the result is type 3.5.
Proof of Fact 5. The �rst step of our proof is theextension of the move Y ! Y 0 to a ow Y ! Y 0 !Y 00 ! � � � ! Y (k) of J1-moves. As mentioned in theproof of Fact 4 we must have u � @1D in this case, sowe assume up to symmetry that u = s1 � @f1, andwe note that Remarks 4.10-4.11 and Lemma 4.12apply. The situation is described in Figure 28.One easily sees that the faces of �D0 incident to@1D0 are f3; f4 and two new ones (one of which iscontained in f2), which we denote by f 01; f 02. If f 01,f 02, f3, f4 are not distinct, the ow is reduced to
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FIGURE 28. Proof of Fact 5.Y ! Y 0, and we move to the next step. Otherwiselet v01; v02 be the ends of e01; e02 (see Figure 28-left). Ifv01 6= v02 then again the ow is reduced to Y ! Y 0.Assume on the contrary that v01 = v02, and considerFigure 28-right. Then either s01 or s02 is containedin lk(v0), but certainly s01 is not, for otherwise Pwould contain an embedded face with two vertices,which is absurd by Corollary 4.4. Setting u0 = s02, weare now in a position to apply a move J1 along thetriangle determined by v01 and u0, getting from Y 0 toY 00. We proceed in a similar way and note that theprocess must come to an end because �D(i) containsone vertex less than �D(i�1) by Lemma 4.12.Our second step is to understand the �nal stageY (k) of our ow. By construction either f (k)1 , f (k)2 ,f3, f4 are not distinct or v(k)1 6= v(k)2 . In the �rst case,since at each step only 1 face not contained in theprevious one is inserted (and 1 is deleted), precisely3 of f (k)1 , f (k)2 , f3, f4 are distinct. We know by Fact2 (and its proof) that Y (k) (which is of type B)bounds a polyhedron Q which is either an annuluswith 2 tongues on opposite sides, or of type 4.1. The�rst case is excluded by what just said about thefi's. By Lemma 4.12, Y bounds Q [Y (k) [Y; Y (k)].Since at each step of the construction of our owthe choice of move J1 was forced, the polyhedron[Y; Y (k)] is de�ned unambiguously (it depends on konly). We only need to explain which edge of @Qdetermines the J1-move which glues Q to [Y; Y (k)].Of the 6 edges, 2 lead to a trace of type A, 2 giverise to an embedded face with 2 edges (excluded byCorollary 4.4) and the other 2 are symmetric, soQ [Y (k) [Y; Y (k)] also depends on k only. It is now aroutine matter to check that indeed Q[Y (k) [Y; Y (k)]is the polyhedron of type 4.2 with k vertices.

Having understood the case where f (k)1 , f (k)2 , f3, f4are not distinct, we assume that they are. The restof the proof is devoted to showing that it is actuallyimpossible that v(k)1 6= v(k)2 . Let us �rst assume thatv3 6= v4. By Fact 3 we then have v1 = v3 up to sym-metry, and we can apply a move J1 which reducese(D). Fact 4 shows that Y (k) bounds a polyhedronQ of type 3.4 or 3.5, but @Q is of type B, so it mustbe of type 3.5. Once again we must analyze the pos-sible results of a move J1, towards the exterior of aQ of type 3.5. Of the 6 edges of @Q, 2 lead to a traceof type A, and therefore are excluded. The 4 otheredges come in 2 symmetric pairs. For one type, theresult of the move J1 contains an embedded facewith 3 vertices, which is absurd by Corollary 4.4.For the other type, the result contains an embed-ded face with 4 vertices. We can then apply a disc-replacement move as in Figure 10, getting a newminimal skeleton P 0 of (M;X). The evolution ofthe singular set is shown in Figure 29, where thetwo white dots lie on some �i, the black dots arevertices, and the gray dots lie on Y . Since the edgesleaving �i end at the same vertex, a J1-move trans-forms �i into a triod which is not boundary-parallel.This contradicts Proposition 4.3.We are left to deal with the case where f (k)1 , f (k)2 ,f3, f4 are distinct, v(k)1 6= v(k)2 , and v3 = v4. In thiscase we can perform a J1-move along either s3 ors4, and we can proceed just as above, constructing

FIGURE 29. Proof of Fact 5, continued.
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a ow Y (k) ! Y (k+1) ! � � � ! Y (k+h). During thisprocess the faces f (k)1 ; f (k)2 , and the vertices v(k)1 ; v(k)2remain una�ected, while f3; f4; v3 = v4 get trans-formed into f (h)3 ; f (h)4 ; v(h)3 ; v(h)4 . As above, we haveat the end of the sequence either that f (k)1 , f (k)2 , f (h)3 ,f (h)4 are not distinct or that v(h)3 6= v(h)4 . In the �rstcase, Fact 2 implies that Y (k+h) bounds a polyhe-dron of type 2 or 4.1. Such a polyhedron has at most1 vertex, but �D(k+h) contains at least v(k)1 6= v(k)2 ,and we get a contradiction. In the second case weare precisely in the situation v3 6= v4 previously con-sidered, and again we get a contradiction.This concludes the proof of Theorem 4.14. �
4E. Conclusion of the ProofsIf Y is a trace in P , we denote by PY the polyhedronP n R(Y ).
Proof of Theorem 3.3. Let P be a minimal skeleton of(M;X). By Corollary 2.8 we have c(M;X) > 0, soP is standard. Suppose a face f of P is incident to@P in at least two distinct edges e � �i and e0 � �i0 .We note that i 6= i0 by Lemma 2.14, and choose anarc � in f having one end on e and one on e0. ThenY = @R(�i [ �i0 [ �) is a trace with 4 vertices of asurface F . Moreover PY = P1 t P2 is disconnected,so F separates M and hence it is orientable. Let P2be the component containing �.The graph Y is of type B (see Figure 20) and P2has 3 boundary components (namely, �i, �i0 , andY ). Now either P1 or P2 is of one of the types listedby Theorem 4.14, but no such type has 3 boundarycomponents, so P1 must be of one such type. Theonly polyhedra among those listed in Theorem 4.14having at least one vertex and boundary of type Bare those of type 3.5 (Figure 18) and 4 (Figure 19).If P1 is of type 3.5 then P is the skeleton of B4, andif P1 is of type 4 with 1 vertex then P is the skeletonof B3. Otherwise P1 is of type 4 with k � 2 vertices,and the two edges of S(P ) adjacent to �i have acommon endpoint. It easily follows that via a J1-move we can transform �i into a triod which is notboundary-parallel and is the trace of a separatingtorus. This contradicts Proposition 4.3. �
Proof of Theorem 3.5. Set L = f1; : : : ; ng, wherei is the core of the M�obius strip with one tongueattached to �i � @P . By Theorem 3.3, even if we

modify each i within its isotopy class, the i's staydisjoint. Moreover, each R(i) is a M�obius strip withone tongue. Therefore it is enough to show that Lis a set of representatives of length-1 loops in Q. Ifnot, there is a length-1 loop  not isotopic to any i.If  is disjoint from all i's, then  � P , so a faceof P is doubly incident to some edge, and we geta contradiction to Corollary 4.4. If  meets somei then, by Theorem 3.3, it meets only one, and wecan assume that \i is one point away from S(Q).Set R = RQ( [ i). We need now to distinguishtwo cases, depending on whether RQ() is a M�obiusstrip or an annulus with one tongue. In the �rstcase there exists a curve � contained in @R, andtherefore in P , such that l(�) = 2 and � bounds anexternal disc (� is homologous to  + i in R). ByTheorem 3.8 � is fake, and it easily follows that is isotopic to i.Assume now that RQ() is an annulus with onetongue. Note that @R � P is a trace with 4 ver-tices of a separating, and hence orientable, surfaceF . Moreover @R is of type A, so, by Theorem 4.14,@R bounds in P a polyhedron S of type 1.1, 3.3, 3.4,or 2 based on a M�obius strip. But R \ P is not ofsuch a type, so the rest of P is, hence #V (P ) � 1.But B1�1 = fB0; : : : ; B3g, and we are done. �Before proving Theorem 3.7 we establish a generalfact.
Lemma 4.15. Let Q be a �lling of a minimal skele-ton P of a brick distinct from B0, B1, B2, B3, B4.Let fe1; : : : ; e2mg be a set of edges which disconnectsS(Q) in two components . Then there is a trace Ycontained in P which has 2m vertices pi 2 ei fori = 1; : : : ; 2m, and Y is the trace of an orientableseparating surface.
Proof. Take points pi 2 ei; we have S(Q) n fpig =K1 t K2. Let f be a face of Q incident to someei. The gluing path of @f to S(Q) can be split intoarcs s1; : : : s2� , meeting at points q1; : : : ; q2� , wheres2j+1 � K1 and s2j � K2 for all j, and each qkis glued to one p�(k). The map � is not necessarilyinjective, since f can be multiply incident to an edgeei. We can give the points qk alternating (red andblack) colors.Since P = Q n R(L(Q)) is superstandard, f canintersect at most one loop  among those in L(Q).
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Now take � pairwise disjoint segments �1; : : : ; �� ,properly embedded in f , such that�[j=1 @�j = 2�[k=1 qk:We can ask the �j 's to be disjoint from , since thepoints on @f are separated into two even subsets by. It is easy to see that the two endpoints of each�j automatically have distinct colours. If we do thisfor each face f incident to some ei, the union of allthe chosen segments is a trace Y disjoint from L(Q)and hence contained in P .We claim that Y has a product regular neighbour-hood in P : take for i = 1; : : : ; 2m a vector vi at pi,tangent to ei and directed towards K2. Each seg-ment of Y is a �j , properly embedded in a face fsuch that @�j consists of points with distinct colors.It follows that the vectors at the ends of �j extendalong �j to a non-vanishing �eld tangent to f . Theexistence of such a �eld on Y easily implies that Fis orientable and that F cuts M into two compo-nents. �
Proof of Theorem 3.7. Suppose S(Q) contains a pairfe0; e1g of separating edges. By Lemma 4.15 there isa trace Y of a separating (and hence orientable) sur-face F with two vertices, intersecting both e0 and e1.Proposition 4.3 applies, and possibility (1) is ruledout because F separates. Both other possibilitiesimply that the vertices of Y lie on the same edge ofQ, but e0 6= e1 by assumption.Suppose S(Q) contains a separating quadruplefe0; e1; e2; e3g of edges. By Lemma 4.15 there is atrace Y of a separating (and hence orientable) sur-face with 4 vertices intersecting them. If Y is con-nected then Theorem 4.14 applies, and we are donebecause the singular sets of polyhedra of types 1-4indeed are as shown in Figure 5. If Y = Y0 t Y1,then Y0 is a trace with two vertices to which Propo-sition 4.3 applies. Now possibility (1) is ruled outeither because every torus in M is separating or byTheorem 4.6, and as above the other two possibili-ties lead to a contradiction. �
5. BRICKS AND SKELETA UP TO COMPLEXITY 9We provide in this section a complete description ofthe bricks in Bn for n � 9 anticipated in Section 1B.

Recall that Bn was split as B0n tB1n, where B0n con-sists of the elements of Bn without boundary. Wedescribe now B1�9, postponing B0�9 for a moment,because to discuss it we will �rst need to introducea new move on skeleta.Our computations show that the set B1�9 consistsof 11 bricks B0; : : : ; B10. Moreover, for i � 9 thereis a unique minimal skeleton of Bi, while for i = 10there are two. Minimal skeleta for B0; : : : ; B4 wereshown in Figures 2 and 4, and for B5; : : : ; B10 theyare now shown in Figure 30.

FIGURE 30. Minimal skeleta for B5; : : : B10.
Using Remark 4.13, in this �gure we only draw@RP (S(P )), and we use a thicker line for the Y -shaped portions of RP (S(P )) lying on @P . Eachcomponent of @Bi contains two such Y 's (shownclose to each other when @Bi has more than onecomponent).Having described B0; : : : ; B10, we can now proveProposition 1.5.
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Proof of Proposition 1.5. Suppose (M;?) is a sharpassembling of Bi with i � 6 and some B2's and B3's.Since c(M) � 9, one B3 can occur if i = 6 only.Let Pi be the minimal skeleton of Bi shown in Fig-ure 30. A minimal skeleton P for M is then a �llingof Pi, possibly after glueing one copy of the minimalskeleton of B3 if i = 6. If we check all the polyhedrawhich can be built in this way, we see that manyof them contain embedded faces with no more than3 vertices, which contradicts Theorem 3.8. Only 16of them do not contain such a face. Now 9 of these16 are shown to be nonminimal by checking thatsmall faces appear after suitable disc-replacementmoves. The 7 polyhedra left out are skeleta of the4 mentioned hyperbolic manifolds (there are someduplicates). �
5A. TwistsWe introduce here a notion needed below to describeB0�9. Let P be a quasi-standard skeleton of a closedmanifold (M;?), and let  be a length-2 loop in Psuch that R() is an annulus with 2 tongues. For k �1 letWk be the polyhedron of type 4 with k vertices(Figure 19). The boundaries @R() and @Wk arehomeomorphic (of type B). We can then choosea homeomorphism  : @Wk ! @R() and form apolyhedron Pk = �P n R()� [ Wk. Note now thatWk naturally sits in a solid torus H , with @Wk =Wk \ @H .
Proposition 5.1. The homeomorphism  : @Wk !@R() can be chosen so that it extends to a homeo-morphism 	 : @H ! @RM(). For these choices Pkis a skeleton of the Dehn surgered manifold Mk =�M n RM()� [	 H .

Proof. The �rst assertion is easy and we take it forgranted. By construction Pk sits in Mk and it issimple, so we only need to show that Mk n Pk is anopen 3-ball. To this end we note that M n �P [RM()� is a ball B. Moreover @H n @W consists oftwo discs D0 and D00, and H n (@H [ W ) consistsof two balls B0 and B00, with @B0 \ @H = D0 and@B00 \ @H = D00. So Mk nPk = B [	jD0 B0 [	jD00 B00is a ball. �We say that Pk is obtained from P by a k-twist along, and we adopt the convention that making a 0-twist means leaving P una�ected.
5B. Closed Bricks up to Complexity 9Our computations show that the set B0�9 consists of19 bricks which belong to the union of two classesfCi;jg and fEkg. We describe here these manifoldsand minimal skeleta ~Ci;j and ~Ek of them. (As op-posed to the case of B1n�9, minimal skeleta are oftennot unique in B0n�9.) The polyhedron ~C0;0 of Fig-ure 31-left is a skeleton of (S2 � S1;?) and it con-tains 2 length-2 loops  and �, shown in Figure 31-left, such that S2 � S1 n RS2�S1( [ �) �= (A; (2; 1)),where A is the annulus. Both R ~C0;0() and R ~C0;0(�)are annuli with two tongues on di�erent sides. Wecan therefore perform an i-twist along  and a j-twist along �. If we do this with appropriate gluingmaps we get the skeleton shown in Figure 31-right,which we denote by ~Ci;j.Using Proposition 5.1 it is not hard to check that~Ci;j is a skeleton of the Seifert manifoldCi;j = �S2; (2; 1); (1+i; 1); (1+j; 1); (1;�1)�:We have Ci;j = Cj;i for all i; j.

FIGURE 31. The length-2 loops  and � in ~C0;0 and the skeleton ~Ci;j .
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FIGURE 32. The skeleta ~E0 and ~Ek.Poincar�e's homology sphere�S2; (2; 1); (3; 1); (5; 1); (1;�1)�has a unique minimal skeleton ~E0 (Figure 32-left).For any pair of non-adjacent edges of S( ~E0) there isa length-2 loop  intersecting them, isotopic to thesingular �ber (5; 1). Since R() is an annulus withtwo tongues, we can perform a k-twist along . If wedo this with an appropriate gluing map we get theskeleton shown in Figure 32-right, which we denoteby ~Ek. Each ~Ek turns out to be a skeleton of themanifold Ek = �S2; (2; 1); (3; 1); (5+k; 1); (1;�1)�.It is worth mentioning here that the minimal skele-ton of the brick B5 may be obtained from ~E0 by anoperation similar to a k-twist along , except thatthe polyhedron of type 3.5 (Figure 18) is employedinstead of Wk.The set B0�9 consists of all manifolds Ci;j and Ekwith k � 0 and i � j � 1 having at most 9 ver-tices (so k � 4 and i+ j � 9), except the casesk = 1 and (i � 4; j = 2). The skeleton ~E1 is in-deed minimal, but the associated manifold is not abrick, since it lies in hB0iself . This is consistent withthe fact that �S2; (2; 1); (3; 1); (6; 1); (1;�1)� �bersover S1 with torus �ber. Each ~Ci;0 is minimal (fori � 9), but the corresponding manifold is containedin hB2; B3inonself . Each ~Ci;2 for i � 4 is not minimal,since ~Ei�4 is a skeleton of the same manifold�S2; (2; 1); (3; 1); (i; 1); (1;�1)�with one fewer vertex.
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