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The integer Chebyshev problem is the problem of finding an
integer polynomial of degree n such that the supremum norm
on [0, 1] is minimized. The most common technique used to
find upper bounds is by explicit construction of an example.
This is often (although not always) done by heavy computational
use of the LLL algorithm and simplex method. One of the first
methods developed to find lower bounds employed a sequence
of polynomials known as the Gorshkov–Wirsing polynomials.

This paper studies properties of the Gorshkov–Wirsing polynomi-
als. It is shown how to construct generalized Gorshkov–Wirsing
polynomials on any interval [a, b], with a, b ∈ Q. An extensive
search for generalized Gorshkov–Wirsing polynomials is carried
out for a large family of [a, b]. Using generalized Gorshkov–
Wirsing polynomials, LLL, and the simplex method, upper and
lower bounds for the integer Chebyshev constant on intervals
other than [0, 1] are calculated. These methods are compared
with other existing methods.

1. INTRODUCTION

We define the supremum norm on an interval I = [a, b]
as

‖p‖I := sup
z∈I

|p(z)|.

For the purposes of this paper, we assume that I is a
rational interval on the real line, but the integer Cheby-
shev problem can be extended to any compact set of
the complex numbers. The case of finding monic poly-
nomials with real coefficients and minimal supremum
norm on I is related to the logarithmic capacity of the
set I, and leads to the study of Chebyshev polynomials
[Goluzin 69, Ransford 95]. The integer Chebyshev prob-
lem is the problem of finding an integer polynomial of
degree n with minimal supremum norm on the interval
[0, 1]. This supremum is normalized by taking the nth
root. In more general terms, we define this value on any
interval [a, b] as

tZ,n [a, b] = inf
{
‖p(x)‖1/n

[a,b] | p(x) ∈ Z[x],

deg(p(x)) ≤ n, p(x) �= 0
}

.
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Degree n Polynomial p(x) tZn [0, 1]

2 x(1 − x) 1/2
3 x(1 − x)(2x − 1) 1/2.18· · ·
4 x2(1 − x)2 or x(1 − x)(2x − 1)2 1/2
5 x2(1 − x)2(2x − 1) 1/2.23· · ·

TABLE 1. Small-degree integer Chebyshev polynomials.

By noticing that

tZ,n+m [a, b]n+m ≤ tZ,n [a, b]n tZ,m [a, b]m ,

we see that the limit

tZ[a, b] = lim
n→∞ tZ,n [a, b]

is well defined.
The first few known values of the integer Chebyshev

problem on the interval [0, 1] are given in Table 1.
The paper [Habsieger and Salvy 97] determines a

complete list of polynomials up to and including de-
gree 75. This was extended in [Meichsner 09] to degree
230. For a good survey of results concerning the inte-
ger Chebyshev problem, see [Borwein 98, Borwein 02,
Pritsker 05].

In [Borwein and Erdélyi 96], it is shown that tZ[0, x]
is continuous and constant near x = 1. The authors also
show that(

m + 2 − 1
4(m + 1)

)−1

≤ tZ

[
0,

1
m

]
.

A study of the intervals [r/s, r/s + δ] as δ → 0 can
be found in [Flammang et al. 97]. The multidimensional
case is considered in [Chudnovsky 83, Ferguson 80]. The
integer Chebyshev problem on a compact set in C

and its relationship to Mahler measure are studied in
[Flammang et al. 06]. The study of the related case, that
of minimal monic integer polynomials, was pioneered in
[Borwein et al. 03]. This work has been followed up by
[Hare and Smyth 06, Hare and Smyth 08, Hilmar 08].

Bounds have been given on the frequency of certain
factors for large-degree integer Chebyshev polynomials.
For example, it is shown in [Pritsker 99] that x(1 − x)
must show up as a factor between 0.2961 and 0.3634 of
the time (normalized by the degree).

Observe that

tZ[a, b] ≤ tZn [a, b].

Thus, techniques to find an upper bound for tZ[a, b] cen-
ter on finding good examples of tZn [a, b] for large values
of n. For example, it is shown in [Borwein and Erdélyi 96]

that

tZ[0, 1] ≤ 1
2.3543 . . .

by considering a degree-210 polynomial. In the same
paper, the authors show how this bound could be
improved to 1/2.3605 . . . . This is further refined in
[Habsieger and Salvy 97] to yield

tZ[0, 1] ≤ 1
2.3612 . . .

.

Recently, both the lower and upper bounds were im-
proved in [Pritsker 05] by use of weighted potential the-
ory to get

1
2.3736

≤ tZ ([0, 1]) ≤ 1
2.3629

.

This was again refined in [Flammang 09] to give

tZ[0, 1] ≤ 1
2.3646 . . .

.

The method that Borwein and Erdélyi, and later Hab-
sieger and Salvy, used to find these bounds was to con-
sider a set of polynomials pi(x) that are factors of a large
integer Chebyshev polynomial and consider the problem
of minimizing �, where

∑
ri

log(|pi(x)|)
deg(pi)

≤ �,

for all x ∈ [a, b] with
∑

ri = 1, 0 ≤ ri . This is the log-
arithm of an integer Chebyshev problem. By choosing
a large number of points x ∈ [0, 1], instead of the en-
tire interval, they obtain a system of linear equations on
which the simplex method can be used to get a good esti-
mate [Borwein and Erdélyi 96, Habsieger and Salvy 97,
Schrijver 86]. The initial set of polynomials pi can be
found using LLL (Lenstra, Lenstra, Lovász) on the basis
1, x, x2 , . . . , xn and using the inner product

〈p(x), q(x)〉 = insideb
ap(x)q(x) dx

[Hare 02, Lenstra et al. 82]. Other techniques are dis-
cussed later, in Section 2.

The refinement to this upper bound in [Flammang 09]
was obtained in much the same way, but instead of dis-
cretizing the linear programming problem, the author
used a method of semi-infinite programming introduced
in [Smyth 84]. All of these methods are discussed in Sec-
tion 2, and improvements to the simplex method are dis-
cussed there as well.

Numerous methods have been proposed for lower
bounds as well. The method on which we will focus
in this paper is that of Gorshkov–Wirsing polynomials.
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Other methods (and their limitations) are discussed in
Section 3.

The following result, which is a simple consequence of
properties of resultants, is needed before we begin our
discussion of Gorshkov–Wirsing polynomials. For more
discussion, see [Borwein 02].

Lemma 1.1. Suppose q(x) ∈ Z[x] and deg(q(x)) = n, and
suppose that p(x) = akxk + · · · + a0 ∈ Z[x], ak > 0, has
all of its roots in the interval [a, b]. If gcd(p(x), q(x)) = 1,
then (‖q(x)‖[a,b]

)1/n ≥ a
−1/k
k .

This lemma says that if p(x) has all roots in I and its
leading coefficient is relatively small, then we will need
p(x) as a factor for large-degree integer Chebyshev poly-
nomials. We formalize this by calling such p(x) critical.

Definition 1.2. We say that an irreducible polynomial
p(x) = akxk + · · · + a0 is critical for an interval I if all
roots of p are in the interval I and |ak |−1/k ≥ tZ(I).

Notice that in the calculation of tZn (I), we can have
only a finite number of critical polynomials. This gives
us a simple corollary to Lemma 1.1 that is the basis of
the study of Gorshkov–Wirsing polynomials.

Corollary 1.3. If there exists an infinite family p1 , p2 , . . .
such that all roots of pi(x) = ani

xni + · · · + a0 are in an
interval I, then

tZ(I) ≥ lim inf
i→∞

|ani
|−1/ni .

With Corollary 1.3 in mind, we can now discuss how
one would find such an infinite family of polynomials.
Define

U(x) :=
x(1 − x)

1 − 3x(1 − x)
,

and further define

p0(x) := 2x − 1.

Define the sequence of polynomials pi(x) recursively by

pi(x) : = numer(pi−1(U(x))

=
(
1 − 3x + 3x2)deg(pi−1 )

pi−1(U(x)),

normalized to have integer coefficients, no integer con-
tent, and positive leading coefficient. Here numer(·) is
the numerator of this normalized rational function. The

first few polynomials in this sequence are

p0(x) = 2x − 1,

p1(x) = 5x2 − 5x + 1,

p2(x) = 29x4 − 58x3 + 40x2 − 11x + 1,

p3(x) = 941x8 − 3764x7 + 6349x6 − 5873x5 + 3243x4

− 1089x3 + 216x2 − 23x + 1.

This defines an infinite sequence of polynomials
pi(x), known as the Gorshkov–Wirsing polynomials
[Borwein 02, Lorentz et al. 96, Montgomery 94], with
leading coefficient ani

. This sequence has the following
nice properties:

� All roots are in [0, 1].
� All polynomials are irreducible.
� Polynomials are of degree 2i with leading coeffi-

cient ani
.

� limi→∞ |ani
|−1/2i

= 1/2.3768417062 . . . .

Combining these properties with Corollary 1.3 gives
us the lower bound

tZ[0, 1] ≥ 1
2.3768417062

.

It is shown in [Borwein and Erdélyi 96] that this
bound is not tight, and that there exists an ε > 0 such
that

tZ[0, 1] ≥ 1
2.3768417062

+ ε.

The authors’ argument relies on the fact that the end-
points of the interval are the roots of critical polynomials
on the interval.

In this paper we show how to generalize the defini-
tion of Gorshkov–Wirsing polynomials to give different
sequences of polynomials, and derive different bounds for
different intervals.

2. UPPER BOUND TECHNIQUES

In this section we give a review of some of the methods
for finding upper bounds for tZ(I). The first two methods
are those of [Amoroso 90] and [Habsieger and Salvy 97].
For a proof of correctness, see the original articles. The
next two methods involve LLL and the simplex method,
and use as a guiding principle that a good example of a
polynomial with small norm gives a good upper bound.
These upper bounds are compared in Tables 2, 3, 4, and
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Interval LLL Simplex HS Amoroso Lower # CP

[-1, 1] 1/1.5314 1/1.5334 1/1.4772 1/1.4520 1/1.5417 8
[-1/2, 1/2] 1/2.3559 1/2.3619 1/2.1822 1/1.4520 1/2.3768 9
[-1/3, 1/3] 1/3.2522 1/3.2617 1/3.0000 1/1.3887 1/3.2842 7
[-2/3, 2/3] 1/1.8820 1/1.8883 1/1.7237 1/1.3887 1/1.9845 5
[-1/4, 1/4] 1/4.1921 1/4.2025 1/4.0000 1/1.1097 1/4.2260 6
[-3/4, 3/4] 1/1.7897 1/1.7935 1/1.7237 1/1.1097 1/1.9653 3

TABLE 2. Upper bounds for tZ(I), for 0 ∈ int(I), I symmetric.

5. For comparison, the best known lower bound is also
given.

2.1. Amoroso

For a more complete discussion of this technique, see
[Amoroso 90].

Define

ρ(r1 , r2) = − 1
1 − r1 − r2

×
(

(r1 +r2) log(2) − (1−r1−r2)2

4
log(1−r1−r2)

− (1+r1−r2)2

4
log(1+r1−r2)

− (1 − r1 + r2)2

4
log(1 − r1 + r2)

− (1 + r1 + r2)2

4
log(1 + r1 + r2) + r2

1 log(2r1)

+ r2
2 log(2r2)

)

and define

f+(r1 , r2) = log
(√

|I|/4
)

+ r1 log(b1
√

δ)

+ r2 log(b2
√

δ) + ρ(r1 , r2).

Then

tZ(I) ≤ exp min
T

f+(r1 , r2),

where T is the simplex 0 ≤ r1 , r2 and r1 + r2 ≤ 1.

As can be seen, the upper bound attained is very much
dependent on the denominators b1 and b2 . In fact, it
is sometimes advantageous to consider an upper bound
based on a slightly larger interval, along with the obser-
vation that if I ⊂ J , then tZ(I) ≤ tZ(J). Such an example
can be seen by I = [1/24, 1 − 1/24] and J = [0, 1].

Amoroso’s lower-bound estimate based on this I is
then 1/29.2213, whereas on J it is 1/2.4141. This is taken
into account in compiling the data in the tables. Table 6
shows what happens if this is not taken into account.

2.2. Habsieger and Salvy

The method of Habsieger and Salvy is used to find ex-
plicitly the best polynomial of lower degree. For degree
n, we first find a reasonably good polynomial, using LLL,
for example, and hence a reasonably good upper bound
�. We next use this bound for good polynomials to find
required factors of the best polynomial of degree n. This
is done by noticing that for any polynomial P , we have
from Markov’s inequality that

max
a≤x≤b

∣∣∣P (r)(x)
∣∣∣

≤ 2r

(b − a)r
· n2(n2 − 12)(n2 − 22) · · · (n2 − (r − 1)2)

(2r − 1)!!
× max

a≤x≤b
|P (x)| ,

Interval LLL Simplex HS Amoroso Lower # CP

[-1/2, 1] 1/1.8133 1/1.8190 1/1.6055 1/1.4520 1/1.8743 3
[-1/3, 1] 1/2.0248 1/2.0309 1/1.8899 1/1.3887 1/2.0617 8
[-2/3, 1] 1/1.6560 1/1.6657 1/1.4142 1/1.3887 1/1.7410 3
[-1/3, 1/2] 1/2.6978 1/2.7094 1/2.1743 1/1.3887 1/2.7788 4
[-1/2, 2/3] 1/2.0303 1/2.0443 1/1.7411 1/1.3887 1/2.1865 4
[-1/3, 2/3] 1/2.2740 1/2.2801 1/1.9332 1/1.3887 1/2.4537 2

TABLE 3. Upper bounds for tZ(I), for 0 ∈ int(I), I nonsymmetric.
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Interval LLL Simplex HS Amoroso Lower # CP

[0, 1] 1/2.3546 1/2.3613 1/2.2361 1/2.3264 1/2.3768 10
[0, 1/2] 1/3.4689 1/3.4813 1/3.1923 1/2.3264 1/3.5132 8
[1/3, 1/2] 1/5.8364 1/5.8614 1/5.3126 1/2.3264 1/5.9112 7
[0, 1/3] 1/4.5235 1/4.5444 1/4.1930 1/2.3264 1/4.5940 7

TABLE 4. Upper bounds for tZ(I), for 0 �∈ int(I), I Farey.

where (2i + 1)!! = 1 · 3 · 5 · · · (2i + 1). Hence, if we con-
sider an irreducible factor p(x) with all its roots in an
interval [a, b], and consider the product of the left-hand
side over these roots, then the result is 0 if P (r) has p(x)
as a factor, or is greater than or equal to 1/ak , where ak

is the leading coefficient of p(x).
The right-hand side is explicitly computable, based

on the good upper bound �, found by LLL. This gives
us a bound for the right-hand side of the equation, which
when combined with the restrictions on the left-hand side
may imply that the left-hand side of the equation is 0.
Hence for some values of r, we see that the left-hand side
must then equal 0, which in turn implies a multiplicity
of the factor p(x).

Then, using the product of all required factors, say
Q(x), of degree k, this good bound, and a random selec-
tion of points in the interval, say xi , we notice that the
best polynomial will satisfy

−� ≤ (
an−kxn−k

i + · · · + a0
)
Q(x) ≤ �

for all xi , and further that an−k ≥ 1. This is a system of
linear equations. We can solve for all integer solutions of
the ai ’s exhaustively, and then select the best example(s)
from this list.

One nice benefit is that factors of the best polynomials
are useful to add to the basis of the simplex method.

This is done up to degree 3, which although not large,
is good enough for our purposes.

2.3. LLL

The use of LLL tends to give a very crude estimate of an
upper bound. One side benefit of this method, though, is
that it tends to give a very good set of polynomials for
which to start the simplex method.

Initially, we consider a basis 1, x, . . . , xn and an inner
product

〈p(x), q(x)〉 = intb
a p(x)q(x) dx.

Small elements in this basis have small 2-norm, which
tends to mean small sup-norm. So using LLL, we get an
element with small norm, say p1(x). We then repeat this
process with a basis p1(x), x · p1(x), . . . , xn · p1(x), and
iterate the process. This is done up to n = 20.

2.4. The Simplex Method

Consider a set of polynomials pi(x) that are factors of
a large integer Chebyshev polynomial, and consider the
problem of minimizing �, where

∑
ri

log(|pi(x)|)
deg(pi)

≤ �,

for all x ∈ [a, b] with
∑

ri = 1, 0 ≤ ri . This is the loga-
rithm of an integer Chebyshev problem. By choosing a
large number of points x ∈ [0, 1], instead of all of them,
this becomes a linear programming problem.

Now, one area that can be influenced is a careful choice
of the xj . Initially, we choose 50 points in I, uniformly
distributed. We then consider the resulting object

∑
ri

log(|pi(x)|)
deg(pi)

and find its local maxima. We add these local maxima
to our set of xj and iterate. This has the advantage that
each iteration focuses more and more attention on the
“problem” spots.

If the factors exist, then this is done using up to 20
factors. Factors were chosen such that the following con-
ditions were satisfied:

� All known critical polynomials were included.

Interval LLL Simplex HS Amoroso Lower # CP

[0, 2/3] 1/2.7940 1/2.8056 1/2.3811 1/2.3264 1/2.8804 5
[1/3, 2/3] 1/3.8577 1/3.8707 1/3.4641 1/2.3264 1/3.8920 6

TABLE 5. Upper bounds for tZ(I), for 0 �∈ int(I), I non-Farey.
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Interval LLL Simplex HS Amoroso Lower # CP

[1/5, 4/5] 1/2.6391 1/2.6426 1/2.2134 1/2.0166 1/2.8590 3
[1/10, 9/10] 1/2.3532 1/2.3623 1/2.1822 1/1.0630 1/2.7502 8
[1/20, 19/20] 1/2.3532 1/2.3622 1/2.1822 1/.66772 1/2.8949 8
[-1/5, 6/5] 1/2.0441 1/2.0486 1/2.0000 1/1.0257 1/2.2502 3
[-1/10, 11/10] 1/2.2965 1/2.2971 1/2.0000 1/.78152 1/2.5474 4
[-1/20, 21/20] 1/2.3543 1/2.3619 1/2.1822 1/.57228 1/2.6246 10

TABLE 6. Upper bounds for tZ(I), for I ⊂ [0, 1] and I ⊃ [0, 1], exact computation.

� Good factors found through LLL or through Hab-
sieger and Salvy were included.

� Factors that proved useful for smaller examples
were included.

� Polynomials found with small a
−1/k
k values and all

with roots in the interval were included. These were
normally found through searches for Gorshkov–
Wirsing pairs.

3. LOWER BOUND TECHNIQUES

There are many ways to estimate lower bounds on the
Integer Chebyshev Problem. We will outline some of the
methods below. For a proof of correctness of the method,
the reader is encouraged to read the original article.
These methods are summarized in Tables 7, 8, 9, and 10.

3.1. Amoroso

For a more complete discussion, see [Amoroso 90].
Let I = [a1/b1 , a2/b2 ] be a rational interval. Let δ =

a2/b2 − a1/b1 be its diameter. Define

h(r1 , r2) =
1
2
(1 − r1 − r2) log(1 − r1 − r2)

− 1
2
(1 + r1 + r2) log(1 + r1 + r2)

− 1
2
(1 + r1 − r2) log(1 + r1 − r2)

× 1
2
(1 − r1 − r2) log(1 − r1 − r2)

+ 2r0 log(2r0)

and define

f−(r1 , r2) = log(δ)+ max
(
(r1 − 1) log(b1δ) + h(r1 , r2),
(r2 − 1) log(b2δ) + h(r2 , r1)

)
.

Then

tZ(I) ≥ exp
(
inf
T

f−(r1 , r2)
)

.

As before, the size of the denominator plays a crucial role
in this estimate, and often it is advantageous to consider
a smaller interval with a small denominator.

3.2. Flammang, Rhin, Smyth

For a more complete description, see
[Flammang et al. 97]. In this method, the authors
restricted their attention to Farey intervals [p/q, r/s],
that is, intervals where qr − ps = 1. They define

U0 = z, V0 = 1, Uk+1 = U 2
k + V 2

k , Vk+1 = UkVk ,

xk = Uk/Vk .

Further, take

g−(z) =
∏

x
−1/2k

k .

Then

tZ(I) ≥ 1√
qs

g−
(√

q/s
)

.

Using the fact that if I ⊂ J , then tZ(I) ≤ tZ(J), and
the fact that every interval has a maximal Farey subin-
terval, we can extend this lower bound to all intervals

Interval Upper GW FRS Flammang Amoroso

[-1, 1] 1/1.5334 1/1.5417 1/2.3768 1/2.3768 1/1.7024
[-1/2, 1/2] 1/2.3619 1/2.3768 1/3.5132 1/3.5132 1/3.4048
[-1/3, 1/3] 1/3.2617 1/3.2842 1/4.5940 1/4.5940 1/4.7345
[-2/3, 2/3] 1/1.8883 1/1.9845 1/3.5132 1/3.5132 1/3.1860
[-1/4, 1/4] 1/4.2025 1/4.2260 1/5.6494 1/5.6494 1/5.7853
[-3/4, 3/4] 1/1.7935 1/1.9653 1/3.5132 1/3.5132 1/3.0000

TABLE 7. Lower bounds for tZ(I), for 0 ∈ int(I), I symmetric.
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Interval Upper GW FRS Flammang Amoroso

[-1/2, 1] 1/1.8190 1/1.8743 1/2.3768 1/2.3768 1/2.2151
[-1/3, 1] 1/2.0309 1/2.0617 1/2.3768 1/2.3768 1/2.3187
[-2/3, 1] 1/1.6657 1/1.7410 1/2.3768 1/2.3768 1/2.1307
[-1/3, 1/2] 1/2.7094 1/2.7788 1/3.5132 1/3.5132 1/3.6580
[-1/2, 2/3] 1/2.0443 1/2.1865 1/3.5132 1/3.5132 1/3.1860
[-1/3, 2/3] 1/2.2801 1/2.4537 1/3.5132 1/3.5132 1/3.1860

TABLE 8. Lower bounds for tZ(I), for 0 ∈ int(I), I nonsymmetric.

(although, sometimes quite badly). Table 11 shows what
happens if this is not taken into account.

3.3. Flammang

For a more complete description, see [Flammang 95].
Again, focus is given to Farey Intervals. Let I =

[p/q, r/s]. Let

λ0 =
qs

q + s
and λk+1 =

λk

(1 + λk )2 .

Then

tZ(I) ≥ 1
q + s

∏
(1 + λi)−1/2i + 1

.

The same comments as before with respect to Farey
intervals hold in this case as well.

4. GENERALIZED GORSHKOV–WIRSING RATIONAL
FUNCTIONS

In Section 1, we considered the function

U(x) =
x(1 − x)

1 − 3x(1 − x)
.

The property of this function that makes it useful for
finding lower bounds is that it is of degree 2, and it maps
[0, 1] to itself twice. Hence, if p(x) is a polynomial with
all of its roots in [0, 1], then numer(p(U(x)) has all of its
roots in [0, 1].

We extend this concept to give the following definition:

Definition 4.1. A generalized Gorshkov–Wirsing rational
function on [a, b] is a rational function

U(x) =
r(x)
s(x)

mapping the interval [a, b] to itself d times, where
deg(b(x)) ≤ deg(t(x)) = d and b(x), t(x) ∈ Z[x]. Denote
the set of all such U(x) by U [a, b].

We now give a complete description of U [a, b] if
a, b ∈ Q.

Theorem 4.2. Let a, b ∈ Q, and let p(x) and q(x) be inte-
ger polynomials, nonnegative on [a, b], with the following
properties:

� deg(p) = deg(q).
� Both p(x) and q(x) are totally real, that is, all of

their roots are real.
� The polynomial p(x) has a single root at a and dou-

ble roots at α1 < α2 < · · · . If deg(p) is even, then
p(x) also has a single root at b.

� The polynomial q(x) has double roots at β1 < β2 <
· · · . If deg(q) is odd, then q(x) also has a single
root at b.

� The roots interlace, that is,

a < β1 < α1 < β2 < α2 < · · · < b.

Interval Upper GW FRS Flammang Amoroso BE

[0, 1] 1/2.3613 1/2.3768 1/2.3768 1/2.3768 1/2.4142 1/2.8750
[0, 1/2] 1/3.4813 1/3.5132 1/3.5132 1/3.5132 1/3.6580 1/3.9167
[1/3, 1/2] 1/5.8614 1/5.9112 1/5.9112 1/5.9112 1/8.3648
[0, 1/3] 1/4.5444 1/4.5940 1/4.5940 1/4.5940 1/4.7345 1/4.9375

TABLE 9. Lower bounds for tZ(I), for 0 �∈ int(I), I Farey.
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Interval Upper GW FRS Flammang Amoroso

[0, 2/3]
1

2.8056
1

2.8804
1

3.5132
1

3.5132
1

3.1860

[1/3, 2/3]
1

3.8707
1

3.8920
1

5.9112
1

5.9112
1

7.2426

TABLE 10. Lower bounds for tZ(I), for 0 �∈ int(I), I non-Farey.

Then for all e, f ∈ N,

a · e · p(x) + b · f · q(x)
e · p(x) + f · q(x)

and
b · e · p(x) + a · f · q(x)

e · p(x) + f · q(x)
( 4–1)

are members of U [a, b]. Furthermore, all U(x) ∈ U [a, b]
can be written in this form.

Such pairs of polynomials p and q play an impor-
tant role in this study, and we will call them Gorshkov–
Wirsing pairs.

Examining equation (4–1) of Theorem 4.2 gives the
following examples:

1 − 5x2

6x2 − 2
=

1
2 (1 − 4x2) − 1

2 x2

(1 − 4x2) + x2 ∈ U
[
−1

2
,
1
2

]
,

x(2x − 1)
−2 + 10x − 14x2 =

1
2 x(1 − 2x)+0(3x − 1)2

(x(1 − 2x))+(3x − 1)2 ∈ U
[
0,

1
2

]
,

2x2 − 1 =
x2 − (1 − x2)
x2 + (1 − x2)

∈ U [−1, 1].

Proof of Theorem 4.2: Denote (4–1) by U(x). We see
that U(x) = a between a and b precisely when U(x) −
a = 0. Upon simplification, we see that this is precisely
when p(x) = 0. Similarly, we see that U(x) = b precisely
when q(x) = 0. Since p(x) and q(x) are nonnegative and
do not share any roots on the interval [a, b], we have
that p(x) + q(x) is positive on [a, b]. By considering the

Interval Upper GW Amoroso

[1/5, 4/5] 1/2.6426 1/2.8590 1/8.0189
[1/10, 9/10] 1/2.3623 1/2.7502 1/13.953
[1/20, 19/20] 1/2.3622 1/2.8949 1/24.906
[-1/5, 6/5] 1/2.0486 1/2.2502 1/7.1367
[-1/10, 11/10] 1/2.2971 1/2.5474 1/13.117
[-1/20, 21/20] 1/2.3619 1/2.6246 1/24.351

TABLE 11. Lower bounds for tZ(I), for I ⊂ [0, 1] and I ⊃
[0, 1], exact computation.

degrees of p(x) and q(x) and the fact that the roots inter-
lace, we get that U(x) maps [a, b] to itself d times, where
deg(p) = deg(q) = d. Hence U(x) ∈ U [a, b].

To see that all U(x) must be of this form, we consider
two cases:

Case 1. Assume that the degree of the numerator is odd,
say 2n + 1. We notice that either U(a) = a and U(b) = b,
or U(a) = b and U(b) = a. By noticing that

bq(x) + ap(x)
p(x) + q(x)

= b + a − aq(x) + bp(x)
p(x) + q(x)

,

it suffices to prove the result for the first situation. So
we can assume that U(a) = a and U(b) = b. Notice that
U(x) − a has n + 1 roots, say a < α1 < α2 < · · · < αn .
Further, we see that U(x) − a must have double roots
at α1 < α2 < · · · < αn , for otherwise U(x) < a for some
x ∈ [a, b]. Write

p1(x) = (x − a)(x − α1)2 · · · (x − αn )2 .

Similarly, we see that U(x) − b has n + 1 roots, which
interlace with the αi , and that all but b must be double
roots. Call these roots β1 < · · · < βn < b. Define

q1(x) = (b − x)(x − β1)2 · · · (x − βn )2 .

Writing U(x) = r(x)/s(x), we notice that

U(x) − a =
e · p1(x)

s(x)

and further that

U(x) − b =
−f · q1(x)

s(x)

for e, f > 0. This gives

(b − a)s(x) = e · p1(x) + f · q1(x).

Thus we can write

U(x) =
b · e · p1(x) + a · f · q1(x)

e · p1(x) + f · q1(x)
.

By multiplying the numerator and denominator by the
appropriate integer, we may assume that e and f are
integers.
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Case 2. The case in which the degree of the numerator
is even is similar.

By simple algebra, we get the following lemma:

Lemma 4.3. Let (P,Q) and (p1 , q1) be Gorshkov–Wirsing
pairs satisfying the conditions of Theorem 4.2. Let e, f ∈
N. Define inductively the generalized Gorshkov–Wirsing
rational function

Ui(x) =
a · e · pi(x) + b · f · qi(x)

e · pi(x) + f · qi(x)
,

pi+1(x) = numer(P (Ui(x))),
qi+1(x) = numer(Q(Ui(x))),

normalized so that pi+1 and qi+1 are integer polynomials
with no integer content, and are positive on [a, b]. Then
the following hold:

� pi and qi satisfy the conditions of Theorem 4.2.
� deg(pi(x)) = deg(qi(x)) = deg(p1(x))deg P (x).

In practice, we take e and f such that e | denom(a)
and f | denom(b).

Consider, for example, [a, b] = [0, 1], and take p1(x) =
P (x) = (2x − 1)2 and q1(x) = Q(x) = x(1 − x). Take e =
f = 1. This gives us

U(x) =
x(1 − x)

x(1 − x) + (2x − 1)2 =
x(1 − x)

1 − 3x(1 − x)
,

p2(x) = (5x2 − 5x + 1)2 ,

q2(x) = x(1 − x)(2x − 1)2 .

In fact, this is the start of the classic Gorshkov–Wirsing
sequence (squared).

This leads to the following definition:

Definition 4.4. A set of polynomials (P,Q), (pi, qi), and
integers e, f that satisfy the conditions of Lemma 4.3 are
called generalized Gorshkov–Wirsing polynomials.

It is worth noting that given two pairs of Gorshkov–
Wirsing pairs, there are eight different ways that they
can be combined to give a Gorshkov–Wirsing sequence.

At this point we need some discussion on how to ensure
that pn+1 and qn+1 have no integer content. We will do
this by way of an example.

Example 4.5. Consider I = [−1/2, 1/2]. Let p1(x) =
P (x) = x2 , q1(x) = Q(x) = 1 − 4x2 , and e = f = 1. We
see then that p1 , q1 and P,Q are both Gorshkov–Wirsing
pairs. Consider P (Un (x)) for a generic p and q. We see

that

P (Un (x)) =
1
4
× (pn − qn )2

(pn + qn )2 .

This gives us pn+1 = (pn − qn )2 .
Next consider Q(Un (x)) for a generic pn and qn . We

get

Q(Un (x)) = 1 −
(

p − q

p + q

)2

=
4pnqn

(pn + qn )2 ,

which gives us qn+1 = pnqn . So we see that we can remove
integer content in most cases in advance. In the second
case, there will be no other integer content that may creep
into the calculation by accident. If there is integer content
that should be removed but is not, then we still have a
valid Gorshkov–Wirsing sequence, although not generally
as good.

Given such a sequence, it is important to consider
how one computes lim a

−1/ deg pn
n . To simplify the dis-

cussion, we will assume that e = f = 1, although the
proof is equally valid for arbitrary positive integers e

and f . Let p1 , q1 and P,Q be Gorshkov–Wirsing pairs.
Let P (x, y) and Q(x, y) be the homogenizations of P

and Q, and let Cp and CQ be constants such that
P (a · x + b · y, x + y)cP and Q(a · x + b · y, x + y)cQ have
no integer content. That is, for the example above we
have P (x, y) = (x − y)2 and Q(x, y) = x · y.

Then we see that

pn+1 = P (a · pn + b · qn , pn + qn )cP ,

and similarly for qn+1. This method of computing pn+1

and qn+1 allows us to compute the leading coefficient of
pn+1 and qn+1. Namely, we have

an+1 = P (a · an + b · bn , an + bn )cP

and

bn+1 = Q(a · an + b · bn , an + bn )cQ .

Theorem 4.6. With an and bn defined as above and dn =
deg(pn ) = deg(qn ), then dn = deg(p1) deg(P )n−1 . Fur-
ther, lim |an |−1/dn and lim |bn |−1/dn are both well defined
and are equal.

Proof: Let p1 and q1 be of degree k, and P and Q of
degree m. We easily see by induction that

deg pn = deg qn = deg p1(deg P )n−1 = k · mn−1 .
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For now, assume that |an | ≤ |bn |. Then we get

an+1 = P (a · an + b · bn , bn + an ) cP

= P

(
a · an

bn
+ b, 1 +

an

bn

)
cP bm

n ,

bn+1 = Q (a · an + b · bn , bn + an ) cQ

= Q

(
a · an

bn
+ b, 1 +

an

bn

)
cQbm

n .

We see that P (ax + b, 1 + x) and Q(ax + b, 1 + x) are
bounded for x ∈ [−1, 1], say by M . Then an+1 ≤ Mbm

n

and bn+1 ≤ Mbm
n . We see that the degree of pn and qn is

dn = k · mn−1 . Now

|an+1 |−1/dn + 1 ≤
∏

M−1/(k ·mi ) |b0 |,
and similarly for bn+1. This is easily seen to converge
by taking logarithms of the right-hand side. Since the
|an |−1/dn are increasing and bounded, they converge.

To see that they are equal, we observe that

a
−1/dn + 1
n+1 =

(
P

(
a · an

bn
+ b, 1 +

an

bn

)
cP bm

n

)−1/dn + 1

=
(

P

(
a · an

bn
+ b, 1 +

an

bn

)
cP

)−1/dn + 1

b−m/dn + 1
n

=
(

P

(
a · an

bn
+ b, 1 +

an

bn

)
cP

)−1/dn + 1

b−1/dn
n .

Here
(

P

(
a · an

bn
+ b, 1 +

an

bn

)
cP

)−1/dn + 1

goes to 1 as n goes to infinity, from which the result
follows.

We note that a similar argument holds if |an | > |bn |
for some or all of the n.

5. SEARCHING FOR GENERALIZED
GORSHKOV–WIRSING POLYNOMIALS

The next two lemmas combine to give us an algorithm
to find U(x) ∈ U [a, b]. This is a heuristic technique only,
and is not proven to get all good values in U [a, b]. An ad-
ditional benefit of this technique is that it finds many
“good” polynomials for an interval, in the sense that
a
−1/k
k is small and all of its roots are in the interval in

question.

Lemma 5.1. If p(x) has all of its roots in [a, b] and U(x) ∈
U [a, b], then numer(p(U(x)) has all of its roots in [a, b].

Lemma 5.2. If U(x) ∈ U [a, b], then numer(U(x) − x) has
all of its roots in [a, b].

To find U(x) ∈ U [a, b], we first let Q be a set of irre-
ducible polynomials with all of their roots in the interval
[a, b]. Included in this set are the two linear polynomials
with roots at a and b. One easy way to derive a starting
set of polynomials is using LLL. From this set, we find
the set of all pairs (p, q) that satisfy the conditions of
Theorem 4.2, and call this set P.

We use the sets P and Q and Lemma 5.1 to find new
polynomials with all of their roots in [a, b] and add these
to the set Q. We use the set P and Lemma 5.2 to find
new polynomials with all of their roots in [a, b] and add
these to the set Q. Normally, we limit the set Q in some
way, based on Lemma 1.1 and on the degree of the poly-
nomials. Using this new set Q we derive a new set P. We
repeat this procedure until we no longer find any new
polynomials or pairs given some set of restrictions.

Example 5.3. Consider the interval [−1/2, 1/2] and the
set

Q = {2x − 1, x, 2x + 1} .

From this we derive the pairs

P =
{[

x2 , (1 − 2x)(2x + 1)
]}

.

From Lemma 5.1, this gives us the new polynomial
{
5x2 − 1

}
.

From Lemma 5.2, we get the new polynomials
{
5x2 − 1, 3x − 1

}
.

So our new set Q becomes

Q = {x, 2x − 1, 2x + 1, 5x2 − 1, 3x − 1}.

From this we derive the pairs

P =
{[

x2 , (1 − 2x)(2x + 1)
]
,[

(5x2 − 1)2 , (1 − 2x)(2x + 1)(3x − 1)2] ,[
(5x2 − 1)2 , (1 − 2x)(2x + 1)x2] ,[
(3x − 1)2 , (1 − 2x)(2x + 1)

]
,[

(1 − 2x)x2 , (2x + 1)(3x − 1)2]} .

From here, we can keep repeating the process, eliminat-
ing pairs and polynomials that fail to meet some sort of
criteria, and eventually decide that we are done.
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6. SOME UPPER AND LOWER BOUNDS FOR
INTERVALS

Using the techniques of Section 5, we compute upper and
lower bounds for a number of sets.1 The purpose of these
tables is to compare Gorshkov–Wirsing pairs with other
methods. The Gorshkov–Wirsing pairs were found up to
degree n = 11, and beyond whenever possible.

We looked at five different types of intervals. Very lit-
tle will be said about Tables 2, 3, 4, and 5. These were
included for reference only.

We see from Tables 7, 8, and 10 that the Gorshkov–
Wirsing pairs give a tighter lower bound than that given
by the other methods. This is not surprising, given that
these other methods are designed for Farey intervals. We
see in Table 9 that the Gorshkov–Wirsing pairs give the
same values as those of Flammang, Rhin, and Smyth and
that of Flammang. In these cases, they are just alterna-
tive ways of computing the same limit point.

Tables 6 and 11 show what happens for intervals close
to [0, 1] for which the actual interval has very high de-
nominator. We see that LLL, simplex, and the method
of Habsieger and Salvy do not suffer any ill effects from
this. The Gorshkov–Wirsing method does suffer some ef-
fects, but not as severe as those suffered by Amoroso. The
methods of Flammang and those of Flammang, Rhin, and
Smyth were not included, since they are relevant only for
Farey intervals.

7. CONCLUSIONS

It is shown in [Borwein and Erdélyi 96] that [0, x] is con-
tinuous and constant for x near 1. Further, the authors
showed that there exists a δ such that for all 0 ≤ a < δ,
tZ[−a, 1 + a] = tZ[0, 1]. Unfortunately, their method does
not easily allow an explicit computation of δ. It would be
interesting to use these Gorshkov–Wirsing pairs for a ∈ Q

with a < δ to see whether better lower bounds could be
found for tZ[0, 1].

In this same paper, Borwein and Erdélyi also showed
that the limit coming from these Gorshkov–Wirsing pairs
cannot be tight for the interval [0, 1]. This argument, in
fact, holds when the endpoints of the interval are roots of
critical polynomials. This is not always the case for some
of the problems looked at in this paper, and it is possible
(although the author does not consider it likely) that the

1 The precise pairs, as well as more complete tables (up to de-
nominator 5) can be found at the author’s home page (http:
//www.math.uwaterloo.ca/∼kghare).

limit coming from these Gorshkov–Wirsing pairs is tight
in these cases.
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ics/Ouvrages de Mathématiques de la SMC 10. New
York: Springer, 2002.
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