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Let A ⊆ B be cancellative abelian semigroups, and let R be an
integral domain. We show that the semigroup ring R[B] can be
decomposed, as an R[A]-module, into a direct sum of R[A]-
submodules of the quotient ring of R[A]. In the case of a finite
extension of positive affine semigroup rings, we obtain an algo-
rithm computing the decomposition. When R[A] is a polynomial
ring over a field, we explain how to compute many ring-theoretic
properties of R[B] in terms of this decomposition. In particular,
we obtain a fast algorithm to compute the Castelnuovo–Mumford
regularity of homogeneous semigroup rings. As an application
we confirm the Eisenbud–Goto conjecture in a range of new
cases. Our algorithms are implemented in the MACAULAY2 pack-
age MONOMIALALGEBRAS.

1. INTRODUCTION

Let A ⊆ B be cancellative abelian semigroups, and let R
be an integral domain. Denote by G(B) the group gener-
ated by B, and by R[B] the semigroup ring associated to
B, that is, the free R-module with basis formed by the
symbols ta for a ∈ B, and multiplication given by the R-
bilinear extension of ta · tb = ta+b . Extending a result of
[Hoa and Stückrad 03], we show that the semigroup ring
R[B] can be decomposed, as an R[A]-module, into a di-
rect sum of R[A]-submodules of R[G(A)] indexed by the
elements of the factor group G(B)/G(A).

By a positive affine semigroup we mean a finitely
generated subsemigroup B ⊆ Nm , for some m. If A ⊆
B ⊆ Nm are positive affine semigroups, K is a field,
and the positive rational cones C(A) ⊆ C(B) spanned
by A and B are equal, then K[B] is a finitely gener-
ated K[A]-module, and we can make the decomposi-
tion above effective. In this case, the number of sub-
modules Ig in the decomposition is finite, and we can
choose them to be ideals of K[A]. We give an algo-
rithm for computing the decomposition, implemented
in our Macaulay2 [Grayson and Stillman 10] package
MonomialAlgebras [Böhm et al. 12].

By a simplicial semigroup, we mean a positive affine
semigroup B such that C(B) is a simplicial cone. If B is
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simplicial and A is a subsemigroup generated by elements
on the extremal rays of B, many ring-theoretic proper-
ties of K[B] such as being Gorenstein, Cohen–Macaulay,
Buchsbaum, normal, or seminormal can be characterized
in terms of the decomposition; see Proposition 3.1. Us-
ing this, we can provide functions to test those properties
efficiently.

Recall that every positive affine semigroup B has a
unique minimal generating set Hilb(B) called its Hilbert
basis. By a homogeneous semigroup we mean a positive
affine semigroup that admits an N -grading in which all
the elements of Hilb(B) have degree 1.

One motivation for developing the decomposition algo-
rithm was to have a more efficient algorithm to compute
the Castelnuovo–Mumford regularity (see Section 4 for
the definition) of a homogeneous semigroup ring K[B].
This invariant is often computed from a minimal graded
free resolution of K[B] as a module over a polynomial
ring in n variables, where n is the cardinality of Hilb(B).
The free resolution could have length n− 1, and if n is
large (say n ≥ 15), this computation becomes very time-
consuming. But in fact, the Castelnuovo–Mumford regu-
larity of K[B] can be computed from a minimal graded
free resolution of K[B] as a module over any polynomial
ring, so long as K[B] is finitely generated.

For example, if A is the subsemigroup generated by
elements of Hilb(B) that lie on the extremal rays of B,
and K[B] ∼= ⊕g Ig is a decomposition as graded K[A]-
modules, then the regularity of K[B] is the maximum
of the regularities of the Ig as K[A]-modules (Proposi-
tion 4.1). Since the minimal graded free resolution of Ig
has length at most the cardinality of Hilb(A) (equal to
the dimension of K[B] in the simplicial case), and the de-
composition can be obtained very efficiently, this method
of computing the regularity is typically much faster. See
Section 4 for timings.

The Eisenbud–Goto conjecture gives a bound
on the Castelnuovo–Mumford regularity; see
[Eisenbud and Goto 84]. It is known to hold in relatively
few cases. The efficiency of our algorithm allows us to test
many new cases of the conjecture for homogeneous semi-
group rings of dimension 3, 4, and 5 (Proposition 4.3).

2. DECOMPOSITION

If X ⊆ G(B) we write tX := {tx | x ∈ X}.

Theorem 2.1. Let A ⊆ B be cancellative abelian
semigroups, and let R be an integral domain. The
R[A]-module R[B] is isomorphic to the direct sum of

submodules Ig ⊆ R[G(A)] indexed by elements g ∈ G :=
G(B)/G(A).

Proof. We think of an element g ∈ G as a subset of G(B).
For g ∈ G, let

Γ′
g := {b ∈ B | b ∈ g}.

By construction, we have

R[B] =
⊕

g∈G R · tΓ ′
g .

For each g ∈ G, choose a representative hg ∈ g ⊆ G(B).
The module R · tΓ ′

g is an R[A]-submodule of R[B], and
as such, it is isomorphic to

Ig := R · {tb−hg | b ∈ Γ′
g} ⊆ R[G(A)].

We note that such a decomposition was considered
in [Bruns and Gubeladze 03] for polynomial rings R[B]
over a field R and certain normal affine subsemigroups
A of B.

With notation as in the proof, we have

R[B] ∼=R [A ]

⊕
g∈G Ig · t

hg .

This decomposition, together with the ring structure of
R[A] and the group structure of G, actually determines
the ring structure of R[B]: if x ∈ Ig1 and y ∈ Ig2 and
xy = z as elements of R[G(A)], then as elements in the
decomposition of R[B],

x ·R [B ] y =
thg 1 thg 2

thg 1 + g 2
z ∈ Ig1 +g2 .

Henceforward, we assume that A ⊆ B ⊆ Nm are pos-
itive affine semigroups, and we work with monomial al-
gebras over a field K.

The set BA = {x ∈ B | x /∈ B + (A \ {0})} is the
unique minimal subset of B such that tBA generates
K[B] as a K[A]-module. We define Γg := {b ∈ BA | b ∈
g}. Then Γg +A = Γ′

g .
We can compute the decomposition of Theorem 2.1

if K[B] is a finitely generated K[A]-module, or equiva-
lently, if BA is a finite set. This finiteness (for positive
affine semigroups A ⊆ B) is equivalent to the property
C(A) = C(B), where C(X) denotes the positive rational
cone spanned by X in Q m . (Proof: If C(A) � C(B), we
can choose an element x ∈ B on a ray of C(B) not in
C(A), so nx ∈ BA for all n ∈ N +. Thus BA is not finite.
Conversely, if C(A) = C(B), then for all b ∈ B, there ex-
ists nb ∈ N + such that nbb ∈ A. To generate K[B] as a
K[A]-module, it suffices to take all possible sums of the
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Algorithm 1 Decompose a monomial algebra.
Input: A homogeneous ring homomorphism

ψ : K [y1 , . . . , yd ] → K [x1 , . . . , xn ]

of Nm -graded polynomial rings over a field K with
deg yi = ei and deg xj = bj such that ψ(yi ) is a monomial
for all i and the gradings specify positive affine semigroups
A = 〈e1 , . . . , ed 〉 ⊆ B = 〈b1 , . . . , bn 〉 ⊆ Nm with C(A) =
C(B).

Output: An ideal Ig ⊆ K [A] and a shift hg ∈ G(B) for each
g ∈ G := G(B)/G(A) with

K [B] ∼=
⊕

g∈G
Ig (−hg )

as Zm -graded K [A]-modules (with deg tb = b).
1: Compute the set BA = {b ∈ B | b /∈ B + (A \ {0})}, and

let {v1 , . . . , vr } be the monomials in K [B] corresponding
to elements of BA . For example, this can be done by com-
puting the toric ideal IB := kerϕ associated to B, where

ϕ : K [x1 , . . . , xn ] → K [B], xi �→ tb i ,

and then computing a monomial K-basis v1 , . . . , vr of

K [x1 , . . . , xn ]/(IB + ψ(〈y1 , . . . , yd 〉)).
2: Partition the elements vi by their class modulo G(A),

forming the decomposition

BA =
⋃̇

g∈G
Γg .

3: For each g ∈ G, choose a representative ḡ ∈ Γg .
4: For each v ∈ Γg , choose cv ,j ∈ Z such that

v = ḡ +
∑d

j=1
cv ,j ej .

5: Let c̄g ,j := min{cv ,j | v ∈ Γg }.
{
hg := ḡ +

∑d

j=1
c̄g ,j ej , Ig := K [A]{tv−h g | v ∈ Γg } | g ∈ G

}

multiples mb such that m < nb for all b in a (finite) gen-
erating set for the semigroup B.) Note that if BA is finite,
then G(B)/G(A) is also finite.

From these observations we obtain Algorithm 1, com-
puting the set BA and the decomposition of K[B].

For v ∈ Γg , the element tv−hg is in K[A], because

v − hg =
∑d

j=1
(cv,j − c̄g ,j ) ej

is an expression with nonnegative integer coefficients.
Thus, Ig is a monomial ideal of K[A], and hg ∈ G(B)
for each g ∈ G, as required.

Example 2.2. Consider

B = 〈(2, 0, 3), (4, 0, 1), (0, 2, 3), (1, 3, 1), (1, 2, 2)〉 ⊂ N 3

and the subsemigroup

A = 〈(2, 0, 3), (4, 0, 1), (0, 2, 3), (1, 3, 1)〉.

We get the decomposition of BA into equivalence classes

BA = {0, (2, 4, 4)} ∪ {(1, 2, 2), (3, 6, 6)}.

Choosing shifts h1 = (−2, 0,−3) and h2 = (−1, 2,−1) in
G(B), we have

K[B] ∼= K[A]{t(2,0,3) , t(4,4,7)}(−h1)

⊕K[A]{t(2,0,3) , t(4,4,7)}(−h2)
∼= 〈x0 , x1x

2
2〉(−h1) ⊕ 〈x0 , x1x

2
2〉(−h2),

where K[A] ∼= K[x0 , x1 , x2 , x3 ]/〈x2
1x

3
2 − x3

0x
2
3〉.

Example 2.3. Using our implementation of Algorithm 1
in the Macaulay2 package MonomialAlgebras, we
compute the decomposition of Q [B] over Q [A] in the
case given in Example 2.2:

i1: loadPackage "MonomialAlgebras";
i2: A = {{2,0,3},{4,0,1},{0,2,3},{1,3,1}};
i3: B = {{2,0,3},{4,0,1},{0,2,3},{1,3,1},{1,2,2}};
i4: S = QQ[x 0 .. x 4, Degrees=>B];
i5: P = QQ[x 0 .. x 3, Degrees=>A];
i6: f = map(S,P);
i7: dc = decomposeMonomialAlgebra f

o7: HashTable{ {0,0,0} => { ideal ( x0 , x1 x
2
2 ), {-2,0,-3} }

{5,0,0} => { ideal ( x0 , x1 x
2
2 ), {-1,2,-1} }}

i8: ring first first values dc

o8: P
x2

1
x3

2
−x3

0
x2

3

The keys of the hash table represent the elements of G.

3. RING-THEORETIC PROPERTIES

In this section, we will always consider simplicial semi-
groups. Recall that a positive affine semigroup B

is simplicial if it spans a simplicial cone, or equiv-
alently, if there are linearly independent elements
e1 , . . . , ed ∈ B with C(B) = C({e1 , . . . , ed}). Many ring-
theoretic properties of semigroup algebras can be
determined from the combinatorics of the semi-
group; see [Garćıa-Sánchez and Rosales 02, Hochster 72,
Hochster and Roberts 76, Li 04, Stanley 78]. Here we
give characterizations in terms of the decomposition of
Theorem 2.1.

Proposition 3.1. Let K be a field, B ⊆ Nm a simpli-
cial semigroup, and let A be the submonoid of B that
is generated by linearly independent elements e1 , . . . , ed
of B with C(A) = C(B). Let BA be as above, and let
K[B] ∼=⊕g∈G Ig (−hg ) be the output of Algorithm 1 with
respect to A ⊆ B using minimal generators of A. We
have:
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1. The depth of K[B] is the minimum of the depths of
the ideals Ig .

2. K[B] is Cohen–Macaulay if and only if every ideal Ig
is equal to K[A].

3. K[B] is Gorenstein if and only if K[B] is Cohen–
Macaulay and the set of shifts {hg}g∈G has exactly
one maximal element with respect to ≤ given by x ≤ y
if there is an element z ∈ B such that x+ z = y.

4. K[B] is Buchsbaum if and only if each ideal Ig either is
equal to K[A] or is equal to the homogeneous maximal
ideal of K[A], and hg + b ∈ B for all b ∈ Hilb(B).

5. K[B] is normal if and only if for every element x in
BA , there exist λ1 , . . . , λd ∈ Q with 0 ≤ λi < 1 for all
i such that x =

∑d
i=1 λiei.

6. K[B] is seminormal if and only if for every element x
in BA there exist λ1 , . . . , λd ∈ Q with 0 ≤ λi ≤ 1 for
all i such that x =

∑d
i=1 λiei.

Proof. For every x ∈ G(B) there are uniquely determined
elements λx1 , . . . , λ

x
d ∈ Q such that x =

∑d
j=1 λ

x
j ej . Then

by construction,

hg =
d∑

j=1

min
{
λvj | v ∈ Γg

}
ej .

Assertions 1 and 2 follow immediately; assertion 2 was al-
ready mentioned in [Stanley 78, Theorem 6.4]. Assertion
3 can be found in [Stanley 78, Corollary 6.5].

To prove assertion 4, let Ig be a proper ideal, equiva-
lently, #Γg ≥ 2. The ideal Ig is equal to the homogeneous
maximal ideal of K[A] and hg + b ∈ B for all b ∈ Hilb(B)
if and only if Γg = {m+ e1 , . . . ,m+ ed} for some m with
m+ b ∈ B for all b ∈ Hilb(B). Now the assertion follows
from [Garćıa-Sánchez and Rosales 02, Theorem 9].

For assertion 5, we set

DA =
{
x ∈ G (B) | x =

d∑
i=1

λiei, λi ∈ Q

and 0 ≤ λi < 1 ∀i
}
.

The ring K[B] is normal if and only if B = C(B) ∩G(B)
by [Hochster 72, Proposition 1]. We need to show that
C(B) ∩G(B) ⊆ B if and only if BA ⊆ DA . We have
BA ⊆ DA if and only if DA ⊆ BA , since BA has #G =
#DA equivalence classes and by definition of BA . Note
that DA ⊆ C(B) ∩G(B) and DA ∩B ⊆ BA . The asser-
tion follows from the fact that every element x ∈ C(B) ∩
G(B) can be written as x = x′ +

∑d
i=1 niei for some

x′ ∈ DA and ni ∈ N .

To prove assertion 6, we set

D̄A :=
{
x ∈ B | x =

d∑
i=1

λiei, λi ∈ Q and 0 ≤ λi ≤ 1 ∀i
}
.

By [Hochster and Roberts 76, Proposition 5.32] and
[Li 04, Theorem 4.1.1], K[B] is seminormal if and
only if BA ⊆ D̄A , provided that e1 , . . . , ed ∈ Hilb(B).
Otherwise, there is k ∈ {1, . . . , d} with ek = e′k + e′′k
and e′k , e

′′
k ∈ B \ {0}. We set A′ = 〈e1 , . . . , e

′
k , . . . , ed〉

and A′′ = 〈e1 , . . . , e
′′
k , . . . , ed〉. Clearly, C(A) = C(A′) =

C(A′′). We need to show that BA ⊆ D̄A if and only if
BA ′ ⊆ D̄A ′ . Let x ∈ BA \ D̄A . If x− e′k /∈ B, then x ∈
BA ′ \ D̄A ′ . If x− e′k ∈ B, then x− e′k ∈ BA ′′ \ D̄A ′′ . Let
x ∈ BA ′ \ D̄A ′ , say x =

∑
j �=k λj ej + λke

′
k and λj > 1 for

some j. If j �= k, then x ∈ BA \ D̄A . Let j = k; con-
sider the element y = x+ e′′k −

∑
j �=k nj ej ∈ B for some

nj ∈ N such that
∑

j �=k nj is maximal. It follows that
y ∈ BA \ D̄A , and we are done.

Note that normality of positive affine semigroup rings
can also be tested using the implementation of normal-
ization in the program Normaliz [Bruns et al. 12]. We
remark that from Proposition 3.1, it follows that every
simplicial affine semigroup ring K[B] that is seminor-
mal and Buchsbaum is also Cohen–Macaulay. This holds
more generally for arbitrary positive affine semigroups by
[Bruns et al. 06, Proposition 4.15].

Example 3.2. (Smooth Rational Monomial Curves in P 3 .)
Consider the simplicial semigroup

B = 〈(α, 0), (α− 1, 1), (1, α− 1), (0, α)〉 ⊆ N 2

and set A = 〈(α, 0), (0, α)〉, say K[A] = K[x, y]. Note
that we have α equivalence classes. We get

K[B] ∼= K[x, y]3 ⊕ 〈xα−3 , y〉 ⊕ 〈xα−4 , y2〉 ⊕ · · · ⊕ 〈x, yα−3〉
as K[x, y]-modules, where the shifts are omitted. In the
decomposition, each ideal of the form 〈xi, yj 〉, 1 ≤ i, j ≤
α− 3, with i+ j = α− 2, appears exactly once. Hence
K[B] is not Buchsbaum for α > 4, since 〈xα−3 , y〉 is
a direct summand. In case α = 4, there is only one
proper ideal I4 = 〈x, y〉 and h4 = (2, 2); in fact, (2, 2) +
Hilb(B) ⊆ B, and therefore K[B] is Buchsbaum. It fol-
lows immediately that K[B] is Cohen–Macaulay for α ≤
3, Gorenstein for α ≤ 2, seminormal for α ≤ 3, and nor-
mal for α ≤ 3. Note that we could also decompose K[B]
over the subring K[A], where A = 〈(2α, 0), (0, 2α)〉 =
K[x′, y′]. For α = 4, we would get

K[B] ∼= K[x′, y′]15 ⊕ 〈x′, y′〉,
and the corresponding shift of 〈x′, y′〉 is again (2, 2).
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Example 3.3. Let

B = 〈(1, 0, 0), (0, 1, 0), (0, 0, 2), (1, 0, 1), (0, 1, 1)〉 ⊂ N 3 .

Moreover, let A = 〈(1, 0, 0), (0, 1, 0), (0, 0, 2)〉, sayK[A] =
K[x, y, z]. This example was given in [Li 04, Exam-
ple 6.0.2] to study the relation between seminormality
and the Buchsbaum property. We have

K[B] ∼= K[A] ⊕ 〈x, y〉(−(0, 0, 1)),

as Z3-graded K[A]-modules. Hence K[B] is not Buchs-
baum, since 〈x, y〉 is not maximal; moreover, K[B] is
seminormal, but not normal.

Example 3.4. Consider the semigroup

B = 〈(1, 0, 0), (0, 2, 0), (0, 0, 2), (1, 0, 1), (0, 1, 1)〉 ⊂ N 3 ,

and set A = 〈(1, 0, 0), (0, 2, 0), (0, 0, 2)〉. We get

K[B] ∼= K[A] ⊕K[A](−(1, 0, 1)) ⊕K[A](−(0, 1, 1))
⊕K[A](−(1, 1, 2)).

Hence K[B] is Gorenstein, since (1, 0, 1) + (0, 1, 1) =
(1, 1, 2). Moreover, K[B] is not normal, since (1, 0, 1) =
(1, 0, 0) + 1

2 (0, 0, 2), but seminormal.

Example 3.5. We illustrate our implementation of the
characterizations given in Proposition 3.1 in the case of
Example 3.4:

i1: B = {{1,0,0},{0,2,0},{0,0,2},{1,0,1},{0,1,1}};
i2: isGorensteinMA B
o2: true
i3: isNormalMA B
o3: false
i4: isSeminormalMA B

o4: true

Note that there are also commands
isCohenMacaulayMA and isBuchsbaumMA available
for testing the Cohen–Macaulay and the Buchsbaum
properties, respectively.

4. REGULARITY

Let K be a field and let R = K[x1 , . . . , xn ] be a standard
graded polynomial ring, that is, deg xi = 1 for all i =
1, . . . , n. Let R+ be the homogeneous maximal ideal of
R, and let M be a finitely generated graded R-module.
We define the Castelnuovo–Mumford regularity regM of
M by

regM := max
{
a(Hi

R+
(M)) + i | i ≥ 0

}
,

where a(Hi
R+

(M)) := max
{
n | [Hi

R+
(M)]n �= 0

}
and

a(0) = −∞; Hi
R+

(M) denotes the ith local cohomology
module of M with respect to R+. Note that regM can

also be computed in terms of the shifts in a minimal
graded free resolution of M . An important application
of the regularity is that it bounds the degrees in cer-
tain minimal Gröbner bases by [Bayer and Stillman 87].
Thus, it is of interest to compute or bound the regu-
larity of a homogeneous ideal. The following conjecture
(Eisenbud–Goto) was made in [Eisenbud and Goto 84]: If
K is algebraically closed and I is a homogeneous prime
ideal of R, then for S = R/I,

regS ≤ degS − codimS.

Here degS denotes the degree of S and codimS :=
dimK S1 − dimS the codimension. The conjecture has
been proved for dimension 2 by Gruson, Lazarsfeld,
and Peskine (see [Gruson et al. 83]); for the Buchsbaum
case by [Stückrad and Vogel 88] (see also [Treger 82]
and [Stückrad and Vogel 87]); for degS ≤ codimS + 2
by Hoa, Stückrad, and Vogel, see [Hoa et al. 91]; and
in characteristic zero for smooth surfaces and certain
smooth threefolds by [Lazarsfeld 87] and [Ran 90]. There
is also a stronger version in which S is only required to
be reduced and connected in codimension 1; this ver-
sion has been proved in dimension 2 by [Giaimo 06].
For homogeneous semigroup rings of codimension 2,
the conjecture was proved by [Peeva and Sturmfels 98].
Even in the simplicial setting, the conjecture is largely
open, though it was proved for the isolated singular-
ity case by [Herzog and Hibi 03], for the seminormal
case by [Nitsche 12], and for a few other cases by
[Hoa and Stückrad 03, Nitsche 11].

We now focus on computing the regularity of a ho-
mogeneous semigroup ring K[B]. Note that a posi-
tive affine semigroup B is homogeneous if and only if
there is a group homomorphism deg : G(B) → Z with
deg b = 1 for all b ∈ Hilb(B). We always consider the R-
module structure onK[B] given by the homogeneous sur-
jective K-algebra homomorphism R � K[B], xi �→ tbi ,
where Hilb(B) = {b1 , . . . , bn}. Generalizing the results
from [Hoa and Stückrad 03], the regularity can be com-
puted in terms of the decomposition of Theorem 2.1 as
follows:

Proposition 4.1. Let K be an arbitrary field, and let B ⊆
Nm be a homogeneous semigroup. Fix a group homomor-
phism deg : G(B) → Z with deg b = 1 for all b ∈ Hilb(B).
Moreover, let A be a submonoid of B with Hilb(A) =
{e1 , . . . , ed}, deg ei = 1 for all i, and C(A) = C(B). Let
K[B] ∼=⊕g∈G Ig (−hg ) be the output of Algorithm 1 with
respect to A ⊆ B. Then:
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Algorithm 2 The regularity algorithm.
Input: The Hilbert basis Hilb(B) of a homogeneous semi-

group B ⊆ Nm and a field K .
Output: The Castelnuovo–Mumford regularity regK [B].
1: Choose a minimal subset {e1 , . . . , ed} of Hilb(B) with
C({e1 , . . . , ed}) = C(B), and set A = 〈e1 , . . . , ed 〉.

2: Compute the decomposition K [B] ∼= ⊕
g∈G Ig (−hg ) over

K [A] by Algorithm 1.
3: Compute a hyperplane H = {(t1 , . . . , tm ) ∈ R m |∑m

j=1 aj tj = c} with c �= 0 such that Hilb(B) ⊆ H . De-
fine deg : R m → R by deg(t1 , . . . , tm ) = (

∑m
j=1 aj tj )/c.

regK [B] = max {reg Ig + deg hg | g ∈ G}.

1. regK[B] = max {reg Ig + deg hg | g ∈ G}, where
reg Ig denotes the regularity of the ideal Ig ⊆ K[A]
with respect to the canonical K[x1 , . . . , xd ]-module
structure.

2. degK[B] = #G · degK[A].

Proof. To prove the first assertion, consider the T =
K[x1 , . . . , xd ]-module structure on K[B], which is given
by T � K[A] ⊆ K[B], xi �→ tei . Since C(A) = C(B), we
get by [Brodmann and Sharp 98, Theorem 13.1.6],

Hi
K [B ]+ (K[B]) ∼= Hi

T+
(K[B]),

as Z-graded T -modules (where K[B]+ is the homoge-
neous maximal ideal of K[B]). By the same theorem, we
obtain Hi

K [B ]+
(K[B]) ∼= Hi

R+
(K[B]). Then the assertion

follows from K[B] ∼=⊕g∈G Ig (−deg hg ) as Z-graded T -
modules.

Assertion 2 follows from deg Ig = degK[A] for all
g ∈ G.

Using Proposition 4.1, we obtain Algorithm 2, by
which the computation of regK[B] reduces to computing
minimal graded free resolutions of the monomial ideals
Ig in K[A] as K[x1 , . . . , xd ]-modules.

Example 4.2. We apply Algorithm 2 using the decom-
position computed in Example 2.3. A resolution of I =〈
x0 , x1x

2
2
〉

as a T = Q [x0 , x1 , x2 , x3 ]-module is

0 −→ T (−4) ⊕ T (−5) d−→ T (−1) ⊕ T (−3) −→ I −→ 0

with

d =

(
x1x

2
2 x2

0x
2
3

−x0 −x1x2

)
,

whence reg I = 4. The group homomorphism is given
by deg b = (b1 + b2 + b3)/5, and therefore, reg Q [B] =
max {4 − 1, 4 − 0} = 4.

With respect to timings, we first focus on dimen-
sion 3, comparing our implementation of Algorithm 2
in the Macaulay2 package MonomialAlgebras

(marked in the tables by MA) with other methods.
Here we consider the computation of the regularity via
a minimal graded free resolution both in Macaulay2

(M2) and Singular [Decker et al. 12] (S). Further-
more, we compare our algorithm with the algorithm
of [Bermejo and Gimenez 06]. This method does not
require the computation of a free resolution, and is
implemented in the Singular package mregular.lib

[Bermejo et al. 11] (BG-S) and the Macaulay2 package
Regularity [Seceleanu and Stapleton 10] (BG-M2).
For comparability we obtain the toric ideal IB always

Codimension c

Algorithm 1 2 3 4 5 6 7 8 9
MA .073 .089 .095 .10 .13 .14 .14 .19 .16
M2 .0084 .0089 .011 .017 .043 .10 .45 2.8 21
S .0099 .0089 .011 .013 .020 .046 .18 1.1 6.8
BG-S .016 .030 .19 1.2 15 24 59 44 77
BG-M2 .036 .053 .47 1.8 9.0 19 34 39 43

Codimension c

Algorithm 10 11 12 13 14 15 16 17 18
MA .21 .26 .22 .26 .29 .30 .31 .36 .47
M2 180 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
S 30 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
BG-S 170 520 ∗ ∗ ∗ ∗ 360 460 350
BG-M2 85 150 140 250 310 290 300 410 320

TABLE 1. Algorithm timing comparisons for K = Q , d = 3, α = 5, and n = 15 examples.
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Codimension c

Algorithm 1 2 3 4 5 6 7 8 9
MA .072 .088 .093 .10 .12 .13 .13 .19 .16
M2 .0075 .0095 .010 .013 .020 .032 .090 .40 2.8
S .0067 .010 .011 .015 .023 .041 .16 .99 6.3
BG-S .017 .020 .031 .052 .094 .12 .18 .34 .42
BG-M2 .030 .037 .064 .14 .34 .48 .80 1.5 2.0

Codimension c

Algorithm 10 11 12 13 14 15 16 17 18
MA .21 .25 .22 .25 .29 .29 .31 .35 .39
M2 26 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
S 28 250 ∗ ∗ ∗ ∗ ∗ ∗ ∗
BG-S .57 .88 .88 1.1 1.4 1.5 1.7 2.5 2.4
BG-M2 3.3 4.4 4.4 6.4 7.9 7.8 9.2 12 13

TABLE 2. Algorithm timing comparisons for K = Z/101, d = 3, α = 5, and n = 15 examples.

through the program 4ti2 [Hemmecke et al. 08], which
can be called optionally in our implementation (using
[Petrovic et al. 10]). We give the average computation
times over n examples generated by the function
randomSemigroup(α,d,c,num=>n,setSeed=>true).
Starting with the standard random seed, this function
generates n random semigroups B ⊆ N d such that

� dimK[B] = d.
� codimK[B] = c; that is, the number of generators

of B is d+ c.
� Each generator of B has coordinate sum equal to α.

All timings are in seconds on a single 2.7-GHz core
with 4 GB of RAM. In the cases marked by a star, at least
one of the computations ran out of memory or did not
finish within 1200 seconds. Note that the computation of
reg Ig in step 4 of Algorithm 2 could easily be parallelized.
This is not available in our Macaulay2 implementation
so far.

Table 1 shows the comparison for K = Q , d = 3, α =
5, and n = 15 examples.

For small codimension c, the decomposition approach
has slightly higher overhead than the traditional algo-
rithms. For larger codimensions, however, both the reso-
lution approach in Macaulay2 and Singular and the
Bermejo–Gimenez implementation in Singular fail. The

average computation times of the Regularity package
increase significantly, whereas those for Algorithm 2 stay
under one second. The traditional approaches become
more competitive when the same setup over the finite
field K = Z/101 is considered, but are still much slower
than Algorithm 2. See Table 2.

Note that over a finite field, there may not ex-
ist a homogeneous linear transformation such that
the initial ideal is of nested type; see, for example,
[Bermejo and Gimenez 06, Remark 4.9]. This case is not
covered and hence does not terminate in the implementa-
tion of the Bermejo–Gimenez algorithm in the Regular-

ity package. In the standard configuration, the package
mregular.lib can handle this case, but then does not
perform well over a finite field in our setup. Hence we use
its alternative option, which takes the same approach as
the Regularity package and applies a random homo-
geneous linear transformation.

Increasing the dimension to d = 4, we compare our
implementation with the most competitive one, that is,
mregular.lib (K = Z/101, α = 5, n = 1). Here also the
Singular implementation of the Bermejo–Gimenez al-
gorithm fails. See Table 3.

To illustrate the performance of Algorithm 2, we
present the computation times (K = Z/101, n = 1) of
our implementation for d = 3 and various values of α and
c in Table 4. Table 5 is based on a similar setup for d = 4.

Codimension c

Algorithm 4 8 12 16 20 24 28 32 36 40 44 48 52
MA .13 .31 3.8 13 .69 2.2 1.7 1.9 1.5 4.4 6.0 8.9 13
BG-S .61 2.2 46 150 380 840 940 ∗ ∗ ∗ ∗ ∗ ∗

TABLE 3. Algorithm timing comparisons for K = Z/101, d = 4, α = 5, and n = 1 example.
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Codimension c

Coordinate Sum α 4 8 12 16 20 24 28 32 36 40 44 48 52
3 .083
4 .073 .10 .24
5 .11 .13 .15 .22
6 .11 .31 .21 .22 .27 .75
7 .10 .16 .18 .24 .29 .86 1.0 1.4
8 .11 .22 .26 .31 .35 .54 .67 .85 1.2 3.6
9 .13 .25 .31 .38 .56 .64 .77 .98 1.4 3.8 5.7 8.6 13

TABLE 4. Computation times of Algorithm MA for K = Z/101, d = 3, and n = 1 example.

Obtaining the regularity via Algorithm 2 involves two
main computations: decomposing K[B] into a direct sum
of monomial ideals Ig ⊆ K[A] via Algorithm 1 and com-
puting a minimal graded free resolution for each Ig . The
computation time for the first task is increasing with
the codimension. On the other hand, the complexity of
the second task grows with the cardinality of Hilb(A),
which tends to be small for big codimension. This ex-
plains the good performance of the algorithm for large
codimension observed in Table 5. In particular, the sim-
plicial case shows an impressive performance, as illus-
trated in Table 6 for simplicial semigroups with d = 5 and
α = 5 (same setup as before). The examples are gener-
ated by the function randomSemigroup using the option
simplicial=>true.

In case of a homogeneous semigroup ring of dimen-
sion 2, the ideals Ig are monomial ideals in two variables.
Hence we can read off reg Ig by ordering the monomials
with respect to the lexicographic order (see, for example,
[Nitsche 11, Proposition 4.1]). This further improves the
performance of the algorithm.

Due to the good performance of Algorithm 2, we can
actually do the regularity computation for all possible
semigroups B in N d such that the generators have co-

ordinate sum α for some α and d. This confirms the
Eisenbud–Goto conjecture for some cases.

Proposition 4.3. Let B be a homogeneous semigroup. The
regularity of Q [B] is bounded by deg Q [B] − codim Q [B],
provided that the minimal generators of B in N d have
fixed coordinate sum α for d = 3 and α ≤ 5, for d = 4
and α ≤ 3, as well as for d = 5 and α = 2.

Proof. The list of all minimal generating sets Hilb(B)
together with reg Q [B], deg Q [B], and codim Q [B] can
be found under the link given in [Böhm et al. 12].

Figure 1 depicts the values of deg Q [B] − codim Q [B]
plotted against reg Q [B] for all semigroups with α = 3
and d = 4. For the same setup, Figure 2 shows reg Q [B]
on top of codim Q [B] plotted against deg Q [B]. The line
corresponds to the projection of the plane

reg Q [B] − deg Q [B] + codim Q [B] = 0.

Figures for the remaining cases can be found at
[Böhm et al. 12].

Codimension c

Coordinate Sum α 8 16 24 32 40 48 56 64 72 80
3 .18 .51
4 .26 .32 .54
5 .31 13 2.2 1.9 4.4 8.9
6 9.6 120 ∗ ∗ 3.4 7.8 15 36 66 120

TABLE 5. Computation times of Algorithm MA for K = Z/101, d = 4, and n = 1 example.

Codimension c

Coordinate Sum α 10 20 30 40 50 60 70 80 90 100 110 120
5 13 13 17 32 69 86 110 170 250 400 650 1000

TABLE 6. Computation times of Algorithm MA for K = Z/101, d = 5, and n = 1 simplicial example.



Böhm et al.: Decomposition of Semigroup Algebras 393

FIGURE 1. deg Q [B] − codim Q [B] against reg Q [B] for
α = 3 and d = 4.

FIGURE 2. reg Q [B] + codim Q [B] against deg Q [B] for
α = 3 and d = 4.
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