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We determine the full list of anticanonically embedded qua-
sismooth Fano hypersurfaces in weighted projective 4-spaces.
There are 48 infinite series and 4442 sporadic examples. In par-
ticular, the Reid-Fletcher list of 95 types of anticanonically em-
bedded quasismooth terminal Fano threefolds in weighted pro-
jective 4-spaces is complete.

We also prove that many of these Fano hypersurfaces admit a
K&hler-Einstein metric, and study the nonexistence of tigers on
these Fano 3-folds.

Finally, we prove that there are only finitely many families of
quasismooth Calabi-Yau hypersurfaces in weighted projective
spaces of any given dimension. This implies finiteness for vari-
ous families of general type hypersurfaces.

1. INTRODUCTION

A Fano wvariety is a projective variety whose anti-
canonical class is ample. A 2-dimensional Fano va-
riety is called a del Pezzo surface. In higher dimen-
sions, attention originally centered on smooth Fano
3-folds, but singular Fano varieties are also of con-
siderable interest in connection with the minimal
model program. The existence of K&hler—Einstein
metrics on Fano varieties has also been explored;
see [Bourguignon 1997] for a summary of the main
results. Here again the smooth case is of primary in-
terest, but Fano varieties with quotient singularities

and their orbifold metrics have also been studied.
In a given dimension there are only finitely many
families of smooth Fano varieties [Campana 1991;
Nadel 1991; Kolldr et al. 1992b], but very little is
known about them in dimensions 4 and up. By al-
lowing singularities, infinitely many families appear

and their distribution is very poorly understood.
For a natural experimental testing ground, we
turn to hypersurfaces and complete intersections in
weighted projective spaces. These varieties can be
written down rather explicitly, but they still pro-
vide many more examples than ordinary projective
(© A K Peters, Ltd.
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spaces. Experimental lists of certain three-dimen-
sional complete intersections were compiled in [Iano-
Fletcher 1989]. In connection with Kéahler—Einstein
metrics, the 2-dimensional cases were first investi-
gated in [Demailly and Kolldr 1999] and later in
[Johnson and Kollar 2000].

It is also of interest to study Calabi—Yau hypersur-
faces and hypersurfaces of general type in weighted
projective spaces. Some lists with terminal singu-
larities appear in [lano-Fletcher 1989).

The aim of this paper is threefold.

First, we determine the complete list of anticanon-
ically embedded quasismooth Fano hypersurfaces in
weighted projective 4-spaces. There are 48 infinite
series and 4442 sporadic examples (Theorem 2.2).
As a consequence we obtain that the Reid—Fletcher
list [Iano-Fletcher 1989, I1.6.6] of 95 types of an-
ticanonically embedded quasismooth terminal Fano
threefolds in weighted projective 4-spaces is com-
plete (Corollary 2.5).

Second, we prove that many of these Fano hyper-
surfaces admit a Kahler-Einstein metric (Corollary
3.4). We also study the nonexistence of tigers on
these Fano 3-folds (the colorful terminology comes
from [Keel and McKernan 1999)).

Third, we prove that there are only finitely many
families of quasismooth Calabi—Yau hypersurfaces
in weighted projective spaces of any given dimen-
sion (Theorem 4.1). This implies finiteness for vari-
ous families of general type hypersurfaces (Corollary
4.3).

Definition 1.1. For positive integers a; we denote by
P(ag,...,a,) the weighted projective n-space with
weights ay,...,a,. (See [Dolgachev 1982] or [Iano-
Fletcher 1989] for basic definitions and results on
weighted projective spaces.) We always assume that
any n of the a; are relatively prime. We frequently
write P to denote a weighted projective n-space if
the weights are irrelevant or clear from the con-
text. We use x, ..., z, to denote the corresponding
weighted projective coordinates. We denote by

PiE]P’(aO,...,an)

the point all of whose coordinates are 0 except for
the i-th one. These points are sometimes called the
vertices of the weighted projective space. (They are
uniquely determined if none of the a; divides any

other.) The affine chart where z; # 0 can be written
as
(1-1)

C™(Yos--sYiyeesUn)/La,(Agy- ey Qi yp).

(Here and later ~ denotes an omitted coordinate.)
This shorthand denotes the quotient of C" by the
action

7yn) H (any()’ tee 7@:7 tee ’Eanyn)’

(yo,...,g\i,...

where ¢ is a primitive a;-th root of unity. The iden-
tification is given by yi* = 2§* /7. (1-1) are called
the orbifold charts on P(ay,...,a,).

For any i, P(ao,...,a,) has an index a; quotient
singularity at P;. For any i < j, if

ged(ao, o @iy ey Gy, ) > 1,

then P(ag,...,a,) has a quotient singularity along
(x; = ®; = 0). These give all the codimension 2
singular subsets of P(aq,...,a,).

For every m € 7Z there is a rank 1 sheaf Op(m)
which is locally free only if a;|m for every i. A ba-
sis of the space of sections of Op(m) is given by all
monomials in zg,...,x, with weighted degree m.
Thus Op(m) may have no sections for some m > 0.

2. ANTICANONICALLY EMBEDDED QUASISMOOTH
FANO HYPERSURFACES

Let X € |Op(m)| be a hypersurface of degree m.
The adjunction formula

KX = OP(KP+X)|X = Op(m— (a0+---+an))|x

holds if X does not contain any of the codimension

2 singular subsets. If this condition is satisfied then
X is a Fano variety ifft m < ag+---+a,. Frequently
the most interesting cases are when m is as large as
possible. Thus we consider the case X; € |Op(d)|
for d = a9+ -+ a, — 1. Such an X is called
anticanonically embedded.

In most cases, all hypersurfaces of a given de-
gree d are singular and pass through some of the
vertices P;. In these cases the best one can hope
is that a general hypersurface Xy is smooth in the
orbifold sense, called quasismooth. At the vertex P;
this means that the preimage of X, in the orbifold
chart C"(yo,-.-,¥i,---,Yn) is smooth. In terms of
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the monomials of degree d this is equivalent to say-
ing that
For every i there is a j and a

monomial z}"z; of degree d. 1)

j =1 is allowed, corresponding to the case when the
general Xy does not pass through P,. The condi-
tion that X; does not contain any of the singular
codimension 2 subsets is equivalent to

If ged(ag,.--,Gi,. ., a5,...,a,) > 1
there is a monomial of degree d not
involving x;, z;.

(2-2)

For n > 3, these are the two most important special
cases of the general quasismoothness condition:

For every I C{0,...,n} thereis an in-

jection e : I < {0,...,n} and mono-

. mij; (2-3)
mials z.;) HjeI x; v of degree d for
every i € I.

Remark 2.1. The quasi-smoothness condition in [Iano-
Fletcher 1989, I.5.1] says that

For every I C {0,...,n} either (2-3)
holds or there is a monomial [, x?j (2-3"
of degree d.

The two versions are, however, equivalent. We prove
this by induction on |I|. Indeed, assume that there
is a monomial [[,, iE?j of degree d and let I' C
I be all the indices which are involved in at least
one such monomial. By induction (2-3) holds for
I'\ I', giving monomials g [[;c\ v :c;)’ forie I\
I'. By assumption these e(i) are not in I, so we
can choose I' Ue(I \ I') as the image of e : [ —
{0,...,n}. (A suitable reordering of the values of e
may be necessary.)

The computer searches carried out in connection
with [Iano-Fletcher 1989; Demailly and Kollar 1999]
looked at values of a; in a certain range to find the
a; satisfying the constraints (2-1) to (2-3). This ap-
proach starts with the a;, and views (2-1) to (2-3)
as linear equations in the unknown nonnegative in-
tegers m;, m;;. In the cases studied in those two
works these searches seemed exhaustive. Aside from
one series of examples, the computers produced so-
lutions for low values of the a; and then did not find
any more as the range of the allowable values was
extended. This of course does not ever lead to a
proof that the lists were complete.

A similar search for quasismooth Fano hypersur-
faces in weighted projective 4-spaces is quite time
consuming. With some reasonably large bounds,
say a; a few hundred, the programs run for days
and they produce a few thousand examples. We
were unable to isolate the series from these lists. The
finiteness of the sporadic examples was also unclear.
While there were few examples with large min{a;},
there did not seem to be an end to the list. In-
deed, it is quite unlikely that any systematic search
of this kind could have discovered the example with
the largest ao:

(407,547,5311, 12528, 18792)
with monomials
Iia q"ga ming, JUOHU;; mglmla

or the beautiful pair of sporadic examples with the
largest ay:

(223,9101, 46837, 112320, 168480)

with monomials

2 .3 7 37,1301
Ty, Ty, T1Ty, ToZy , Ty T2,

and
(253,7807,48101, 112320, 168480)

with monomials

2 3 37 7 1301
Ty, Tz, T1 T2, ToLy, T ZIq.

The biggest values of a, are of some interest in con-
nection with the conjectures of [Shokurov 2000, 1.3].
Next we describe the computer programs that led
to the list of anticanonically embedded quasismooth
Fano hypersurfaces in weighted projective 4-spaces.
The programs, written in C, are available at the
address www.math.princeton.edu/~jmjohnso.

2A. Preliminary Steps

In order to find all solutions, we change the point of
view. We consider (2-1) to be the main constraint
with coeflicients m; and unknowns a;. The corre-
sponding equations can then be written as a linear
system

(M+J+U)(a/0 a; Qo A3 a4)t = (—1 -1 -1 -1 —1)t

(2-4)
where M = diag(mg, my, ma, m3,my) is a diagonal
matrix, J is a matrix with all entries —1 and U is
a matrix where each row has 4 entries = 0 and one
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entry = 1. The main advantage is that some of the
m; can be bounded a priori. Assume for simplicity
that ag < a; <--- < ay.

Consider for instance m4. The relevant equation is

m4a4+ae(4):a0+a1+a2+a3+a4—1.

Since a4 is the biggest, we get right away that 1 <
m3 < 3. Arguing inductively with some case analy-
sis we obtain

3<my<16, 2<m3<6, 1<my<3 (2-5)

Thus we have only finitely many possibilities for
the matrix U and the numbers ms, m3, m4. Fixing
these values, we obtain a linear system

(M+J+U)(a0 aq Ao as a4)t = ( —1-1-1-1 —].)t,

where the only variable coeflicients are mg, m; in the
upper left corner of M. Solving these formally we
obtain

o — apmy + Bo ’
Y2momy +Yomo +y1m1 +9

a, = a1mg + Gy ‘
Y2Momy + Yoo +y1my +9

where the «;, 6;,7;, 6 depend only on U, ma, m3, my.

We distinguish 3 cases. The first one is the main
source of examples. Cases 2 and 3 are anomalies
from the point of view of our method. In both cases
we ended up experimentally finding strong restric-
tions on the a;. Even with hindsight we do not know
how to prove these a priori.

Case 1: 5 # 0. In this case the absolute value of

aymy + ﬁo
Yamomy + Yoo + Y1y + 0

goes to zero as mg, m; go to infinity. It is not hard
to write down the precise condition and a computer
check shows that
aomy + Bo >1
Y2Mmomy + Yomo + y1my + 9

implies
min{mg, m; } < 83.
Case 2: v, = 0 and voy; # 0. It turns out that if this

holds then ~yv; > 0 and ag, a; are bounded by 8 for
min{mg, m;} > 36. Moreover, the 3 linear forms

agmy + Bo, armo + B, Yomo +y1my + 6

are dependent. This implies that
07180 + QpYol1 = QO

A computer search shows that this is possible only
ifag=a; = 1.

Case 3: v, = 0 and ~y7y; = 0. It turns out that one of
aomy + By, anmg + B1 equals yomo +y1my + 6. Thus
ao = 1 or a; = 1. Moreover, we also see by explicit
computation that one of the following holds:

1 _ 1
0/2—50/3—_61/4.

1
Az = a3 = 504, 3

ay = a3 = Qg4,

2B. Main Computer Search

Here we discuss the main case when, in addition to
the inequalities (2-5) we also assume that 3 < m; <
83. In this case the system (2-4) reduces to a single
unknown myg. This is very similar to the 4-variable
case discussed in [Johnson and Kollar 2000].

We solve formally for aq to get

Yo

Qg — ———————
0 moa—i—ﬁ

where «, 3,7 depend only on U and m, ms, ms, my.
If @ # 0 then we get a bound on mg too, and we
are down to finitely many possibilities all together.
There are 403,455 cases of this. The resulting solu-
tions need considerable cleaning up. Many of them
occur multiply and we also have to check the other
conditions, (2-2) and (2-3). Discarding repetitions,
we get 15757 cases, out of which 4594 are quasis-
mooth.

If & = 0 then we get a series solution where the
a; are linear functions of a variable my. There are
550,122 cases of this. Here the main difficulty is that
the program does not produce the series in a neat
form. Usually one series is put together out of many
pieces according to some congruence condition.

2C. Additional Cases

Assume first that we are in Case 2 of Section 2A.
Since a9 = a; = 1, the numbers aq, as,a3,a,4 and
d = a1 +as+as+ a4 satisfy the numerical conditions
(2-3). This leads to a lower dimensional problem
which is easy to solve.

Case 3 of Section 2A is even easier. We get solu-
tions of the form

(1,a,b,b,b), (1,a,b,b,2b), or (1,a,b,2b,3b).
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Applying (2-3) to I = {2, 3,4} gives that bla. Thus
b divides all but one of the weights, so b = 1. This
implies that a < 6. At any case, all these appear
also under Case 2 of Section 2A.

At the end we obtain our first main result:

Theorem 2.2. The following is a complete list of an-
ticanonically embedded quasismooth Fano hypersur-
faces in weighted projective 4-spaces:

1. 48 infinite series of the form
Xok(by+ba+bs) CIP’(2, kby, kby, kbs, k(b1+b2—i—b3)—1)

for k=1,3,5,.... The occurring 3-tuples by, b,
bs are described in Remark 2.3.

2. 4442 sporadic examples whose list is available at
www.math.princeton.edu/~jmjohnso.

2D. An Error Check

We wrote a program that looked at all 5-tuples sat-
isfying

ao < 100, a; <200, as <200, az < 400, a4 < 600.

The program ran for 4 days and produced 3610 qua-
sismooth examples, all in complete agreement with
the correspondingly truncated list of 4442 sporadic
examples.

Remark 2.3. It turns out that a 3-tuple by, by, b3 ap-
pears in Theorem 2.2(1) iff | —2K| of P(by, bo, b3) has
a quasismooth member. The list of these is implicit
in Reid’s list of 95 families of singular K3 surfaces
in weighted projective 3-spaces. In [lano-Fletcher
1989, I1.3.3] they correspond to those quadruplets
(b1,ba, b3, by) for which by = by + by + b3. Our 48 3-
tuples occured explicitly in [Yonemura 1990; Tomari
2000] in connection with the study of simple K3 sin-
gularities of multiplicity 2.

One direction of this observation is easy to estab-
lish in all dimensions.

Lemma 2.4. Assume that |-2K| of P(by,...,b,) has a
quasismooth member. Then the general anticanoni-
cally embedded Fano hypersurface in

P(2,kby, ... kb, k(by +---+b,) — 1)
is quasismooth for k =1,3,5,....

We conjecture that conversely, every infinite series is
of this form. It is interesting that every quasismooth
hypersurface in P(2, kby, ..., kb,, k(by+---+b,)—1)

has a singular set of codimension 2. Thus the pre-
ceding conjecture would imply that for every n > 4
there are only finitely many anticanonically embed-
ded quasismooth Fano hypersurfaces with isolated
singularities in weighted projective n-spaces.

It is not hard to check which of the above Fano
threefolds have terminal singularities. The families
in Theorem 2.2(1) always have nonisolated singular-
ities, and for the remaining cases the conditions of
[Ilano-Fletcher 1989, I1.4.1] work. As a consequence,
we obtain the following corollary. (Reid informed us
that he also has an unpublished proof of this.)

Corollary 2.5. The Reid—Fletcher list of 95 families
of anticanonically embedded quasismooth terminal

Fano threefolds in weighted projective 4-spaces [lano-
Fletcher 1989, 11.6.6] is complete. O

3. KAHLER-EINSTEIN METRICS AND THE
NONEXISTENCE OF TIGERS

Next we study the existence of Kdhler—Einstein met-
rics and the nonexistence of tigers on our Fano hy-
persurfaces. After some definitions we recall the cri-
terion established in [Johnson and Kolldr 2000]. In
the case of Kdhler—Einstein metrics this in turn re-
lies on earlier work of [Nadel 1990; Demailly and
Kollar 1999].

Definition 3.1. Let X be a normal variety and D a Q-
divisor on X. Assume for simplicity that Ky and D
are both Q-Cartier. Let g : Y — X be any proper
birational morphism, Y smooth. Then there is a
unique Q-divisor Dy = > e;E; on Y such that

Ky + Dy =g (Kx+ D) and g.Dy =D.
We say that (X, D) is kit if e; > —1 for all g and
i. We call (X, D) log canonical if e; > —1 for all g
and 7. See [Kollar and Mori 1998, Section 2.3], for
instance, for a detailed introduction.

Definition 3.2 [Keel and McKernan 1999]. Let X be
a normal variety. A tiger on X is an effective Q-
divisor D such that D = —Kx and (X, D) is not
klt. As illustrated in [Keel and McKernan 1999], the
tigers carry important information about birational
transformations of log del Pezzo surfaces. They are
expected to play a similar role in higher dimensions.
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Proposition 3.3 [Johnson and Kollar 2000]. Let X, C
P(ag,...,a,) be a quasismooth hypersurface of de-
greed=ag+ -+ a, — 1.

1. X does not have a tiger if d < aga,.
2. X admits a Kdhler—FEinstein metric if

. O
1 Gpay

Corollary 3.4. Of the sporadic series of quasismooth
Fano hypersurfaces mentioned in Theorem 2.2(2),
there are 1605 types where none of the members have
a tiger and 1936 types where every member admits

a Kahler—FEinstein metric. This information is con-
tained in the list of Theorem 2.2(2).

n
d<
n

4. CALABI-YAU HYPERSURFACES

Finally we study the case of Calabi—Yau hypersur-
faces and hypersurfaces of general type in weighted
projective spaces. For these cases there are finite-
ness results in all dimensions. The key part is the
case of Calabi—Yau hypersurfaces.

Theorem 4.1. For any n there are only finitely many
types of quasismooth hypersurfaces with trivial can-
onical class in weighted projective spaces

P(ag,...,a,).

Proof. As in the Fano case, first we look at those
hypersurfaces which are quasismooth at the vertices
of P(ao,...,a,). This condition is equivalent to a
linear system of equations

(M +J+U)(ag,---,a,)" = (0,...,0)"  (4-1)

where M = diag(my,...,m,) is a diagonal matrix,
J is a matrix with all entries —1 and U is a matrix
where each row has n entries = 0 and one entry = 1.
In the geometric setting the m; and the a; are pos-
itive integers, but it will be convenient to allow the
a; to be positive real numbers. By the homogenity
of the system we may assume that > a; = 1.
Assume now that we have an infinite sequence of
solutions (ag(t), ..., a,(t)) where a priori M(t), J(t),
U(t) also vary with t. By passing to a subsequence
we may assume that J(¢) and U(t) are constant and
each a;(t) converges to a value A;. Thus we can
write a;(t) = A; + ¢;(t) where lim; . ¢;(t) = 0,
>;A;=1and )  ¢(t) = 0. By passing to a sub-
sequence and rearranging, we can also assume that

I := {i : ¢;(t) < 0} is independent of ¢ and that
Ap/(—co(t)) is the smallest positive number among
{A;/(=ei(t)) : © € I}. The quasismoothness con-
dition at the vertex P, translates into mg(t)ao(t) +
a;(t) = 1. We have lim; ,, ao(t) = Ay > 0 since
co(t) < 0, hence mq(t) is bounded from above. Thus
we may assume that mg(t) = mq is constant and

tlim moco(t) + ¢;(t) = 0.
moao(t) + a;(t) =1 is equivalent to
[moAg + Aj] + [moco(t) + ¢;(¢)] = 1.

By the above considerations, (4-2) splits into two
equations

(4-2)

moAo+ A; =1 and moco(t) +¢;(t) =0. (4-3)

Using >, ¢;(t) = 0 and the second equation in (4-3)
we obtain that

Zci(t) = — Zci(t) < —¢(?)

i€l igl

= MyCo (t) (4—4)

Multiplying by Ag/co(t) and using the special choice
of Ag/co(t) we get that

moeAy < ch

iel

Z A (45
Combining with the first equation of (4-3) we get
that

1=modo+A; <A+ A <Y Ai=1 (46
iel 1=0

This implies that all inequalities in (4-4), (4-5) and
(4-6) are equalities. Hence Ay,cy(t) are zero for
k ¢ TU{j}. By assumption the a;(t) are positive,
so IU{j} ={0,...,n}. Moreover, the ratios A;/c;(t)
are all the same for 7 € 1.

These imply that, up to rearranging the indices,
the a;(t) are of the form

(Ao(1—c(t)), ..., An_1(1—c(t)),
Consider next the equation
M (Ante(t)31ng Ai) +A4;(1—c(t) = 1,

where for notational simplicity we allow 7 = —1 with
A _; = 0. For large t this implies that Z?;OIAZ» = Aj,

Apte(t) Y10 A).

which is not possible for n > 2. Thus A, = 0 and
the solutions become
(Ag(L = c(t)), ..., Aui(1 = c(t)), (b))  (4-7)
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where ZZ.":_OI A; = 1. To get quasismoothness, we
need to understand all monomials of degree Y a;,
which amounts to finding all integer solutions of
> b;a; = 1. In our case, for large t there are no
solutions with b, = 0 which means that every hy-
persurface of degree ) a; contains the hyperplane
(z, = 0), hence they are all reducible. Thus the
solutions (4-7) do not correspond to quasismooth

hypersurfaces. O

Remark 4.2. The solutions (4-7) do correspond to
interesting series of singularities. Namely, for ev-
ery integer solution of Z;:Ol 1/m; = 1 they give an
infinite series of singularities

(g 4+ +ap it +2h)z, =0 C AT

for k =1,2,.... These singularities are weighted ho-
mogeneous and semi log canonical (see [Kollar et al.
1992a, 16.2.1] for the definition) but not isolated.
By adding a general higher degree term, we get iso-
lated log canonical singularities.

Corollary 4.3. For any n and k > 0 there are only
finitely many families of quasismooth hypersurfaces
X C P(ag,...,a,) such that wx = Ox (k).

Proof. Assume that
X = (F(zo,...,zn) =0) C P(ag,...,a,)

is quasismooth of degree d and wx = Ox (k). Then

X* = (F(zo,...,2n) + 2% 4+ 42l ,=0)
C P(ag,...,an,1,...,1)
——
k times

is also quasismooth of degree d and wy =2 Ox. Thus
we are done by Theorem 4.1. O

Remark 4.4. The finiteness result (Corollary 4.3) is in
accordance with the conjectures [Kollar et al. 1992a,
18.16]. On the other hand, Theorem 4.1 seems to
be a more special finiteness assertion.
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ELECTRONIC AVAILABILITY

The computer programs that led to the list of anti-
canonically embedded quasismooth Fano hypersur-
faces in weighted projective 4-spaces can be found at

www.math.princeton.edu/~jmjohnso, together with
the list itself.
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