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We investigate the frequency of positive squareful numbers
x, y, z ≤ B for which x + y = z and present a conjecture con-
cerning its asymptotic behavior.

1. INTRODUCTION

In this paper we examine the quantitative arithmetic of
integral points on certain Campana orbifolds, following
the discussions of [Abramovich 09], [Campana 05], and
[Poonen 06]. Given rational points pi = ri/si ∈ P 1(Q )
with integer multiplicities mi ≥ 2, for 1 ≤ i ≤ n, we de-
fine the divisor ∆ =

∑
i(1 − 1

mi
)[pi ]. The pair (P 1 ,∆) de-

fines an orbifold curve in the sense of Campana and has
associated Euler characteristic

χ = χ(P 1) − deg ∆ = 2 − n+
1
m1

+ · · · + 1
mn

.

A point r/s ∈ P 1(Q) is said to be integral if rsi − sri is
mi-powerful for 1 ≤ i ≤ n. Here we recall that an inte-
ger k is said to be m-powerful if pm | k whenever p is a
prime divisor of k. We will focus our attention here on
the orbifold (P 1 ,∆) associated with the divisor

∆ =
(

1 − 1
m

)
[0] +

(
1 − 1

m

)
[1] +

(
1 − 1

m

)
[∞],

with Euler characteristic χ = −1 + 3
m . The density of in-

tegral points on (P 1 ,∆) with height at most B is cap-
tured by the counting function

Nm−1(B) = #
{
(x, y, z) ∈ N 3

prim : x+ y = z, x, y, z ≤ B,

x, y, z m-powerful
}
,

where N denotes the set of positive integers and N 3
prim

denotes the set of primitive vectors in N 3 .
An old result of [Erdős and Szekeres 35] shows that

there are cmx1/m +O(x1/(m+1)) m-powerful numbers up
to x for a certain constant cm > 0. This leads to a basic
trichotomy: we expect only finitely many integral points
when χ < 0, we expect Nm−1(B) to grow at most log-
arithmically in B when χ = 0, and we expect Nm−1(B)
to have order Bχ when χ > 0. When m = 3, it is shown
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B N1 (B) N1 (B)/(cB1/2 )
107 6562 0.774
108 21920 0.818
109 72124 0.851
1010 235168 0.877
1011 762580 0.900
1012 2465044 0.920
1013 7914884 0.934

TABLE 1. Numerical values of N1 (B).

in [Nitaj 55] that N2(B) � logB. Our goal in this paper
is to provide evidence in support of the expected order
B1/2 of N1(B) when m = 2.

Conjecture 1.1. We have

N1(B) = cB1/2(1 + o(1)),

as B → ∞, with c = 2.68 . . . .

The explicit conjectured value of c is too complicated
to record here, but may be found in (2–12) and (2–13).
Our expression for c involves an infinite sum that con-
verges very slowly, thereby making it difficult to evaluate
numerically to high accuracy.

We may test Conjecture 1.1 by naively listing all
squareful numbers up to B, and then subsequently sort-
ing them into triples (x, y, z) that are counted by N1(B).
More precisely, the algorithm loops through all square-
ful numbers z in increasing order, and for each z, it
runs over squareful x ∈ [z/2, z] and uses the list to verify
whether y = z − x is squareful. If it is, we verify whether
gcd(x, y) = 1 and eventually print the two corresponding
points (x, y, z) and (y, x, z). The inner code of the two
loops is repeated O(s2) times, where s is the number of
squareful numbers involved, so that the total complexity
is O(B). For B = 1013 the compilation of the list took less
than two minutes on an Intel Core 2 Duo E8400 running
at 3 GHz, resulting in 6840384 squareful numbers over-
all. The sorting algorithm required a computing time of
5587.5 minutes. In Figure 1, the values of N1(B)/(cB1/2)
are plotted for B up to 1013 , where the horizontal axis
runs over values of log2 B. In Table 1, we present some ex-
plicit numerical data, including the determination of the
quotient N1(B)/(cB1/2) for large values of B. In both
Figure 1 and Table 1, we took c = 2.68.

Any positive squareful integer k can be written
uniquely as k = x2y3 , with x, y ∈ N and y square-free.

Using this description, we have

N1(B) =
∑
y∈N 3

µ2(y0y1y2)My(B), (1–1)

where µ is the Möbius function and My(B) denotes
the number of x ∈ N 3 ∩ Cy such that gcd(x0y0 , x1y1 ,

x2y2) = 1 and x2
i y

3
i ≤ B for 0 ≤ i ≤ 2. Here one is nat-

urally led to analyze N1(B) by counting points on
each conic and then summing the contribution over
the y. This is the point of view adopted by the sec-
ond author [Van Valckenborgh 10], where the struc-
ture of the orbifold (P 1 ,∆) is generalized to a higher-
dimensional analogue (P n−1 ,∆), corresponding to a
hyperplane of squareful numbers. An asymptotic for-
mula of the expected order of magnitude is then
obtained when there are n+ 1 ≥ 5 terms present in the
hyperplane. In addition to this, [Van Valckenborgh 10]
contains an interpretation of the leading constant in
terms of local densities for the underlying quadric. We
will revisit this discussion in Section 2 in order to justify
the numerical value of the constant in Conjecture 1.1.

Ignoring all but the term with y = (1, 1, 1) in (1–1),
one readily arrives at the lower bound N1(B) � B1/2 ,
via the familiar parameterization for Pythagorean triples.
Building on this observation, we will sketch a proof of the
following result in Section 3.

Theorem 1.2. We have N1(B) ≥ cB1/2(1 + o(1)), where
c is the constant in Conjecture 1.1.

The problem of producing an upper bound of the ex-
pected order of magnitude is much more challenging. In
Section 4 we shall establish the following estimate.

Theorem 1.3. We have N1(B) = O(B3/5+ε).

With more work, it ought to be possible to the term
Bε by a small power of a logarithm in Theorem 1.3. The
proof of Theorem 1.3 involves two estimates. The first is
based on fixing the y and counting points on the conic
Cy , uniformly in the coefficients. The second involves
switching the roles of y and x, viewing the equation as a
family of plane cubics instead. For both of these, the de-
terminant method of [Heath-Brown 02] is a key tool. The
same argument has been observed by a number of math-
ematicians, including Valentin Blomer in private com-
munication with the first author. In order to improve
the exponent of B in Theorem 1.3, one requires a new
means of treating the contribution from x,y for which
each xi and yi has order of magnitude B1/5 . It would be
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FIGURE 1. Values of N1 (B)/(cB1/2 ).

desirable, for example, to have better control over the y
that produce conics Cy containing at least one rational
point of small height.

2. THE CONSTANT

Recall the expression for N1(B) in (1–1), in which Cy

denotes the conic

x2
0y

3
0 + x2

1y
3
1 = x2

2y
3
2 ,

for given y = (y0 , y1 , y2) ∈ N 3 . Let Hy : Cy(Q ) → R ≥0

denote the height function

[x0 , x1 , x2 ] 	→ max{|x2
0y

3
0 |, |x2

1y
3
1 |, |x2

2y
3
2 |}1/2 ,

if x0 , x1 , x2 ∈ Z satisfy gcd(x0 , x1 , x2) = 1. On noting
that x and −x represent the same point in P 2 , we easily
infer that N1(B) is approximated by the sum

1
4

∑
y∈N 3

µ2(y0y1y2)#
{
x ∈ Cy(Q ) : Hy(x) ≤ B1/2 , (2–1)

gcd(x0y0 , x1y1 , x2y2) = 1
}
.

Following the framework developed by the second author
[Van Valckenborgh 10, Section 5], we are therefore led to
take the value

c =
1
4

∑
y∈N 3

µ2(y0y1y2)cHy (Cy(A Q )+) (2–2)

in Conjecture 1.1. Here, if Cy(A Q )+ denotes the open
subset of the adelic space Cy(A Q ) carved out by the con-
dition min0≤i≤2{vp(xi,pyi)} = 0 for each prime p, then
cHy (Cy(A Q )+) is a special case of the constant conjec-
turally introduced in [Peyre 95, Définition 2.5] in the

broader context of Fano varieties. In particular, it fol-
lows that

cHy (Cy(A Q )+) = α(Cy)ωHy (Cy(A Q )+), (2–3)

where ωHy (Cy(A Q )+) denotes the Tamagawa measure
of Cy(A Q )+ associated to the height Hy and α(Cy) is
the volume of a certain polytope contained in the cone
of effective divisors.

Let y ∈ N 3 with µ2(y0y1y2) = 1. In the present set-
ting we have Pic(Cy) ∼= Z, and one finds, using [Peyre 95,
Définition 2.4], that

α(Cy) =
1
2
. (2–4)

In [Van Valckenborgh 10], which features nonsingular
quadrics in P n for n ≥ 4, it is worth highlighting that
the corresponding value of the constant is found to be
1/(n− 1) using the Lefschetz hyperplane theorem. This
is no longer true when one considers conics in P 2 , since
the class of a hyperplane section is not a generator for
the Picard group.

Turning to the Tamagawa constant, we let S =
{∞, 2} ∪ {p | y0y1y2}, a finite set of places. The Tam-
agawa measure on Cy(A Q ) associated with the height
function Hy is given by

ωHy = lim
s→1

(s− 1)LS (s,Pic(Cy))
∏

v∈Val(Q )

λ−1
v ωHy ,v ,

(2–5)
where

λv =

{
(1 − 1/p)−1 , if v ∈ Val(Q ) − S,

1, otherwise,
(2–6)
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and

LS (s,Pic(Cy)) =
∏

v∈Val(Q )−S

(
1 − 1

ps

)−1

= ζ(s)
∏

p |2y0 y1 y2

(
1 − 1

ps

)
.

Hence

lim
s→1

(s− 1)LS (s,Pic(Cy)) =
∏

p |2y0 y1 y2

(
1 − 1

p

)
. (2–7)

In the next few sections, we will calculate the v-adic den-
sities at the different places.

2.1. Density at the Good Places

Let p be a prime such that p � 2y0y1y2 . Re-
call that Cy(Q p)+ is defined as the subset of
points [x0,p , x1,p , x2,p ] ∈ Cy(Q p), with xi,p ∈ Zp and
min0≤i≤2{vp(xi,p)} = 0, for which

min
0≤i≤2

{vp(xi,pyi)} = 0. (2–8)

Since p � y0y1y2 , this latter condition is automat-
ically satisfied, whence Cy(Q p)+ = Cy(Q p). By
[Peyre and Tschinkel 01, Lemmas 3.2 and 3.4] and
[Peyre 95, Lemme 5.4.6], we have

ωHy ,p(Cy(Q p)) =
#Cy(F p)

p
.

Since Cy(F p) is non-empty by Chevalley–Warning, we
deduce that #Cy(F p) = #P 1(F p) = p+ 1. This implies
that for the good places, we have∏

v∈Val(Q )−S
λ−1
v ωHy ,v (Cy(Q v )+)

=
∏

p�2y0 y1 y2

(
1 − 1

p

) (
1 +

1
p

)
(2–9)

=
8
π2 ×

∏
p |y0 y1 y2
p>2

(
1 − 1

p2

)−1

,

since
∏
p>2

(
1 − 1

p2

)
=

4
3
× 6
π2 =

8
π2 .

2.2. Density at the Bad Places

We now suppose that p is a prime divisor of 2y0y1y2 . In
this case, in considering Cy(Q p)+ , the condition (2–8)

will no longer be satisfied trivially. Let

N ∗
y(pr ) = #

{
x ∈ (Z/prZ)3 − (pZ/prZ)3 :

y3
0x

2
0 + y3

1x
2
1 ≡ y3

2x
2
2 (mod pr ),

min
0≤i≤2

{vp(xiyi)} = 0
}
.

Using [Peyre and Tschinkel 01, Lemmas 3.2 and 3.4] and
[Peyre 95, Lemme 5.4.6], we deduce that there exists a
constant of r0 ∈ N such that

ωHy ,p(Cy(Q p)+) =
(

1 − 1
p

)−1

× N ∗
y(pr )
p2r , (2–10)

for each r ≥ r0 . The following two results are concerned
with the calculation of N ∗

y(pr ) for primes p | 2y0y1y2 .

Lemma 2.1. If p | y0y1y2 and p > 2, we have

N ∗
y(pr )
p2r =

(
1 − 1

p

)
×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 +

(
y1 y2
p

))
, if p | y0 ,(

1 +
(
y0 y2
p

))
, if p | y1 ,(

1 +
(

−y0 y1
p

))
, if p | y2 .

Proof. Suppose, for example, that p divides y0 . In this
case, p � y1y2 . Modulo p, we obtain the congruence
y3

1x
2
1 ≡ y3

2x
2
2 (mod p). If y−3

1 y3
2 is a square modulo p, then

we can choose x2 arbitrarily in F×
p , and for each choice

of x2 , there are two solutions for x1 . It follows that there
are 2p(p− 1) solutions modulo p in this case. If y−3

1 y3
2 is

not a square modulo p, then there are no solutions. We
conclude that

N ∗
y(p) =

(
1 +

(
y1y2

p

))
p(1 − p).

Using Hensel’s lemma, we deduce that N ∗
y(pr ) is equal to

p2(r−1)
(

1 +
(
y1y2

p

))
p(1 − p)

for each r ≥ 1, which thereby completes the proof.

Lemma 2.2. If r ≥ 3, we have

N ∗
y(2r )
22r =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if 2 � y0y1y2 and
¬{y0 ≡ y1 ≡ −y2 (mod 4)},

2, if 2 | y0 and y1 ≡ y2 (mod 8),
2, if 2 | y1 and y0 ≡ y2 (mod 8),
2, if 2 | y2 and y0 ≡ −y1 (mod 8),
0, otherwise.
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Proof. This follows from direct calculation for the case
r = 3. The formula for r > 3 follows from Hensel’s
lemma.

2.3. Density at the Infinite Place

It remains to consider the infinite place v = ∞. Let

D1 =
{
(y3

0x
2
0 , y

3
1x

2
1 , y

3
2x

2
2) ∈ (R ∩ [−1, 1])3 :

y3
0x

2
0 + y3

1x
2
1 = y3

2x
2
2
}
.

Using [Peyre 95, Lemme 5.4.7], we obtain

ωHy ,∞(Cy(R )+) =
1
2
×

∫
D1

ωL,∞,

where

ωL,∞ =
dx0 dx1

2y3/2
2

√
y3

0x
2
0 + y3

1x
2
1

is the Leray form. Let

D2 = {(x0 , x1) ∈ (R ∩ [−1, 1])2 : x2
0 + x2

1 ≤ 1}.

Then it follows that

ωHy ,∞(Cy(R )+)

=
1
2
× 1

(y0y1y2)3/2

∫
D2

1√
x2

0 + x2
1

dx0 dx1 (2–11)

=
π

(y0y1y2)3/2 .

2.4. Conclusion

Recall the definition (2–5) of the Tamagawa measure, in
which the convergence factors are given by (2–6). Com-
bining (2–7), (2–9), (2–10) with Lemma 2.1 and (2–11),
we deduce that ωHy (Cy(A Q )+) is equal to

1
(y0y1y2)3/2 × 8

π
× σ2,y ×

∏
p |y0
p>2

(
1 +

(
y1 y2
p

))
(
1 + 1

p

)

×
∏
p |y1
p>2

(
1 +

(
y0 y2
p

))
(
1 + 1

p

) ×
∏
p |y2
p>2

(
1 +

(
−y0 y1
p

))
(
1 + 1

p

) ,

where σ2,y = limr→∞ 2−2rN ∗
y(2r ) is given by Lemma 2.2.

Substituting this into the definition of the conjectural
constant (2–3), and combining it with (2–4), we deduce

from (2–2) that

c =
1
π

∑
y∈N 3

µ2(y0y1y2)
(y0y1y2)3/2 × σ2,y

∏
p |y0
p>2

(
1 +

(
y1 y2
p

))
(
1 + 1

p

)

×
∏
p |y1
p>2

(
1 +

(
y0 y2
p

))
(
1 + 1

p

) ×
∏
p |y2
p>2

(
1 +

(
−y0 y1
p

))
(
1 + 1

p

) . (2–12)

In the remainder of this section we shall attempt to
simplify this expression, in order to facilitate its numeri-
cal evaluation. Writing S for the set of y ∈ N 3 for which
µ2(y0y1y2) = 1, we can partition S into subsets

S−1 = {y ∈ S : 2 � y0y1y2}, Si = {y ∈ S : 2 | yi},
for 0 ≤ i ≤ 2. We then split (2–12) into sums ci over Si ,
for each −1 ≤ i ≤ 2. To streamline the notation, we de-
fine

γ(n) =
∏
p |n

(
1 +

1
p

)−1

,

and for a, b ∈ N with a, b square-free and b > 1 odd, we
set ( ab )∗ = 1 if ( ap ) = 1 for each p | b, with the convention
that ( a1 )∗ = 1.

We begin by examining c−1 , in which case y0 , y1 , and
y2 are all odd. We get

c−1 =
1
π

∑ γ(y0y1y2)
(y0y1y2)3/2

∏
p |y0

(
1 +

(
y1y2

p

))

×
∏
p |y1

(
1 +

(
y0y2

p

))
×

∏
p |y2

(
1 +

(−y0y1

p

))
,

where the sum is over

y ∈ S−1 , ¬{y0 ≡ y1 ≡ −y2 (mod 4)}.
Substituting d = y0y1y2 , we obtain

c−1 =
1
π

∞∑
d=1
2�d

µ2(d)γ(d)2ω (d)

d3/2 × ∆−1(d),

where ω(d) denotes the number of distinct prime divisors
of d and

∆−1(d) = #
{
y0y1y2 = d : ¬{y0 ≡ y1 ≡ −y2 (mod 4)},(
y1y2

y0

)
∗

=
(
y0y2

y1

)
∗

=
(−y0y1

y2

)
∗

= 1
}
.

We next consider c0 , noting that c0 = c1 = c2 , by sym-
metry. If y0 is even, we set y0 = 2y′0 , where y′0 is odd. We
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then have that

c0 =
1
π

∑
(y ′

0 ,y1 ,y2 )∈S−1
y1 ≡y2 (mod 8)

2γ(y′0y1y2)
(2y′0y1y2)3/2 ×

∏
p |y ′

0

(
1 +

(
y1y2

p

))

×
∏
p |y1

(
1 +

(
2y′0y2

p

))
×

∏
p |y2

(
1 +

(−2y′0y1

p

))
.

Putting d = y′0y1y2 , we deduce as above that

c0 =
1
π

∞∑
d=1
2�d

µ2(d)γ(d)2ω (d)

d3/2 × ∆0(d)√
2
,

where now

∆0(d) = #
{
y′0y1y2 = d : y1 ≡ y2 (mod 8),

(
y1y2

y′0

)
∗

=
(

2y′0y2

y1

)
∗

=
(−2y′0y1

y2

)
∗

= 1
}
.

Bringing these expressions together in (2–12), we con-
clude that

c =
1
π

∞∑
d=1
2�d

µ2(d)γ(d)2ω (d)

d3/2

(
∆−1(d) +

3√
2
∆0(d)

)
.

(2–13)
One finds by numerical computation that c = 2.68 . . . , as
in Conjecture 1.1.

3. THE LOWER BOUND

Let C ⊂ P 2 be a conic defined over Q and denote by H :
C(Q ) → R ≥0 the exponential height function. Suppose
that C is defined by a nonsingular quadratic form defined
over Z with relatively prime coefficients all bounded in
modulus by M . A number of results in the literature are
directed at estimating the counting function NC,H (P ) =
#{x ∈ C(Q ) : H(x) ≤ P}, as P → ∞, with the outcome
that there exist absolute constants δ, ψ > 0 such that

NC,H (P ) = cH (C(A Q ))P +O(MψP 1−δ ), (3–1)

where cH (C(A Q )) is the constant predicted in [Peyre 95].
This is a special case of work in [Franke et al. 89] on flag
varieties P \G, with G taken to be the orthogonal group
in three variables. Typically, the uniformity in M is not
actually recorded, but it transpires that the dependence
on M is at worst polynomial.

We are now ready to establish Theorem 1.2. For any
choice of y there are clearly O(1) rational points on Cy

that correspond to a solution with x0x1x2 = 0. Beginning

with (2–1), we deduce that

N1(B) ≥ 1
4

∑
y∈N 3

y0 ,y1 ,y2 ≤Bθ

µ2(y0y1y2)N+
Cy ,Hy

(B1/2) +O(B3θ ),

for any θ < 1/6, where N+
Cy ,Hy

is defined as for
NCy ,Hy , but with the additional constraint that
gcd(x0y0 , x1y1 , x2y2) = 1. Once taken in conjunc-
tion with the fact that y0y1y2 is square-free and
gcd(x0 , x1 , x2) = 1, we see that the coprimality condi-
tion gcd(x0y0 , x1y1 , x2y2) = 1 on Cy is equivalent to
demanding that gcd(xi, xj , yk ) = 1 for each permutation
{i, j, k} = {0, 1, 2}. Using the Möbius function to remove
these coprimality conditions gives

N+
Cy ,Hy

(B1/2)

=
∑
k0 |y0

∑
k1 |y1

∑
k2 |y2

µ(k0k1k2)NCk ,y ′ ,Hk ,y ′

(
B1/2

k0k1k2

)
,

where yi = kiy
′
i , Ck,y ′ is k0y

′3
0 x

2
0 + k1y

′3
1 x

2
1 = k2y

′3
2 x

2
2 and

Hk,y ′ is defined as for Hy but with y3
i replaced by kiy′3i .

The conic Ck,y ′ has an underlying quadratic form with
coefficients of size at most B3θ . Applying (3–1), we con-
clude that

N+
Cy ,Hy

(B1/2) = B1/2
∑
k0 |y0

∑
k1 |y1

∑
k2 |y2

µ(k0k1k2)
k0k1k2

× cHk ,y ′ (Ck,y ′(A Q )) +Oε(B
1−δ

2 +3θψ+ε),

for any ε > 0. One finds that the main term here is pre-
cisely equal to cHy (Cy(A Q )+)B1/2 , in the notation of
Section 2. Noting that

∑
y≤Bθ

f(y)
y3/2 =

∞∑
y=1

f(y)
y3/2 +Oε

(
B− θ

2 +ε
)
,

for any arithmetic function f satisfying f(n) = Oε(nε),
we deduce that

N1(B) ≥ cB1/2 +O
(
B3θ) +Oε

(
B

1−δ
2 +3θ(1+ψ )+ε

)
+Oε

(
B

1−θ
2 +ε

)
,

for any ε > 0. We therefore conclude the proof of Theo-
rem 1.2 by taking θ to satisfy the inequalities

0 < θ <
δ

6(1 + ψ)
.

4. THE UPPER BOUND

The aim of this section is to prove Theorem 1.3, for
which our starting point is (1–1). In order to estimate
N1(B), we will view the equation in two basic ways:
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as a family of conics and as a family of plane cubic
curves. By [Heath-Brown 02] one can estimate rational
points of bounded height on plane curves, uniformly in
the coefficients of the underlying equation. We will invoke
this theory through the prism of the first author’s work
[Browning 09, Lemma 4.10], which yields the following
bound for any integer d ≥ 2.

Lemma 4.1. Let c ∈ Z3 with c1c2c3 �= 0 and pairwise co-
prime coordinates. Then we have

#
{
z ∈ Z3 : gcd(z1 , z2 , z3) = 1, |zi | ≤ Zi,

c1z
d
1 + c2z

d
2 + c3z

d
3 = 0

}
�d

(
1 +

Z1Z2Z3

|c1c2c3 |2/d
)1/3

(c1c2c3)ε .

We consider the contribution N(X,Y), say, to N1(B)
from x,y such that

Xi ≤ xi < 2Xi, Yi ≤ yi < 2Yi,

for 0 ≤ i ≤ 2. Clearly N(X,Y) = 0 unless X2
i Y

3
i ≤ B

and Xi, Yi > 1/2, for 0 ≤ i ≤ 2. It will be convenient to
set X = X0X1X2 and Y = Y0Y1Y2 . In particular, we may
henceforth assume that X2Y 3 ≤ B3 . On summing over
dyadic intervals, we see that

N1(B) � log6 Bmax
X ,Y

N(X,Y), (4.1)

where the maximum is over X,Y satisfying the above
inequalities.

Viewing the underlying equation as a family of conics
first, we take d = 2 in Lemma 4.1 and deduce that

N(X,Y) �
∑
y

(y0y1y2)ε
(

1 +
X

Y 3

)1/3

�
(
Y +X1/3

)
Bε.

Alternatively, regarding the equation as a family of cu-
bics, we take d = 3 in Lemma 4.1 and obtain

N(X,Y) �
∑
x

(x0x1x2)ε
(

1 +
Y

X4/3

)1/3

�
(
X + Y 1/3X5/9

)
Bε.

Bringing these two estimates together, we conclude that

N(X,Y)

�
(
min{X,Y } + min{Y, Y 1/3X5/9} +X1/3

)
Bε.

Now it is clear that min{X,Y } ≤ X2/5Y 3/5 ≤ B3/5 and

min{Y, Y 1/3X5/9}
≤ Y 9/25 × (Y 1/3X5/9)18/25 = X2/5Y 3/5 ≤ B3/5 ,

sinceX2Y 3 ≤ B3 . Finally,X1/3 ≤ B1/2 . Inserting our es-
timate for N(X,Y) into (4.1) and redefining the choice
of ε, we therefore arrive at the statement of Theorem 1.3.
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