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It is known that if the period s(d) of the continued fraction expan-

sion of
p

d satisfies s(d) � 2, then all Newton’s approximants

Rn =
1

2

�pn

qn

+
dqn

pn

�
are convergents of

p
d, and moreover Rn = p2n+1/ q2n+1 for all

n � 0. Motivated by this fact we define j = j(d, n) by Rn =

p2n+1+2j / q2n+1+2j if Rn is a convergent of
p

d, and define b = b(d)

by b =
��fn : 0 � n � s�1 and Rn is a convergent of

p
dg��.

The question is how large jjj and b can be. We prove that jjj
is unbounded and give some examples supporting a conjecture

that b is unbounded too. We also discuss the magnitude of jjj
and b compared with d and s(d).

1. INTRODUCTIONLet d be a positive integer which is not a perfectsquare. The simple continued fraction expansion ofpd has the formpd = [a0; a1; a2; : : : ; as�1; 2a0]:Here s = s(d) denotes the length of the shortest pe-riod in the expansion of pd. Moreover, the sequencea1; : : : ; as�1 is symmetrical, that is, ai = as�i fori = 1; : : : ; s� 1.This expansion can be obtained using the follow-ing algorithm [Sierpi�nski 1987, p. 319]:
a0 = bpdc; b1 = a0; c1 = d� a20;an�1 = ja0+ bn�1cn�1 k;bn = an�1cn�1� bn�1;cn = d� b2ncn�1 for n � 2.

(1–1)
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Let pn=qn be the n-th convergent of pd. Then1(an+1+2)q2n < ���pd� pnqn ��� < 1an+1q2n (1–2)[Schmidt 1980, p. 23]. Furthermore, if there is arational number p=q with q � 1 such that���pd� pq ��� < 12q2 ; (1–3)then p=q equals one of the convergents of pd.Another method for the approximation of pd isby Newton's formulaxk+1 = 12�xk + dxk�:In this paper we will discuss connections betweenthese two methods. More precisely, if pn=qn is aconvergent of pd, the questions is whetherRn = 12�pnqn + dqnpn �is also a convergent of pd.This question has been discussed by several au-thors. It was proved by Mikusi�nski [1954] (see also[Clemens at al. 1995; Elezovi�c 1997; Sharma 1959])that Rks�1 = p2ks�1q2ks�1 ;and if s = 2t thenRkt�1 = p2kt�1q2kt�1for all positive integers k. These results imply thatif s(d) = 1 or 2, then all approximants Rn are con-vergents of pd. Moreover, under these assumptionswe have Rn = p2n+1q2n+1 (1–4)for all n � 0.
2. WHICH CONVERGENTS MAY APPEAR?

Lemma 2.1. Rn�pd = qn2pn�pnqn �pd�2:
Proof.2(Rn�pd) = �pnqn �pd�+�dqnpn �pd�

= �pnqn �pd�� pdqnpn �pnqn �pd�= qnpn�pnqn �pd�2: �

Theorem 2.2. If Rn = pk=qk, then k is odd .
Proof. Since pl=ql > pd if and only if l is odd, andby Lemma 2.1 we have Rn > pd, we conclude thatk is odd. �Assume that Rn is a convergent of pd. Then byTheorem 2.2 we haveRn = p2n+1+2jq2n+1+2jfor an integer j = j(d; n). We have already seenthat if s(d) � 2 then j(d; n) = 0. In [Elezovi�c 1997;Komatsu 1999; Mikusi�nski 1954] some examples canbe found with j = �1. We would like to investigatethe problem how large jjj can be.The next result shows that all periods of the con-tinued fraction expansions of pd have the same be-havior concerning the questions in which we are in-terested, i.e. we may concentrate our attention onRi for 0 � i � s� 1.
Lemma 2.3 [Komatsu 1999]. For n = 0; 1; : : : ; bs=2cthere exist �n such thatRks+n�1 = �np2ks+2n+ p2ks+2n�1�nq2ks+2n+ q2ks+2n�1for all k � 0, andRks�n�1 = p2ks�2n�1��np2ks�2n�2q2ks�2n�1��nq2ks�2n�2for all k � 1.The following lemma reduces further our problem tothe half-periods.
Lemma 2.4. Let 0 � n � s=2. IfRn = p2n+1+2jq2n+1+2j ;then Rs�n�2 = p2(s�n�2)+1�2jq2(s�n�2)+1�2j :
Proof. If� p2n+1+2j q2n+1+2jp2n+2j q2n+2j �
= � a2n+1+2j 11 0� � � �� a2n+3 11 0�� p2n+2 q2n+2p2n+1 q2n+1�= � d cf e�� p2n+2 q2n+2p2n+1 q2n+1� ; (2–1)
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then� p2s�2n�2�2j q2s�2n�2�2jp2s�2n�3�2j q2s�2n�3�2j �= ��e fc �d�� p2s�2n�3 q2s�2n�3p2s�2n�4 q2s�2n�4� : (2–2)By the assumption and formula (2{1), we haveRn = p2n+1+2jq2n+1+2j = p2n+1+ dcp2n+2q2n+1+ dc q2n+2 :Now Lemma 2.3 and formula (2{2) implyRs�n�2 = p2s�2n�3� (d=c)q2s�2n�4q2n�2s�3� (d=c)q2s�2n�4 = p2s�2n�3�2jq2s�2n�3�2j= p2(s�n�2)+1�2jq2(s�n�2)+1�2j : �
Lemma 2.5. Rn+1 < Rn.
Proof. The statement of the lemma is equivalent to(�1)n(dqnqn+1� pnpn+1) > 0: (2–3)If n is even, then pn=qn < pd and pn+1=qn+1 > pd.Furthermore, since pn+1=qn+1�pd < pd� pn=qn,we have pn=qn+ pn+1=qn+1 < 2pd. Thereforepnqn pn+1qn+1 < ��pnqn + pn+1qn+1 �.2�2 < dand inequality (2{3) is satis�ed. If n is odd, theproof is completely analogous. �
Proposition 2.6. If d is a square-free positive integersuch that s(d) > 2, then��j(d; n)�� � 12(s(d)� 3) for all n � 0.
Proof. According to Lemma 2.4 it su�ces to considerthe case j > 0. Let Rn = p2n+1+2j=q2n+1+2j . ByLemma 2.3 there is no loss of generality in assumingthat n < s.Assume �rst that s is even, say s = 2t. ThenRt�1 = ps�1=qs�1 and Rs�1 = p2s�1=q2s�1. If n <t� 1, then Lemma 2.5 clearly implies that 2n+1+2j � s� 2 and 2j � s� 3. Since s is even, we havej � 12(s�4). For n = t� 1 or n = s� 1 we obtainj = 0. If t�1 < n < s�1, then 2n+1+2j � 2s�2and 2j � 2s� 3� 2n � s� 3. Thus we have againj � 12(s�4).Assume now that s is odd, say s = 2t+1. Insteadof applying Newton's method for x0 = pt�1=qt�1,

we will apply the \regula falsi" method for x0 =pt�1=qt�1 and x1 = pt=qt. It was proved by Frank[1962] that with this choice of x0 and x1 we haveRt�1;t = x0 x1+ dx0+x1 = ps�1qs�1 :If t�1 < n < s�1, then from Rs�1 = p2s�1=q2s�1we obtain j � 12(s�3) as above. Thus, assume thatn � t�1. Since (x0x1+d)=(x0+x1) lies between thenumbers x0 and x1, we conclude that��Rt�1;t�pd �� < ��Rt�1�pd ��:Hence, by Lemma 2.5, we have 2n+1+2j � s� 2and j � 12(s�3). �The next lemma shows that the estimate from Prop-osition 2.6 is sharp.
Lemma 2.7. Let t � 1 and m � 5 be integers suchthat m � �1 (mod 6) and letd = F 2m�2�(2Fm�2t�Fm�4)2+4�=4:Thenpd = � 12Fm�2(2Fm�2t�Fm�4);2t� 1; 1; : : : ; 1| {z }m�3 ; 2t�1; Fm�2(2Fm�2t�Fm�4) �: (2–4)

Therefore, s(d) = m.Furthermore, R0 = pm�2=qm�2 and hencej(d; 0) = 12(m�3);j(d; km) = 12(m�3);j(d; km� 2) = � 12(m�3) for k � 1.
Proof. Since m � �1 (mod 6), 12Fm�2Fm�4 is an in-teger. It is clear that a0 = �pd �= 12Fm�2(2Fm�2t�Fm�4). Thena1 = � 1pd� a0� = �pd+ a0d� a20 �

= �pd+ a0F 2m�2 � = � 2a0F 2m�2�= �2t� Fm�4Fm�2� = 2t� 1:Let pd = a0+ 1a1+ 1�2 :
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Then 1�2 = pd� a0+Fm�2Fm�3F 2m�2and 1�2 > Fm�3Fm�2 : (2–5)Sincepd =qa20+F 2m�2 = a0s1+ F 2m�2a20< a0+ F 2m�22a0 � a0+ F 2m�2Fm�2Fm�1 = a0+ Fm�2Fm�1 ;we have 1�2 < F 2m�2=Fm�1+Fm�2Fm�3F 2m�2= Fm�1Fm�3+1Fm�1Fm�2 = Fm�2Fm�1 :From this and (2{5) we conclude that1�2 = [0; 1; 1; : : : ; 1| {z }m�3 ; y] (2–6)

and a2 = a3 = � � � = am�2 = 1. Furthermore, from(2{6) we have 1�2 = yFm�3+Fm�4yFm�2+Fm�3andy = �2Fm�4�Fm�3Fm�2��2Fm�3= Fm�2+Fm�3a0�Fm�3pdFm�2(pd�a0) pd+a0pd+a0�Fm�2+Fm�3a0+Fm�3pdFm�2+Fm�3a0+Fm�3pd= pd+a0Fm�2�Fm�2+Fm�3(pd+a0)���1+Fm�3Fm�2(2t�1)�: (2–7)Let 1=z = y� (2t�1). From (2{7) we obtain
z = F 2m�2+Fm�2Fm�3(pd+ a0)pd� a0+Fm�2Fm�3> 2a0Fm�2Fm�31+Fm�2Fm�3 � 43a0 � a0+1:

We have am�1 = byc = 2t� 1 and am � a0+1. Butnow from [Perron 1954, Satz 3.13] it follows thatam = 2a0 and s(d) = m.Now consider the approximantR0 = 12�a0+ da0� = a20+d2a0 = 2d�F 2m�2Fm�2(2Fm�2t�Fm�4)= Fm�2�(2Fm�2t�Fm�4)2+2�2(2Fm�2t�Fm�4) :From (2{4) we havepm�2qm�2 = a0+ 1a1+Fm�3=Fm�2= a0+ Fm�2(2t� 1)Fm�2+Fm�3= a0+ Fm�22tFm�2�Fm�4 = R0;and j(d; 0) = 12(m�3) as we claimed. Now Lem-mas 2.3 and 2.4 imply that j(d; km) = 12(m�3) andj(d; km� 2) = � 12(m�3) for k � 1. �
Corollary 2.8. We have sup�jj(d; n)j	 = +1 andlim sup� jj(d; n)js(d) � = 12 :There remains the question how large jjj can becompared with d. In [Cohn 1977] it was proved thats(d) < 72�2pd log d+O(pd):However, under the extended Riemann Hypothesisfor Q (pd) one would expect thats(d) = O(pd log log d)[Williams 1981; Patterson and Williams 1985] andtherefore jj(d; n)j = O(pd log log d).Setd(j) = minfd : there exist n such that j(d; n) � jg:In Table 1 we list values of d(j) for 1 � j � 48 suchthat d(j) > d(j0) for j0 < j. We also give corre-sponding values n and k such that Rn = pk=qk =p2n+1+2j=q2n+1+2j .We don't have enough data to support any conjec-ture about the rate of growth of d(j). In particular,it remains open whetherlim sup�jj(d; n)j=pd	 > 0:



Dujella: Newton’s Formula and the Continued Fraction Expansion of
p

d 129

d(j) s(d) n k j(d; n) log d(j)log j(d; n) pd(j)j(d; n)13 5 5 3 1 3:60555124 16 1 7 2 6:95420 5:56776181 21 4 15 3 4:73188 4:48454989 32 7 23 4 4:97491 7:862091021 49 12 35 5 4:30494 6:390621549 69 18 49 6 4:09953 6:559563277 35 6 27 7 4:15984 8:177873949 128 79 175 8 3:98242 7:8551310684 212 46 113 10 4:02873 10:336312421 121 30 89 14 3:57216 7:9606822081 218 62 155 15 3:69361 9:9064533619 282 83 199 16 3:75925 11:459739901 449 287 609 17 3:73927 11:750145109 470 143 325 19 3:63969 11:178448196 374 129 299 20 3:59946 10:976860631 504 149 343 22 3:56273 11:192478439 696 208 467 25 3:50125 11:202881841 494 153 361 27 3:43237 10:5955170689 743 207 473 29 3:57783 14:2464179356 776 500 1063 31 3:52276 13:6614194374 738 220 505 32 3:51370 13:7775224239 1008 302 673 34 3:49382 13:9276238081 979 613 1297 35 3:48218 13:9410241021 1008 311 695 36 3:45823 13:6372242356 1090 710 1499 39 3:38418 12:6230253324 984 291 667 42 3:32893 11:9836
TABLE 1. Values of d(j) for 1 � j � 42.

3. THE NUMBER OF GOOD APPROXIMANTS

Proposition 3.1. If an+1 > 2ppd+1, then Rn is aconvergent of pd.
Proof. From (1{2) and Lemma 2.1 we haveRn�pd < 12pnq3na2n+1 :Let Rn = u=v, where (u; v) = 1. Then certainlyv � 2pnqn, and���pd� uv ��� < 18p2nq2n 4pnqna2n+1< 12v2 1pd+1 �pd+ 1an+1q2n� < 12v2 ;which proves the proposition. �
Theorem 3.2. Rn is a convergent of pd for all n � 0if and only if s(d) � 2.

Proof. As we mentioned in the introduction, the re-sult of Mikusi�nski [1954] imply that if s(d) � 2, thenall Rn are convergents of pd.Now assume that Rn is a convergent of pd for alln � 0. ThenRn = p2n+1p2n+1 for all n � 0:
This follows from the fact that Rs�1 = p2s�1=q2s�1,together with Corollary 2.2 and Lemma 2.5. There-fore, R0 = p1=q1 andRks�1 = p2ks+1q2ks+1 for all n � 0. (3–1)

Let pd = �a0; a1; : : : ; as�1; 2a0 � and d = a20+ t.Then, by [Komatsu 1999, Corollary 1],
Rks = �p2ks+2+ p2ks+1�q2ks+2+ q2ks+1 ; (3–2)where � = 2a0� a1t(a1a2+1)t� 2a0 :From (3{1) and (3{2) it follows that � = 0 andtherefore t = 2a0=a1. It is well known (see [Sier-pi�nski 1987, p. 322], for example) that if d = a20+ t,where t is a divisor of 2a0, then s(d) � 2. �If Rn is a convergent of pd, then we will say thatRn is a \good approximant". Setb(d) = ��fn : 0 � n � s� 1 andRn is a convergent of pdg��:Theorem 3.2 shows that s(d)>2 implies s(d)=b(d)>1.Komatsu [1999] proved that if d = (2x+1)2+4 thenb(d) = 3, s(d) = 5 (see also [Elezovi�c 1997]) and ifd = (2x+3)2� 4 then b(d) = 4, s(d) = 6.

Example 3.3. Ifd = 16x4� 16x3� 12x2+16x� 4;where x � 2, then s(d) = 8 and b(d) = 6. Usingalgorithm (1{1) it is straightforward to check thatpd = �(2x+1)(2x�2);x; 1; 1; 2x2�x�2; 1; 1; x; 2(2x+1)(2x�2) �:Hence, s(d) = 8.
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Now the direct computation shows thatR0= p3q3 = 2x(4x2�3)2x+1R1= p5q5 = (2x�1)(8x4�8x2+1)2x(2x2�1)R3= p7q7 = (2x2�1)(16x4�16x2+1)x(2x+1)(4x2�3)R5= p9q9 = (2x�1)(128x8�256x6+160x4�32x2+1)4x(2x2�1)(8x4�8x2+1)R6= p11q11 = 2x(4x2�3)(64x6�96x4+36x2�3)(2x+1)(8x3�6x�1)(8x3�6x+1)R7= p15q15= (8x4�8x2+1)(256x8�512x6+320x4�64x2+1)2x(2x+1)(2x2�1)(4x2�3)(16x4�16x2+1) :
Hence, b(d) = 6.In the same manner we can check that for d =16x4+48x3+52x2+32x+12, x � 1, we have alsos(d) = 8 and b(d) = 6.Letsb = minfs : there exists d such thats(d) = s and b(d) = bg:We know that s1 = 1, s2 = 2, s3 = 5, s4 = 6and s6 = 8. In Table 2 we list upper bounds for sbobtained by experiments.
b sb sb=b b sb sb=b b sb sb=b� � � � � �3 5 1:66667 12 18 1:50000 22 46 2:090914 6 1:50000 13 27 2:07692 23 69 3:000005 9 1:80000 14 22 1:57143 24 38 1:583336 8 1:33333 15 41 2:73333 25 69 2:760007 13 1:85714 16 26 1:62500 26 50 1:923088 12 1:50000 17 43 2:52941 27 97 3:592599 17 1:88889 18 32 1:77778 28 58 2:0714310 14 1:40000 19 41 2:15789 29 97 3:3448311 23 2:09091 20 34 1:70000 30 58 1:9333321 41 1:95238

TABLE 2. Upper bounds for sb.
Questions. 1. Is it true that inffsb=b : b � 3g = 43?
2. What can be said about supfsb=b : b � 1g?

Example 3.4. Let d = 25�(10x+1)2+4�. Thenpd = [50x+5;x;9;1;x�1;4;1;4x�1;1;1;1;1;x�1;1;1;25x+2;4x;2;2;x�1;1;2;2;1;x�1;2;2;4x;25x+2;1;1;x�1;1;1;1;1;4x�1;1;4;x�1;1;9;x;100x+10]:Hence, s(d) = 43. Furthermore, b(d) � 15. Indeed,it may be veri�ed that Rn = pk=qk for (n; k) oneof (0; 3), (3; 11), (6; 15), (11; 23); (14; 27), (15; 35),(18; 41), (23; 43), (26; 49), (27; 57), (30; 61), (35; 69),(38; 73), (41; 81), (42; 85).We expect that Example 3.4 may be generalized toyield positive integers d with b(d) arbitrary large. Inthis connection, we have the following conjecture.
Conjecture 3.5. Let d = F 2m�(2Fmx�Fm�3)2+4�, withm � �1 (mod 6). Then b(d) � 3Fm.We have checked Conjecture 3.5 for m � 25. Wehave also a more precise form of Conjecture 3.5.Namely, we have noted that ifd = F 2m�(2Fmx+Fm�3)2+4�;where x is su�ciently large, then in the sequencea1; a2; : : : ; as�1 the numbers x�1, x, 4x�1 and 4xappear 2Fn�Fn�3�3, Fn�3+2, Ln�3+1 and 2Fn�3times, respectively, and the number 12(a0�1) ap-pears once. If this conjecture on the sequence a1, a2,. . . , as�1 is true, then at least 3Fn elements in thatsequence are greater then 2ppd+1, and Propo-sition 3.1 implies b(d) � 3Fn. We have also notedsimilar phenomena for d = F 2m�(2Fmx�Fm�3)2+4�.As in the case of j(d; n), we are also interested inthe question how large b(d) can be compared with d.Let db = minfd : b(d) � bg:Table 3 lists values of db for 1 � b � 102 such thatdb > db0 for b0 < b.Consider the expression log db=log b. Conjecture3.5 implies that

sup� log dblog b : b � 2� � 4
and Table 3 suggests that this bound might be lessthan 4. It would be interesting to �nd exact valuefor supflog db=log b : b � 2g.
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db s(db) b log dblog b db s(db) b log dblog b2 1 1 19996 272 40 2:684633 2 2 1:58496 22309 250 42 2:6788713 5 3 2:33472 23149 288 50 2:5689321 6 4 2:19616 31669 368 52 2:6227443 10 6 2:09917 46981 430 58 2:6493476 12 8 2:08264 52789 514 62 2:63477244 26 14 2:08300 73516 644 64 2:69430796 44 16 2:40916 76549 548 68 2:665171141 58 18 2:43556 87109 648 72 2:659761516 76 20 2:44475 103741 618 74 2:651002629 100 22 2:54748 140701 690 80 2:705233004 108 24 2:51969 163669 776 82 2:724393949 128 26 2:54173 180709 954 86 2:717494204 116 28 2:50399 228229 1160 90 2:741926589 134 30 2:58531 249601 950 92 2:7483910021 190 32 2:65815 273361 1076 94 2:7553912229 174 36 2:62635 279301 1214 98 2:7350318484 258 38 2:70087 344509 1164 102 2:75675
TABLE 3. Value of db for b � 102.
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