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Szpiro’s conjecture asserts the existence of an absolute con-
stant K > 6 such that if E is an elliptic curve over Q, the
minimal discriminant �(E ) of E is bounded above in modu-
lus by the K th power of the conductor N(E ) of E . An imme-
diate consequence of this is the existence of an absolute upper
bound on min{vp(�(E )) : p | �(E )}. In this paper, we will prove
this local version of Szpiro’s conjecture under the (admittedly
strong) additional hypotheses that N(E ) is divisible by a “large”
prime p and that E possesses a nontrivial rational isogeny. We
will also formulate a related conjecture that if true, we prove
to be sharp. Our construction of families of curves for which
min{vp(�(E )) : p | �(E )} ≥ 6 provides an alternative proof of a
result of Masser on the sharpness of Szpiro’s conjecture. We close
the paper by reporting on recent computations of examples of
curves with large Szpiro ratio.

1. INTRODUCTION

If E is an elliptic curve over Q, two classical invariants at-
tached to E that measure the primes of bad reduction of
E are the conductor of E and the minimal discriminant
of E, denoted in this paper by N(E) and ∆(E), respec-
tively. These have the property that a prime p divides
N(E) or ∆(E) precisely when E has bad reduction at p.
Furthermore, either quantity can be calculated locally by
studying E/Qp . They are related via the following result.

Proposition 1.1. (Ogg’s Formula.) Let L/Qp be a local
field, E/L an elliptic curve, and set

� v(∆) = the valuation of the minimal discriminant
of E/L,

� f(E/L) = the exponent of the conductor of E/L,
� m(E/L) = the number of components of the special

fiber of E/L.

Then

v(∆) = f(E/L) +m(E/L) − 1.

Using Ogg’s formula, it is immediate that N(E) di-
vides ∆(E) and in particular, that N(E) ≤ |∆(E)|. A
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Conductor Cremona label Szpiro ratio
12735814 − 9.01996406836501

1290 h1 8.90370022470358
9510 e1 8.84312822607337

2526810 − 8.81194357194048
9690 m2 8.80159647164269
3990 ba1 8.79237406416090
32658 b1 8.78266784426543
858 k2 8.75731614557112

89150698 − 8.69894197172524
167490523410 − 8.68896770822104

TABLE 1. Top-ten largest known Szpiro ratios.

well-known conjecture of Szpiro provides a bound in the
other direction.

Conjecture 1.2. (Szpiro’s conjecture.) Given ε > 0, there
exists a constant Cε such that for every elliptic curve
E/Q,

|∆(E)| ≤ CεN(E)6+ε .

This conjecture lies very deep and is (nearly) equiv-
alent to the abc conjecture of Masser and Oesterlé. An
immediate consequence of Szpiro’s conjecture is that the
Szpiro ratio

S(E) =
log (|∆(E)|)
log (N(E))

is absolutely bounded as E ranges over all elliptic curves
over Q. The example we know with S(E) largest corre-
sponds to

E : y2 + xy = x3 − 424151762667003358518x
− 6292273164116612928531204122716,

which has minimal discriminant

∆(E) = −233 · 718 · 1327 · 193 · 292 · 127

and conductor

N(E) = 2 · 7 · 13 · 19 · 29 · 127,

and hence S(E) = 9.01996 . . . . In Table 1, we list some
data on the largest Szpiro ratios known to us (informa-
tion on coefficients for Weierstrass models of these curves
will be tabulated later).

An immediate corollary of Conjecture 1.2 is the fol-
lowing.

Proposition 1.3. Assume that Szpiro’s conjecture is true
for some ε < 1 and Cε . Let E/Q be a semistable elliptic
curve of conductor N (so that N is square-free). Then

if there exists a prime p | N for which p > C
1/6
ε N (5+ε)/6 ,

we may conclude that vp(∆(E)) ≤ 6.

This proposition suggests the following, to which we
will henceforth refer as the local Szpiro conjecture.

Conjecture 1.4. Let E/Q be an elliptic curve with conduc-
tor N(E) and minimal discriminant ∆(E). Then there is
a prime p | N(E) for which

vp(∆(E)) ≤ 6 vp(N(E)).

In particular, if E is semistable, there exists a prime p |
N(E) with vp(∆(E)) ≤ 6.

Using Ogg’s formula, one can reword this conjecture
in terms of the size of the component group of the spe-
cial fiber of E/Qp . Alternatively, for large enough p (so
that E[p] is irreducible), vp(∆(E)) is closely related to
level lowering of the modular form attached to E (see
[Ribet 91]). As such, Proposition 1.3 can be restated in
terms of congruences between modular forms of levels M
and N , where M | N .

The goal of this paper is to study Proposition 1.3,
without the assumption of Szpiro’s conjecture. We can,
in fact, deduce a like conclusion (with different bounds
on p) under the additional assumption that E(Q) has a
nontrivial rational isogeny.

Theorem 1.5. Let E be an elliptic curve over Q with
conductor N(E) = Mp and minimal discriminant ∆(E).
Assume that there is an integer n > 1 such that E pos-
sesses a rational n-isogeny. Then there exists a constant
C = C(M) such that if p ≥ C, then vp(∆(E)) ≤ 6.

Optimistically, one might view this as evidence for the
validity of Szpiro’s conjecture (although the property of
having a nontrivial rational isogeny is admittedly rather
special).

We now give a brief outline of the paper. The gen-
eral approach for the proof of Theorem 1.5 is to study
universal elliptic curves associated to standard modular
curves and exploit the fact that they have correspond-
ingly “nice” discriminant formulas. We begin, in Section
2, by considering the case of elliptic curves having more
than three rational torsion points. In Section 3, we carry
out a similar analysis for elliptic curves with a rational
N -isogeny, and finally, in Section 4, we deal with elliptic
curves with rational 2- or 3-isogeny. The results of these
three sections combine to prove Theorem 1.5. In Section
5, we apply the results of Section 2 to prove Szpiro’s
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conjecture when the ramification of elliptic curves is lim-
ited (see Theorem 5.1). In Section 6, we reinterpret The-
orem 1.5 in terms of level lowering, and suggest some
other problems that seem related to the subject at hand.

Section 7 is devoted to a construction that
produces infinitely many curves E/Q for which
min {vp(∆(E)) : p | ∆(E)} ≥ 6 (whereby Conjecture 1.4,
if true, is necessarily sharp). This provides an alterna-
tive proof to that given in [Masser 90] that the same is
true for Szpiro’s conjecture. Finally, in Section 8, we ex-
tend some of the computations of [Nitaj 98] to find more
examples of elliptic curves with large Szpiro ratio.

2. ELLIPTIC CURVES WITH RATIONAL N-TORSION

Let X/K be a moduli space of elliptic curves with some
given level structure. Assume that X is a genus-0 curve,
and note that any such curve will have a natural map
j : X → X(1).1 The set j−1(∞) is the set of cusps of X,
and the ramification index of each cusp is the multiplicity
of the cusp in this preimage. The goal of this section is
to prove the following theorem.

Theorem 2.1. Let X be a modular curve of genus zero.
Assume that the cusps of X are in g distinct Galois or-
bits with g ≥ 3, and let e1 , e2 , . . . , eg be the ramification
indices of the cusps in each Galois orbit. Then for any
integer M , there exists a constant C = C(M) such that if

(a) E/Q is an elliptic curve of conductor Mp1p2 · · · pg−2
and minimal discriminant ∆E , where the pi are dis-
tinct primes for 1 ≤ i ≤ g − 2,

(b) min(p1 , p2 , . . . , pg−2) > C, and

(c) there is τ ∈ X(Q) such that j(τ) = j(E),

then the multiset {vpi (∆E )} is a multisubset of
{e1 , e2 , . . . , eg}.

The main application of the above theorem for us is
to prove a small result toward the local Szpiro conjecture
for elliptic curves having #E(Q)tors > 3. Specifically, we
have the following sharpening of Theorem 1.5.

Corollary 2.2. Given M and N > 3, there is an effectively
computable constant C = C(M) such that if

p1 , p2 , . . . , p[N/2]−1

1 We can extend our results to any genus-0 curve X/K with a map
j : X → X (1); we will, however, state our results only for modular
curves.

is a set of primes with pi > C for each i, and E/Q is
an elliptic curve with conductor Mp1p2 · · · p[N/2]−1 and
minimal discriminant ∆E having a rational N -torsion
point, then we have vpi (∆E ) | N for all i, and vpj (∆E ) ≤
6 for some j.

Proof of Corollary 2.2. If E(Q) has an N -torsion point,
then j(E) is in the image of j : X → X(1), where X =
X1(N) is one of the modular curves in Table 2 (with, we
note, at least three distinct Galois orbits of three rational
cusps, since N > 3).

The result now follows immediately by studying the
ramification indices of each Galois orbit and applying
Theorem 2.1.

We will prove Theorem 2.1 using effective meth-
ods from Diophantine approximation for solving Thue–
Mahler and S-unit equations. Throughout this section,
we denote by K a finite extension of Q, by OK the ring
of integers of K, by S a finite collection of primes of OK ,
by OK,S the set of S-integers in K, and by S the set of S-
units in OK (i.e., the set of x ∈ OK such that vπ (x) = 0
for all primes π �∈ S). Furthermore, let N(π) be the norm
of the ideal π, and let ‖x‖ be the maximum modulus of
the image of x for all embeddings K → C.

Proposition 2.3. (Thue–Mahler equations.) Let f(x, y) ∈
OK [x, y] be a binary form (i.e., a homogeneous polyno-
mial) of degree n. Assume that f(X, 1) has at least three
distinct roots in K. Then for every solution of f(a, b) = z
in a, b ∈ OK , z ∈ S, with N(aOK + bOK ) = 1, there is a
unit ε ∈ OK such that

max(‖εa‖, ‖εb‖) < C,

where C is an effectively computable constant that de-
pends only on K, S, and f .

Proof. See [Shorey and Tijdeman 86, Theorem 7.6].

Proposition 2.4. (S-unit equations.) Let f(x, y) ∈
OK [x, y] be a binary form such that the polynomial
f(x, 1) has no repeated roots in C. Then there exist at
most finitely many a, b ∈ S such that the equation

f(a, b) = uzr

has solutions with u ∈ S, z ∈ OK , and r ∈ N, r ≥ 2.

Proof. This is standard, and one can find the argument
for the case r = 2 in, for example, [Silverman 92, Theo-
rem 4.3]. We will present a proof here for the benefit of
the reader. We begin by extending K so that f splits into
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X Number of Galois orbits of cusps Ramification data
X(1) 1 1
X1 (2) 1, 1 2, 1
X1 (3) 1, 1 3, 1
X1 (4) 1, 1, 1 4, 1, 1
X1 (5) 1, 1, 2 5, 5, 1
X1 (6) 1, 1, 1, 1 6, 3, 2, 1
X1 (7) 1, 1, 1, 3 7, 7, 7, 1
X1 (8) 1, 1, 1, 1, 2 8, 8, 4, 2, 1
X1 (9) 1, 1, 1, 2, 3 9, 9, 9, 3, 1
X1 (10) 1, 1, 1, 1, 2, 2 10, 10, 5, 5, 2, 1
X1 (12) 1, 1, 1, 1, 2, 2, 2 12, 12, 6, 2, 4, 3, 1
X(2) 1, 1, 1 2, 2, 2

X(2) ×X 1 (2) X1 (4) 1, 1, 1, 1 4, 4, 2, 2
X(2) ×X 1 (2) X1 (6) 1, 1, 1, 1, 1, 1 6, 6, 6, 2, 2, 2
X(2) ×X 1 (2) X1 (8) 1, 1, 1, 1, 2, 2, 2 8, 8, 8, 8, 4, 2, 2

TABLE 2. X1 (N ) and X(2) ×X 1 (2) X1 (2N ) data.

linear factors

f(x, y) = A(x− α1y)(x− α2y) · · · (x− αny)

and subsequently enlarge S so that

(a) A ∈ S,

(b) αi ∈ S for all i,

(c) αi − αj ∈ S for all i �= j, and

(d) OK,S is a principal ideal domain.

It follows that we may write x− αiy = uiz
r
i , and af-

ter changing variables, we arrive at the equation x−
y = zri with x, y ∈ S. This equation, however, has only
finitely many solutions for r ≥ 2, via, for example,
[Shorey and Tijdeman 86, Theorem 9.4].

We can appeal to the preceding two propositions to
prove the following result.

Proposition 2.5. Let g ≥ 3, F1 , F2 , . . . , Fg ∈ OK [x, y] be
distinct irreducible binary forms and let e1 , e2 , . . . , eg be
positive integers. Furthermore, assume that OK,S is a
unique factorization domain. Then there is an effectively
computable constant C such that if a, b ∈ OK,S satisfy

F1(a, b)e1F2(a, b)e2 · · ·Fg (a, b)eg = upr1
1 p

r2
2 · · · prg −2

g−2
(2–1)

for some u ∈ S and some collection of primes
p1 , . . . , pg−2 with ‖pi‖ > C for all i, then
{r1 , r2 , . . . , rg−2} is a multisubset of {e1 , e2 , . . . , eg}.

Proof. Since we assume that the Fi are distinct irre-
ducible forms, for any pair of integers a, b ∈ OK we have

gcd(Fi(a, b), Fj (a, b)) | R, where R is the product of the
resultants of each pair Fi and Fj with i �= j. Let C1 be
large enough that if ‖pi‖ > C1 , then pi fails to divide R.

Consider the set of solutions (a, b, {pi}) to equation
(2–1) with min(‖pi‖) > C1 . First, let us assume that
for some i, there exist j1 and j2 such that pj1 pj2 |
Fi(a, b). Then, by the pigeonhole principle, there are
three polynomials (say F1 , F2 , and F3) such that
F1(a, b)F2(a, b)F3(a, b) = v for some v ∈ S. Since F1F2F3

has degree at least three, it follows by Proposition 2.3
that max(‖εa‖, ‖εb‖) < C2 for some S-unit ε. Therefore,
Fi(a, b) will take only finitely many possible prime val-
ues in this case. Let C3 be the larger of the largest prime
value that divides Fi(a, b) and C1 .

If we choose min(‖pi‖) > C3 , then the equation∏
Fi(a, b)ei = u

∏
p
rj
j implies that each Fi has at most

one prime pj dividing it. Without loss of generality,
we may therefore assume that prii | Fi(a, b)ei , for i =
1, 2, . . . , g − 2, and that

Fg−1(a, b)eg −1Fg (a, b)eg = v, v ∈ S.

Furthermore, Fg−1 and Fg must both be linear, and after
a linear change of variables, we may assume Fg−1(x, y) =
x and Fg (x, y) = y.

We conclude that a, b ∈ S and hence may write

Fi(a, b) = vip
ri /ei
i , (2–2)

where now a, b, vi ∈ S. By Proposition 2.4, there are only
finitely many solutions to (2–2) with ri �∈ {0, ei}. Choos-
ing C4 large enough, it follows that if min(‖pi‖) > C4 ,
then ri ∈ {0, ei} for i = 1, 2, . . . , g − 2, as desired.
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Interpreting the above proposition geometrically fin-
ishes the proof of Theorem 2.1. Specifically, let P1 =
A1 ∪ {∞}. Then each element of P1(K) has a representa-
tive [a : b] ∈ K2 \ {[0 : 0]}, with the point at infinity rep-
resented by [1 : 0]. Note that any point z = [a : b] ∈ A1

corresponds to a rational number a/b ∈ K.
Therefore, any valuation on K extends naturally to a

valuation on P1(K), specifically v([a : b]) = v(a) − v(b).
Note that v([0 : 1]) = −∞ and v([1 : 0]) = ∞. Further-
more, given any pair of K-rational points P and Q, there
is a K-rational isomorphism that will send P to [0 : 1]
and Q to [1 : 0] (since we can map any three given ratio-
nal points to any other three rational points).

Let j : X → X(1) be a K-rational map. Then we can
write this down explicitly as

[a : b] 
→ [G(a, b), F (a, b)]

for F and G homogeneous polynomials with rational co-
efficients of the same degree. We may assume, without
loss of generality, that F and G are coprime and have
coefficients in OK . We define the degree of φ to be the
degree of F (or G). Note that

φ−1(∞) = {[a : b] ∈ P1 : F (a, b) = 0}.
We can factor F (a, b) =

∏g
i=1 Fi(a, b)

ei , where each Fi
is K-irreducible and every pair Fi and Fj are coprime.
Note that the points Pi = {[a : b] : Fi(a, b) = 0} form a
Galois orbit of a point in φ−1(∞), and g is the number
of Galois orbits of φ−1(∞). We also have

∑g
i=1 deg(Fi),

ei = deg(φ). This completes the proof of Theorem 2.1.

3. ELLIPTIC CURVES WITH RATIONAL N-ISOGENIES

The methods in the previous section do not seem
amenable to studying the local Szpiro conjecture for el-
liptic curves with a rational N -isogeny (but without ra-
tional N -torsion). Specifically, X0(N) has, for N prime,
only two cusps, which necessitates a modification of our
approach. If, however, we consider ramification data over
j = 0 and 1728, we arrive at the following result.

Theorem 3.1. Let X be a modular curve of genus zero.
Assume that X has g cusps, all rational, and let ei be the
ramification index of these cusps. Furthermore, assume
that there are two unramified points above j = 1728 or
j = 0. Then for any integer M , there exists a constant
C = C(M) such that if

(a) E/Q is an elliptic curve of conductor Mp1p2 · · · pg−1
and minimal discriminant ∆E ,

(b) min(pi) > C,

(c) there is τ ∈ X(Q) such that j(τ) = j(E),

then the points above j = 0 are all ramified and the mul-
tiset {vpi (∆E )} is a multisubset of {e1 , e2 , . . . , eg}.

An immediate corollary of the above theorem is the
following.

Corollary 3.2. Given positive integers M and N > 3,
there is an effectively computable constant C = C(M)
such that for any prime p > C and any elliptic curve
E/Q possessing a rational N -isogeny with conductor Mp

and minimal discriminant ∆E , we have vp(∆E ) | N and
vp(∆E ) ≤ 6.

Proof of Corollary 3.2. Note that with finitely many ex-
ceptions, all rational elliptic curves having a rational N -
isogeny and no complex multiplication arise from ratio-
nal points on X0(N), where N has genus 0. We know
that if E has complex multiplication, then E has poten-
tially good reduction everywhere, and hence it cannot
have multiplicative reduction at p. Therefore, E arises
from a rational point on one of the curves in Table 3.

When N is prime, we can apply Theorem 3.1 to ob-
tain the desired result. For the other cases, there are suf-
ficiently many Galois orbits of cusps to apply Theorem
2.1.

The following lemma is the main ingredient for proving
Theorem 3.1. For simplicity, we assume that K = Q and
S is a finite set of primes including 2 and 3. As such,
OK,S = Z[1/S].

Lemma 3.3. Let j = g/f and j − 1728 = h/f with
f, g, h ∈ OK,S coprime S-integers, gh �= 0. Then

(a) the elliptic curve Ej given by the model y2 =
x3 − 3ghx+ 2gh2 has j(Ej ) = j and discriminant
17282fg2h3 ;

(b) if for p �∈ S, we have either 3 � vp(g) or 2 � vp(h), and
if E/Q is any elliptic curve with j(E) = j, then E
has additive reduction at p.

Proof. The first part of the lemma is a straightforward
calculation. For the second part, note that any elliptic
curve with the same j-invariant is a quadratic twist of
Ej , which we can write explicitly as

y2 = x3 − 3ghr2x+ 2gh2r3 .

If 3 � vp(g) or 2 � vp(h), then any such twist will still have
additive reduction at p.
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X Number of Galois orbits of cusps Ramification data Number of unramified points
above j = 0 and j = 1728

X0(2) 1, 1 2, 1 0, 1
X0(3) 1, 1 3, 1 1, 0
X0(4) 1, 1, 1 4, 2, 1 0, 0
X0(5) 1, 1 5, 1 0, 2
X0(6) 1, 1, 1, 1 6, 3, 2, 1 0, 0
X0(7) 1, 1 7, 1 2, 0
X0(8) 1, 1, 1, 1 8, 4, 2, 1 0, 0
X0(9) 1, 1, 1 9, 3, 1 0, 0
X0(10) 1, 1, 1, 1 10, 5, 2, 1 0, 2
X0(12) 1, 1, 1, 1, 1, 1 12, 6, 4, 3, 2, 1 0, 0
X0(13) 1, 1 13, 1 2, 2
X0(16) 1, 1, 1, 1, 1 16, 8, 4, 2, 1 0, 0
X0(18) 1, 1, 1, 1, 1, 1 18, 9, 6, 3, 2, 1 0, 0
X0(25) 1, 2, 1 25, 5, 1 0, 2

TABLE 3. X0 (N ) data.

Now let j : X → X(1) be as before, given by j =
[G,F ], where G and F are homogeneous polynomials of
the same degree with no common factor. Let j − 1728 =
[H,F ] (that is, G−H = 1728F ). Let G = GuG3

r and
H = HuH2

r . Note that the degree of Gu (respectively
Hu) is the number of unramified points above the point
j = 0 (respectively j = 1728). Assume that E is an el-
liptic curve such that j(E) = j([a : b]) for some [a : b] ∈
X(Q). By Lemma 3.3, if E has semistable reduction out-
side S, then

Gu(a, b) = ug3 , Hu(a, b) = vh2 ,

where u, v ∈ S and g, h ∈ Z. Since S is a finite set of
primes, any such elliptic curve corresponds to solutions
to a finite number of such Diophantine equations. We
will focus on the case that Gu and Hu are of degree 2 or
0 (when X = X0(N), this is satisfied for N > 3 prime).
The following lemma is well known.

Lemma 3.4. Let Q(x, y) be a binary quadratic form in
Q[x, y], and let r ≥ 1. Then there exists a finite number
of pairs of homogeneous polynomials Ai,Bi of degree r

such that (Ai(α, β), Bi(α, β)) is a solution to Q(a, b) = cr

for all coprime α, β, and all solutions to Q(a, b) = cr ,
with a and b coprime integers, belong to one of the above
families.

Proof. The above Diophantine equation is just a twist of
the Diophantine equation x2 − y2 = zr , which gives us
the desired result (see [Darmon and Granville 95]).

We are now ready to prove Theorem 3.1. Specifi-
cally, since we are assuming that there is a pair of un-
ramified points above either j = 0 or j = 1728, it fol-
lows that either Gu or Hu is a binary quadratic form.
When Hu (respectively Gu) is a binary quadratic form,
Lemma 3.4 tells us that if j(E) = j([a, b]), then (a, b) =
(A(α, β), B(α, β)) for some A and B of degree two (re-
spectively degree three) coming from a finite list of pos-
sibilities.

On the other hand, since we assume that X has pre-
cisely g (rational) cusps, it follows that

F (a, b) =
g∏
i=1

Fi(a, b)ei = u

g−1∏
i=1

prii ,

where the Fi are linear forms. Substituting
(A(α, β), B(α, β)) for (a, b), we may write

g∏
i=1

Fi(α, β)ei = u

g−1∏
i=1

prii ,

where Fi is a homogeneous polynomial of degree two (re-
spectively three). If we choose the pi large enough, then
for some i, we must have Fi(α, β) = u, where u ∈ S. As-
sume without loss of generality that i = g. When the
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degree of Fg equals three, then from Proposition 2.4, it
follows that there are only finitely many such solutions.
Assume that the degree of Fg is 2. First consider the case
pj1 pj2 � Fi(α, β). Then, possibly after reordering labels,
we deduce the following system of equations:

Fi(α, β) = uip
ri /ei
i , 1 ≤ i ≤ g − 1, Fg (α, β) = ug ,

where ui ∈ S. Such a system of Diophantine equations
has been studied in [Shorey and Stewart 83], where it is
shown that if ri/ei �= 1, then there are only finitely many
solutions to the above equation, the heights of which can
be bounded effectively. Therefore, by choosing our con-
stant C large enough, we conclude that if min(pi) > C,
then ri = ei , as desired. If pj1 pj2 | Fi(α, β), then necessar-
ily Fi ′(α, β) is an S-unit for some i′ �= g. Assume without
loss of generality that i′ = 1, whereby

F1(α, β) = u1 , Fg (α, β) = ug .

Again, by the results of [Shorey and Stewart 83], such
equations have at most finitely many solutions. This fin-
ishes the proof of Theorem 3.1.

4. X0(N) FOR N = 2, 3

The final case we wish to consider is that of elliptic curves
with rational 2- (or 3-) isogenies. Our methods of earlier
sections do not apply in these cases. We can, however,
prove the following result.

Proposition 4.1. Given an integer M , there exists a con-
stant C such that for any elliptic curve E/Q with a ra-
tional 2- (respectively 3-) isogeny of conductor Mp with
p > C, we have vp(∆E ) ∈ {1, 2, 4} (respectively vp(∆E ) ∈
{1, 3}).

Proof. Let

E2 : uy2 = x(x+ ax+ b),

E3 : uy2 = x3 +
a2

4
x2 +

ab

2
x+

b2

4
.

Then for any elliptic curve E with a rational 2- (re-
spectively 3-) isogeny, we can find integers a, b and a
square-free integer u such that E � E2(a, b, u) (respec-
tively E � E3(a, b, u)). Furthermore, if E has semistable
reduction at a given prime q > 3, then we can demand
that q � u gcd(a, b), which ensures that the model for E2

(respectively E3) is minimal at q.
As before, let S be the set of primes dividing M , to-

gether with 2 and 3, and let S be the set of S-units in
Z. If E = El(a, b, u) for l = 2 or 3, with conductor Mp,

then we may assume without any loss of generality that
u ∈ S. Let ∆l be the discriminant of El , and note that

∆2 = 24u6b2(a2 − 4b),
∆3 = u6b3(a3 − 27b).

Assuming p > M , we may suppose that E has multi-
plicative reduction at p, and in particular, that p � u and
p � gcd(a, b).

Write ∆E = ∆′pr , where ∆′ ∈ S. Assume first that p �

ab. Then b ∈ S and

δpr =

{
a2 − 4b, l = 2,

a3 − 27b, l = 3,

where δ ∈ S. We are thus led to the Diophantine equation

al − δpr = β

in variables a, p, and r, where β, δ ∈ S. Appealing to
[Shorey and Tijdeman 86, Theorem 12.2], we deduce the
existence of an effectively computable constant C, de-
pending only on S, such that if p > C, then necessarily
lr ≤ 4. From this conclusion, it follows that r = 1 when
l = 3, and r = 1 or 2 when l = 2, which proves the theo-
rem in this case.

Now assume that p | ab (so that p | b, since otherwise,
from the fact that p � gcd(a, b), we would have p � ∆E ).
We may thus write b = βpρ , where β ∈ S. Note that in
this case, vp(∆E ) = lρ = r. Furthermore, we have that

δ =

{
a2 − 4b, l = 2,

a3 − 27b, l = 3,

where δ ∈ S. This leads to the Diophantine equation

al − β′pρ = δ,

in a, p, ρ, where β′, δ ∈ S. Again by
[Shorey and Tijdeman 86, Theorem 12.2], we may
conclude, for p > C, that r = lρ ≤ 4. It follows that
(l, r) ∈ {(2, 2), (2, 4), (3, 3)}, as claimed.

Combining Corollaries 2.2 and 3.2 with the above
proposition immediately yields Theorem 1.5. We remark
here that for E of conductor Mp having a rational N -
isogeny with N > 2, we may conclude that vp(∆E ) | N ,
provided that p is suitably large relative toM . We are un-
able to prove a similar result for N = 2. This is partly be-
cause the family of elliptic curves with rational 2-torsion
naturally contains elliptic curves with a rational 4-torsion
point, and there are infinitely many elliptic curves with
conductor Mp arising from the latter family.
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5. APPLICATIONS TO SZPIRO’S CONJECTURE

In this section we apply Theorem 2.1 to deduce Szpiro’s
conjecture for certain families of elliptic curves with lim-
ited ramification. Specifically, we prove the following.

Theorem 5.1. Let j : X → X(1) be a modular curve of
genus 0 over K, and let d be the degree of j, f the
number of cusps of X, and g the number of Galois orbits
of cusps. Assume that g ≥ 3 and 2

(f − 2) ≥ d

6
. (5–1)

Then for any integer M and any ε > 0, there are only
finitely many elliptic curves E/K such that

(a) j(E) = j(z) for some z ∈ X(K),

(b) N(E) = Mp1p2 · · · pg−2 for any collection of primes
pi,

(c) ‖N(E)‖6+ε < ‖∆(E)‖.

We note that inequality (5–1) is satisfied for all the
curves in Table 2 except for X1(2) and X1(3). As an im-
mediate corollary of Theorem 5.1, we have the following.

Corollary 5.2. For any integer M and real number ε > 0,
there are only finitely many elliptic curves E/Q such that

(a) N(E) = Mp1p2 · · · pl for p1 , . . . , pl prime,

(b) N(E)6+ε > |∆(E)|,
(c) E(Q) has a rational (2l + 2)-torsion point.

To prove this theorem, we appeal to estimates for lin-
ear forms in logarithms, in order to bound the primes
pi . As usual, let K be a number field and S a finite set
of primes. For the remainder of this section, we fix an
embedding of K in the complex numbers and suppose
that | · | is the usual complex norm. We will appeal to
the following two results.

Proposition 5.3. (Linear forms in complex logarithms.)
There exists a positive constant C1 depending on K and
S such that for any a, b ∈ S, we have

|a− b| > max(|a|, |b|)B−C1 ,

where B = B(a, b) = maxp∈S |vp(a/b)|.

2 Note that when all the points above j = 0 and j = 1728 are ram-
ified to order 3 and 2 respectively, then Hurwitz’s theorem implies
that f − 2 = d/6.

Proof. This is almost immediate from [Baker 73]; see also
[Shorey and Tijdeman 86, Theorem B.2].

Proposition 5.4. (Linear forms in p-adic logarithms.)
There is a constant C2 depending on K and S such that
for any coprime a, b ∈ S,

vq (a− b) < C2 log(B),

for any q ∈ S, where B = B(a, b) = maxp∈S |vp(a/b)|.

Proof. This is proved in [Van der Poorten 77] (see also
[Shorey and Tijdeman 86, Theorem B.4]).

We can apply this latter proposition to bound the ab-
solute value of the S-unit part of a− b.

Corollary 5.5. There is a constant C3 depending on K
and S such that for any triple a, b, c ∈ S and z ∈ OK

satisfying

a− b = cz,

we have |c| < BC3 .

Combining Corollary 5.5 and Proposition 5.3, it fol-
lows that if a− b = cz with a, b, c ∈ S, then

max(|a|, |b|)BC1 < |a− b| < |z|BC3 ,

whereby

|z| > max(|a|, |b|)B(a, b)C4 . (5–2)

We can actually prove a similar bound for a general ho-
mogeneous polynomial.

Corollary 5.6. Let F ∈ OK be a binary form of degree n
such that the polynomial F (x, 1) has no repeated roots in
C, and let S be a finite set of primes. Then there exist
constants C (possibly negative) depending on F , K, and
S such that for any solution to the equation

F (a, b) = up,

with a, b, u ∈ S and p prime, we have

|p| > max(|a|, |b|)n B(a, b)C .

Proof. Let K ′ be the splitting field of F , so that

F (x, y) =
n∏
i=1

(αix− βiy).

Enlarge S to contain all primes dividing αi and βi , for
each i = 1, . . . , n, and so that OK,S is a unique factoriza-
tion domain. Assuming that p is large enough, we may
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thus write

αia− βib = uipi

for i = 1, 2, . . . , n. From equation (5–2), it follows that

|pi | > max(|αia|, |βib|)B(αia, βib)C1 ,

where C1 depends upon K ′ and S. Let m = max(|a|, |b|).
Note that

max(|αia|, |βib|) ≥ mmin(|αi |, |βi |) ≥ C2m,

for some constant C2 depending on F . Similarly,

B(αia, βib) ≥ B(a, b) + C3 .

We thus have

|pi | > C2m(B(a, b) + C3)C1 > mB(a, b)C4 ,

for each i, and hence the existence of C such that

|p| > mn B(a, b)C .

We note that by considering all possible embeddings
of K in C, we actually obtain

‖p‖ > max(‖a‖, ‖b‖)nB(a, b)C .

Setting m = max(‖a‖, ‖b‖), and noting that we can find
κ such that ‖q‖ > κ > 1 for all q ∈ S, we thus have
B(a, b) > logκ(m), and so

‖p‖ > mn logκ(m)C .

We will use this inequality to prove the main theorem of
this section.

Proof of Theorem 5.1. Given M , let C1 be the constant
from Theorem 2.1. As in Section 2, we have that if E is
a semistable elliptic curve of conductor Mp1p2 · · · pg−2

with ‖pi‖ > C1 such that j(E) = j(z) for some z ∈
X(K), then

∆(E) = aeg beg −1

g−2∏
i=1

Fi(a, b)ei ,

with a, b ∈ S and Fi(a, b) = uipi . From Corollary 5.6,
there exists a constant C2 such that

‖pi‖ > mfi logκ(m)C2 ,

where fi = degFi . Let f =
∑
fi be the number of cusps

of X, and let d =
∑
fiei be the degree of j. We thus have

‖N(E)‖ > ‖M‖mf−2 logκ(m)C3 ,

for some C3 . On the other hand, by the triangle inequal-
ity, there is a constant C4 , depending only on F , such
that

‖∆(E)‖ = ‖F (a, b)‖ ≤ C4m
d.

Now assume that E does not satisfy the inequality

‖N(E)‖6+ε > ‖∆(E)‖. (5–3)

Then

‖M‖6+εm(f−2)(6+ε) logκ(m)C3 (6+ε) < C4m
d,

and so

m(f−2)(6+ε)−d < C5 logκ(m)C6 .

Since we suppose f > 2 and 6(f − 2) ≥ d, it follows that

mC7 ε < C5 logκ(m)C6 ,

whence there exists a constant C8 > 0 such that

m = max(‖a‖, ‖b‖) < C8 .

This implies that there are only finitely many elliptic
curves that do not satisfy the inequality (5–3), as desired.

6. MODULAR FORMS

In this section, we will interpret our preceding results
in terms of modular forms and Galois representations.
Recall that attached to an elliptic curve E/Q and integer
n, we have a Galois representation

ρE ,n : GQ → Aut(E[n]) � GL2(Z/n),

where GQ = Gal(Q/Q). Let E have conductorN and let l
be prime. Assume for simplicity that p ‖N and that p �= l.
Then ρE ,l is unramified at p if and only if l | vp(∆(E)).

Corollary 6.1. Let E be an elliptic curve of conductor Mp

with p > C(M), as in Theorem 1.5. Assume that E(Q)
has a nontrivial torsion point. Then for l > 2 prime, ρE ,l
is either ramified at p or reducible at p.

In terms of modular forms, we know by [Wiles 95] and
[Taylor and Wiles 95], for example, that there is a modu-
lar newform fE ∈ S2(Γ0(N)) with integer coefficients at-
tached to E. If l | vp(∆(E)) is an odd prime and if ρE ,l is
surjective, by [Ribet 91], for example, there exist a mod-
ular form g ∈ S2(Γ0(N/p)), say g ∈ O[[q]], and a prime
λ ⊂ O such that fE ≡ g (mod λ).

Corollary 6.1 thus implies that if N = Mp with p >

C(M), then (modulo some technicalities) there is no con-
gruence with the p-old subspace of S2(Γ0(N)). This is
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somewhat surprising, since we have the following level-
raising result.

Proposition 6.2. Let g =
∑
bnq

n ∈ S2(Γ0(M)) be a modu-
lar eigenform of level M . Let l | a2

p − (p+ 1)2 . Then there
is a modular form f ∈ S2(Γ0(Mp)p-new such that f ≡ g

(mod λ) for some λ | l.

In this context, our result implies that when one per-
forms level raising for a suitably large prime p, then the
form f cannot arise from an elliptic curve with nontrivial
E(Q)tors .

What about the corresponding situation for other
modular forms? It is tempting to suppose that for any
newform f of weight 2 and levelN , there exists p | N such
that for any prime ideal λ of characteristic larger than
6, we have that ρf,λ is either ramified at p or reducible.
This is false, however, since there exists a modular form
f of level 407, with Fourier coefficients in a field of degree
12 over Q, that is congruent modulo a prime above 41 to
a modular form attached to the elliptic curve 11A, and
also modulo a prime above 17 to a form attached to the
elliptic curve 37A. One might guess that for any modu-
lar eigenform f with coefficients defined over Kf , there
exist a p | N and a constant C, depending only on the
degree of Kf /Q, such that for any prime ideal λ of char-
acteristic larger than C, ρf,λ is necessarily unramified at
p. Unfortunately, we have little data to support such a
hypothesis.

7. THE LOCAL SZPIRO CONJECTURE: SHARPNESS

Our goal in this section is to show that Conjecture 1.4, if
true, is sharp. We will restrict our attention to the case of
semistable E/Q, where we conjecture the existence of a
prime of bad reduction p such that vp(∆E ) ≤ 6. Note that
vp(∆E ) = −vp(j(E)) when E is semistable. We remark
that searching through Cremona’s tables of elliptic curves
of conductor N ≤ 230000, one finds no elliptic curve for
which this bound is achieved, tempting one to suppose
that it might be possible to replace the upper bound of 6
here with 5. In this section, we will show that there are in
fact infinitely many semistable elliptic curves such that

min
p |∆E

vp(∆E ) = 6.

To prove this, we start by considering a semistable el-
liptic curve E with minimal discriminant prMn . If n is a
prime number and E[n] is irreducible, then by [Ribet 91],
one can find a modular form g of level p such that g is

congruent to fE . If g has integral coefficients, then for
some elliptic curve F of conductor p, we have F [n] � E[n]
as symplectic Galois modules. Conversely, given F/Q an
elliptic curve of conductor p, assuming that E/Q is a
semistable elliptic curve such that F [n] � E[n], then E

will have minimal discriminant of the form prMn (we
don’t need n to be prime here). Therefore, if we are inter-
ested in semistable elliptic curves with minimal discrimi-
nant prM 6 , it is natural to study the pairs (E, φ), where
E is an elliptic curve and φ : E[6] → F [6] is a symplec-
tic isomorphism. This moduli problem is representable
by the curve XF (6) over the rationals, a twist of the
modular curve X(6). This curve is itself an elliptic curve
and has positive Mordell–Weil rank for almost all F (see
[Rubin and Silverberg 99]). Instead of working with ellip-
tic curves with prime conductor, we can (and will) work
with any semistable elliptic curve with good reduction at
2 and 3.

Let F be any elliptic curve with square-free conductor
N coprime to 6. We will find points on XF (6) where
the p-adic valuation of the minimal discriminant of the
corresponding elliptic curve is larger than 6 for all primes
p | N .

First, note that XF (6) is birationally isomorphic to
XF (2) ×X (1) XF (3) in a natural way, where the map
XF (n) → X(1) is just (E, φ) 
→ E. When n = 2, 3, and 5,
this map has been studied in [Rubin and Silverberg 95]
and [Rubin and Silverberg 01].

Let F : Y 2 = X3 + aX + b be an elliptic curve with
minimal discriminant D. Then the map XF (2) → X(1)
can be written as

J(u, v) =
(3au2 + 9buv − a2v2)3 j(F )

(3a)3(u3 + auv2 + bv3)2 ,

where [u : v] are the coordinates of XF (2) and J(u, v) is
the j-invariant map. Similarly, there is a concrete formula
for XF (3) → X(1), and we can verify that the image is
j(F ) times a perfect cube. Therefore, the map XF (6) →
XF (2) factors through the curve C : u3 + auv2 + bv3 =
z3 . The map C → XF (2) is of degree 3, and therefore
XF (6) → C is of degree 4.

Notice that both C and XF (6) are genus-1 curves
without a rational 2-isogeny for a generic choice of a and b
(it is shown in [Rubin and Silverberg 99] that the equa-
tion for XF (6) is given by Y 2 = X3 − 16(4a3 + 27b2)).
Therefore, by choosing appropriate base points, the map
XF (6) → C is just multiplication by 2. Using (b,−a, b) as
a base point for C, we find that C is birationally isomor-
phic to C ′ : Y 2 = X3 − 16(4a3 + 27b2) under the map

ψ(x, y, z) = (ψ1(x, y, z), ψ2(x, y, z), ψ3(x, y, z)),
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where

ψ1(x, y, z) = ax2 − 8a2xz − 6byz + 16a3 + 216b2z2 ,

ψ2(x, y, z) = −36bxz + 6ayz − 72abz2 ,

ψ3(x, y, z) = ax2 + 4a2xz − 6byz − 32a3 − 216b2z2 .

Note that the above argument provides us with explicit
rational maps π : XF (6) → XF (2) and π′ : C ′ → XF (2).

We can now use the explicit maps π and π′ to prove
the following results.

Lemma 7.1. Let F be a semistable elliptic curve of con-
ductor N coprime to 6. Then any rational point P on
XF (6) that reduces to a nonsingular point modulo p | N
satisfies vp(J(π(P ))) ≤ vp(j(F )).

Proof. Assume that

F : Y 2 = X3 + aX + b.

If vp(J(π(P ))) > vp(j(F )), then we must have p | 3au2 +
9buv − a2v2 on XF (2). Since p | 4a3 + 27b2 , this implies
that

u

v
≡ −3b

2a
(mod p),

which corresponds to the rational points on C that reduce
to the singular point of C modulo p.

Lemma 7.2. f Let F : Y 2 = X3 + aX + b be a model for
a semistable elliptic curve of conductor N coprime to 6.
Assume, without loss of generality, that gcd(a, b,N) = 1.
Then for any rational point P of

C ′ : zy2 = x3 − 16(4a3 + 27b2)z3

in the domain of π′ that reduces to(
92ab2 ,−93b3 , a3) modulo p | N ,

we have vp(J(π′(P ))) < vp(j(F )).

Proof. For the inequality vp(J(u, v)) < vp(j(F )) to hold,
we must have u/v congruent to either

−3b
2a

or
−3b
a

modulo p.

The former corresponds to a singular point on C ′, and the
latter to a point that reduces to the desired congruence
class.

Lemma 7.3. Let F : Y 2 = X3 + aX + b be a semistable
elliptic curve of conductor N coprime to 6. Assume
that gcd(a, b,N) = 1, and let C ′ : zy2 = x3 − 16(4a3 +
27b2)z3 . Let C ′

ns(Fp) be the set of nonsingular points

of C ′ modulo p. Then we have that C ′(Q) surjects onto∏
p |N C

′
ns(Fp).

Proof. We know that C ′
ns(Fp) � Ga(Fp) = Z/pZ as an

abelian group, and in this model we can write this isomor-
phism explicitly as (x, y, z) 
→ x/y. Appealing to the Chi-
nese remainder theorem, we find that

∏
p |N C

′
ns(Fp) �

Z/NZ. It suffices, therefore, to show that there is a ratio-
nal point on C ′(Q) that reduces to a generator of Z/NZ.
From [Rubin and Silverberg 99], we have that

P =
(
4a

(
a3 + 9b2

)
,−36b

(
a3 + 6b2

)
, a3)

is a rational point on C ′ that does not reduce to a singular
point on C ′(Fp) for any p | N . In particular, P is mapped
to

4a(a3 + 9b2)
−36b(a3 + 6b2)

≡ a

3b
∈ Z/NZ.

Since we are assuming that gcd(a, b,N) = 1 and since
3 � N , this point generates

∏
p |N C

′
ns(Fp).

Proposition 7.4. Let F be a semistable elliptic curve of
conductor N coprime to 6 and minimal discriminant
∆F . Then there are infinitely many rational points on
(E, φ) ∈ XF (6)(Q) such that E is semistable with mini-
mal discriminant ∆E such that for any prime p | ∆E , we
have vp(∆E ) = 6k + vp(∆F ) for some k > 0. In particu-
lar, minp |∆E

vp(∆E ) ≥ 6.

Proof. We know that XF (6) → C is just the
multiplication-by-2 map. It follows that if we can
find a point on 2C ′(Q) that reduces to (92ab2 ,−93b3 , a3)
modulo N , we will have the desired result. However,
by Lemma 7.3, we know that C ′(Q) surjects onto∏

p |N C
′
ns(Fp) � Z/NZ. Since (92ab2 ,−93b3 , a3) is a

nonsingular point modulo all primes p | N , and since
N is odd, there is necessarily a point in 2C ′(Q) that
reduces to the desired congruence class, which proves
the proposition.

We remark that the point(
4a(a3 + 9b2

)
,−36b

(
a3 + 6b2), a3) ∈ C ′(Q)

reduces to
a

3b
∈ Z/NZ �

∏
p |N

C ′
ns(Fp),

which happens to be −3 times the residue class of inter-
est.

We now use Magma to find such points explicitly. Let
F be the elliptic curve 11a3 from Cremona’s table. This



114 Experimental Mathematics, Vol. 21 (2012), No. 2

Cremona label Szpiro ratio
1290h1 8.90370022470358
9510e1 8.84312822607337
9690m2 8.80159647164269
3990ba1 8.79237406416090
32658b1 8.78266784426543
858k2 8.75731614557112

28530v1 8.53865571757066
128310bw4 8.52531149126014

3870u1 8.51754395179071
97974g1 8.51666093397246
229449b1 8.51571265800695
29070bb2 8.50211900205277

TABLE 4. Largest Szpiro ratios in Cremona’s tables.

curve has a short Weierstrass model

F : y2 = x3 − 432x+ 8208,

which means that our corresponding curve C is given by
the homogeneous equation

C : z3 = u3 − 432uv2 + 8208v3 .

From Magma, we find that C is isomorphic to the el-
liptic curve Y 2 = X3 − 11, which has rank 2 over Q,
generated by P1 = (3,−4) and P2 = (9/4, 5/8). We can
check that for any pair of integers A and B, the point
−3P1 + 11AP1 +B(P2 − 4P1) maps to a point on C with
11 | z, which in turn corresponds to an elliptic curve with
minimal discriminant 11rM 6 with r > 6. As a partic-
ular example, consider the point 2P2 , which gives rise
to the point [9225759,−125710, 8904159] ∈ C(Q). This
point corresponds to an elliptic curve with j-invariant

j = −212 973 2273 860632493

117 536 16976 .

The elliptic curve

E : y2 + y = x3 − x2 − 631675559910x
− 247424709035468556

has the above j-invariant, and is semistable of minimal
discriminant 11753616976.

We remark that any rational point P ∈ C ′(Q) that
satisfies the congruences in Lemma 7.2 and is in the im-
age of XF (6)(Q) → C ′(Q) will lead to an elliptic curve
with a Szpiro ratio strictly greater than 6. In particular,
the preceding argument provides a rather different proof
of a result of [Masser 90], to the effect that Szpiro’s con-
jecture, if true, is necessarily sharp. Masser goes further,
proving, given δ > 0, the existence of infinitely many el-
liptic curves E/Q for which

|∆(E)| ≥ N(E)6 (7–1)

× exp
(
(24 − δ) (logN(E))1/2(log logN(E))−1

)
.

From our construction, it appears to be somewhat diffi-
cult to deduce lower bounds of the flavor of (7–1).

8. TABLES: EXAMPLES OF E /Q WITH LARGE SZPIRO
RATIO

We conclude our paper by reporting on a number of com-
putations related to Szpiro’s conjecture. We begin by list-
ing all E/Q with conductor N(E) ≤ 230 000 and having
a Szpiro ratio exceeding 8.5; these are found by simply
searching through Cremona’s tables. Table 4 shows the
largest Szpiro ratios in Cremona’s tables.

The remainder of our search for examples of ellip-
tic curves with large Szpiro ratio primarily followed ar-
guments from [Nitaj 98], restricting attention to curves
with nontrivial rational torsion or isogeny structure. We

Curve Model ∆
E2 y2 = x(x2 + ax+ b) 24 b2 (a2 − 4b)
E ′

2 y2 = x(x2 − 2ax+ (a2 − 4t)) 28 b(a2 − 4b)2

E3 y2 + by = x(x2 + a 2

4 x+ a b
2 ) b3 (a3 − 27b)

E ′
3 y2 + by = x3 + a 2

4 x
2 − 9a b

2 x− b(a3 + 7b) b(a3 − 27b)3

E5 y2 + (a − b)xy − a2 by = x3 − abx2 a5 b5 (a2 − 11ab− b2 )
E ′

5 · · · ab(a2 − 11ab− b2 )5

E7 y2 − (a2 − ab− b2 )xy − a2 b3 (a − b)y = a7 b7 (a − b)7 (a3 − 8a2 b + 5ab2 + b3 )
x3 − a2 b(a − b)x2

E ′
7 · · · ab(a − b)(a3 − 8a2 b + 5ab2 + b3 )7

E22 y2 = x(x− a)(x + b) 24a2 b2 (a − b)2

E ′
22 y2 = x(x2 + 2(a + b)x+ (a − b)2 ) 28ab(a − b)4

TABLE 5. Families of elliptic curves and their discriminants.
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Curve (a, b) d Szpiro Ratio
E ′

3 −2 · 5 · 107 · 191,−236 · 292 · 127 1 9.01996406836501
E ′

22 −13 · 196 , 230 · 5 1 8.81194357194048
E2 2 · 1087 · 3187, 317 · 173 · 19 1 8.80159647164269
E ′

7 −32 , 2 1 8.75731614557112
E ′

3 −2 · 5 · 107 · 191,−236 · 292 · 127 −7 8.69894197172524
E ′

2 −24 · 5 · 172 · 2127165978817991, 277 · 174 · 1012 · 491 1 8.66221765946058
E ′

22 210 · 52 · 715 , 318 · 23 · 2269 1 8.68896770822104
E3 −2 · 5 · 107 · 191,−236 · 292 · 127 1 8.62243074548933
E ′

22 −13 · 196 , 230 · 5 −3 8.61692936402403
E ′

3 −2 · 5 · 107 · 191,−236 · 292 · 127 13 8.61065865983309
E ′

3 2 · 811 · 3089,−28 · 418 · 1069 1 8.59658011129187
E ′

22 210 · 52 · 715 , 318 · 23 · 2269 −3 8.57932311185482
E ′

3 −2 · 5 · 107 · 191,−236 · 292 · 127 −19 8.55933774170168
E ′

2 −24 · 5 · 172 · 2127165978817991, 277 · 174 · 1012 · 491 −3 8.54579452396547
E ′

22 −27 · 238 , 199 · 8572 1 8.53729295364890
E ′

22 322 · 13 · 472 , 27 · 238 1 8.53728818586093
E ′

22 −13 · 196 , 230 · 5 5 8.53517775868216
E ′

22 514 · 19,−25 · 3 · 713 1 8.53180512280382
E ′

22 210 · 52 · 715 , 318 · 23 · 2269 −5 8.53133002997689
E ′

3 2 · 811 · 3089,−28 · 418 · 1069 29 8.50447784478959
E2 2 · 1087 · 3187, 317 · 173 · 19 −3 8.50211900205277
E ′

22 −24 · 516 · 97 · 919, 73 · 295 · 1512 1 8.50127729380151
E ′

22 210 · 52 · 715 , 318 · 23 · 2269 −7 8.50068162668746
E ′

3 19 · 4211, 135 · 17239 1 8.49294029016210
E ′

5 −27 · 3727, 310 · 7 1 8.48609917814708

TABLE 6. Top Szpiro ratios found via computer search.

tabulate the results of our computations as follows. First,
in Table 5, we list models of E/Q with given rational tor-
sion and isogeny structures. To do this, we denote by EN

the universal elliptic curve over X1(N), and by E ′
N the

elliptic curve EN /〈P 〉, where P is the point of order N .
We also write E22 for a parameterization of elliptic curves
with full rational two-torsion, and E′

22 = E22/〈P 〉 for one
of these points. The formulas for E′

N , when N = 5 or 7,
can be found in [Nitaj 98], where they are denoted by
E18 and E39 , respectively.

Our final table, Table 6, lists the results of our search
within the families given in Table 5; in this table, the
quantity d indicates that the curve under consideration
is the d-quadratic twist of one of our models from Table
5. We have restricted attention to those examples with
Szpiro ratio larger than 8.486 (which is the cutoff we
needed to include elliptic curves with a rational 5-torsion
point). More extensive data are available from the au-
thors upon request.
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