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We present a theoretical algorithm that given any finite presen-
tation of a group as input, will terminate with answer yes if and
only if the group is large. We then implement a practical ver-
sion of this algorithm using MAGMA and apply it to a range of
presentations. Our main focus is on two-generator one-relator
presentations, for which we have a complete picture of large-
ness if the relator has exponent sum zero in one generator and
word length at most 12, as well as if the relator is in the commu-
tator subgroup and has word length at most 18. Indeed, all but
a tiny number of presentations define large groups. Finally, we
look at fundamental groups of closed hyperbolic 3-manifolds,
for which the algorithm readily determines that at least a quarter
of the groups in the SnapPea closed census are large.

1. INTRODUCTION

In this paper all groups considered will be finitely pre-
sented.

Definition 1.1. A finitely presented group G is said
to be large if G has a finite-index subgroup that pos-
sesses a surjective homomorphism to a nonabelian free
group.

This is a strong property, which implies a whole host
of consequences: the most relevant one here is that G has
infinite virtual first Betti number (meaning that G has
finite-index subgroups with arbitrarily large first Betti
number).

Perhaps surprisingly, it is currently unknown whether
there is an algorithm that takes as input a finite pre-
sentation and tells us whether the group defined by that
presentation is large. The two standard methods used
in establishing unsolvability are to show that the prop-
erty is Markov or is incompatible with free products (see
[Lyndon and Schupp 77, Section 4.4]), but the property
of being large is neither of these, and nor is its negation.
However, there is a partial algorithm for largeness, as
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pointed out by I. Kapovich, that is guaranteed to termi-
nate with the answer yes if the input presentation gives
rise to a large group but that will not terminate other-
wise. In [Holt and Rees 96], it is noted that there is a
partial algorithm that will tell whether a presentation
has a free quotient of rank 2 (but which will not termi-
nate otherwise). Therefore, one can begin running this on
a given finite presentation for a group G. Although this
might run forever, even if G is large, one immediately
starts elsewhere a separate new process to evaluate the
finite-index subgroups of G, one index at a time (using,
say, the Todd–Coxeter or the Knuth–Bendix algorithm)
along with a presentation for each subgroup, and then
further starts the free-quotient algorithm many times in
parallel on each finite-index subgroup. But nobody would
ever want to implement this: the free-quotient algorithm
is described in [Holt and Rees 96] as being totally im-
practical for long presentations, so we would be run-
ning an extremely slow process a vast number of times
simultaneously.

In this paper we describe an alternative partial al-
gorithm for largeness that one might actually want to
implement. Furthermore, we do this by writing a pro-
gram in Magma applying it to a considerable range of
presentations. The theoretical result that allows us to es-
tablish largeness of a given finitely presented group G

is [Button 09, Theorem 2.1], which, in turn, is based on
a result in [Howie 98]. It says that if G is a finitely pre-
sented group having a homomorphism χ onto Z such that
the Alexander polynomial ∆G,χ is zero, or zero modulo
a prime p, then G is large. The Alexander polynomial is
an element (up to units) of the Laurent polynomial ring
Z[t±1 ] and will be defined in Section 2, where it is also
shown in Proposition 2.1 that a large group will have a
finite-index subgroup with a zero Alexander polynomial.
It can be calculated reasonably efficiently given a presen-
tation for G (the time-consuming part of the process for
long presentations being the calculation of large deter-
minants), so it would seem that one needs to go through
the finite-index subgroups H and check each Alexander
polynomial in turn.

That is the idea, but the problem is that when
β1(H) ≥ 2, we have infinitely many homomorphisms
from H onto Z. Therefore we need to establish that we
can determine by a finite process whether there exists
one of these homomorphisms with zero Alexander poly-
nomial. Indeed, it will often be a finite-index subgroup of
G with first Betti number at least two that allows us to
conclude largeness, so we will want to be able to do this
quickly.

We describe our partial algorithm in Section 2, first
theoretically, where we show that if the input is a finite
presentation for a large group, then the algorithm is guar-
anteed in principle to prove largeness. We then describe
how it was implemented in practice on a computer.

In the rest of the paper we report our results in run-
ning it. Our first application in Section 3 is to groups
with a presentation of deficiency 1, that is, groups pos-
sessing a finite presentation that has one more genera-
tor than relator. We have a particular interest in estab-
lishing largeness of these groups: although they are not
always large, unlike groups of deficiency two or above,
we have results in [Button 09] and [Button 10] that they
are often large. Therefore, it would be good to have ex-
perimental evidence of this as well. Moreover, if G is
a group with a deficiency-1 presentation, then on using
the Reidemeister–Schreier rewriting process to obtain a
presentation for a given finite-index subgroup H of G,
we find that the resulting presentation for H also has
deficiency 1.

In Section 3, we consider only two-generator one-
relator presentations. This is not because of any limita-
tions of the method (indeed, in applying the program to
such a presentation, each finite-index subgroup that we
work with will have a deficiency-1 presentation as men-
tioned above, but this will rarely be a one-relator presen-
tation) but because we are able to cover a lot of ground
in this special case.

We look at presentations for which one of the two gen-
erators has zero exponent sum in the relator, since any
two-generator one-relator presentation can be put in such
a form using an automorphism of F2 . For these presen-
tations in which the relator is of length 12 or less, we
have a definitive result. It can be summarized by say-
ing that the vast majority of presentations are large, the
presentations that are not large are listed in Table 1,
and furthermore, all of these are groups that were al-
ready known not to be large. Indeed, they are all either
Baumslag–Solitar groups or HNN extensions with base a
Baumslag–Solitar group and cyclic associated subgroups.
Sometimes the Baumslag–Solitar groups that appear are
not presented in the standard way, but even these non-
standard presentations that occur were already known
[McCool and Pietrowski 71] to define Baumslag–Solitar
groups.

Among the presentations 〈a, t | r〉, where r has expo-
nent sum 0 in t, we have those for which the relator is
of height 1, which means that r can be written purely in
terms of a±1 and ta±1t−1 . We have a result in [Button 10]
that gives a much more efficient criterion for largeness of
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Length Number Presentation Description Large

4.9 1 ta2TataTa BS(2,−3) x

2 ta2TatATA D(1, 1, 2) x

3 ta2TAtaTA BS(2, 3) x

4.11 4 ta2Ta2ta2Ta BS(3,−4) x

5 ta2Ta2taTa2 ∼= #4 x

6 ta2Ta2tATA2 D(2, 1, 2) ∼= D(1, 1, 2) x

7 ta2Ta2tA2TA ∼= #6 x

8 ta2TatA2TA2 ∼= #6 x

9 ta2TAta2TA2 BS(3, 4) x

10 ta2TA2taTA2 ∼= #9 x

11 ta3Tata2Ta BS(2,−5) x

12 ta3TatA2TA D(1, 2, 3) x

13 ta3TAta2TA BS(2, 5) x

4.13 14 ta3Ta2ta3TA �
15 ta3Ta2ta2Ta2 BS(4,−5) x

16 ta3Ta2tA2TA2 D(2, 2, 3) x

17 ta3Ta2tA3TA D(3, 2, 1) x

18 ta3Tata3TA2 �
19 ta3TatA3TA2 ∼= #17 x

20 ta3TA2ta2TA2 BS(4, 5) x

21 ta4Tata3Ta BS(2,−7) x

22 ta4TatA3TA D(1, 3, 4) x

23 ta4TAta3TA BS(2, 7) x

6.13 24 ta2TataTataTa BS(3,−4) x

25 ta2TatATatATA ? ?
26 ta2TatATAtATA ? ?
27 ta2TAtaTAtaTA BS(3, 4) x

6.14 28 ta2Tata2TataTa BS(3,−5) x

29 ta2TAta2TAtaTA BS(3, 5) x

TABLE 1. Two-generator one-relator height-1 presentations.

such a presentation (involving only the abelianization of
finite-index subgroups), and so we are able to consider
height-one relators of length at most 14. For these we are
able to list all of the nonlarge presentations except for
two, which we believe are not large yet we do not rec-
ognize them as groups that are already known not to be
large.

Also in [Button 10] we gave an example of a large
word-hyperbolic group that is of the form Fk �α Z, but
the automorphism α is reducible. Here we are able us-
ing the computer to give the first example of a large
word-hyperbolic group of this form for which all non-
trivial powers of the automorphism are irreducible.

We pay further attention to where the relator is in the
commutator subgroup F ′

2 . Until [Baumslag et al. 07], the
only presentation known of this form that gave rise to a
group that is not large is the case of Z × Z (for which the
relator, if cyclically reduced, is just a commutator of the
two generators). However, in that paper an example was
given of a nonlarge group for which the particular relator
r0 is cyclically reduced and has length 18. We again have
a definitive result in that if r is a cyclically reduced word
in F ′

2 and has length at most 18, then our program shows
that either the group G is large, or r has length 4, so that
G = Z × Z, or r has length exactly 18 and is just a cyclic
permutation of r0 or r−1

0 .
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Our final application, in Section 4, is to a class of
groups that do not have deficiency-1 presentations but
that always possess presentations of deficiency 0. These
are the fundamental groups of closed orientable hyper-
bolic 3-manifolds, and an open question asks whether
they are always large. We already have a sample of over
10,000 examples to work with, which is the census from
the program SnapPea [Hodgson and Weeks 01], and it is
also available as a Magma database in which the funda-
mental groups of these 3-manifolds are given.

It is known by recent results that if a closed hyper-
bolic 3-manifold is arithmetic and has positive virtual
first Betti number, then we have largeness. However, pos-
itive virtual first Betti number for all 3-manifolds in the
census was established using computational methods in
[Dunfield and Thurston 03]. Therefore, all arithmetic 3-
manifolds in the census are known to be large, but there
are no general results yet in the nonarithmetic case.

Our requirement for largeness of having a zero Alexan-
der polynomial means that only subgroups with positive
first Betti number can be of use in satisfying this con-
dition. Consequently, in order to help with the compu-
tations, we restrict attention to the groups in the cen-
sus having a subgroup with positive first Betti number
of index at most 5. There are 2856 such groups in the
census, which is over a quarter of the total, and they
can be found quickly using Magma. Our program proves
that most of these groups are large; indeed, there are 116
groups left over for which we did not establish largeness
within the limited running times. Moreover, there are 132
groups in the census that themselves have positive first
Betti number, and a further 305 that have finite first ho-
mology but an index-2 subgroup with positive first Betti
number. None of these were left over, so we can con-
clude that a 3-manifold in the closed census with posi-
tive first Betti number or that has a double cover with
positive first Betti number also has large fundamental
group.

2. DESCRIPTION OF THE ALGORITHM

Suppose that G is a finitely presented group and χ is a
homomorphism from G onto Z (which will exist only if
the first Betti number β1(G) is greater than zero). We
define the Alexander polynomial ∆G,χ as follows: If K is
the kernel of χ, then G acts on K by conjugation. Since
the commutator subgroup K ′ of K is characteristic in
G, we have that G acts by conjugation on the Z-module
(i.e., abelian group) K/K ′. But now K acts trivially, so
G/K = Z also acts onK/K ′. This allows us to turnK/K ′

into a Z[t±1 ]-module, where the action of t on an element
of K/K ′ is defined to be conjugation by 1 ∈ Z = G/K.

Consequently, if we take a presentation matrix for
K/K ′ of r rows (for the relators) and s columns (for
the generators), then the Alexander polynomial ∆G,χ(t)
is defined to be the greatest common factor (up to units
±tk for k ∈ Z) over all s× s minors (and if r < s, then
we add rows of zeros, in which case ∆G,χ would be zero).
The result is independent of the matrix used to present
K/K ′ as a Z[t±1 ]-module.

In order to calculate ∆G,χ , given a presenta-
tion 〈x1 , . . . , xn | r1 , . . . , rm 〉 of G and χ in the form
(a1 , . . . , an ) ∈ Zn , where χ(x1) = a1 , . . . , χ(xn ) = an , we
apply Fox’s free differential calculus (see [Lickorish 97,
p. 116]) to form the Alexander matrix A, which is an
m× n matrix with entries in Z[t±1 ]. We then calculate
all the (n− 1) × (n− 1) minors of A, namely, the de-
terminants of the submatrices of A formed by deleting
one column and the necessary number of rows to make
the submatrices square, so it will be m− n+ 1 rows and
there will be n× (

m
m−n+1

)
different minors. Then ∆G,χ

is also the greatest common factor of these minors, and
consequently it is 0 if and only if all of the minors are 0.
Again it is independent of the presentation for G.

In practice, there is a useful way of reducing by a factor
of n the number of minors that have to be calculated. If
I is a subset of size m− n+ 1 chosen from {1, 2, . . . ,m},
then let MI

j denote the minor with the rows in I removed
along with the jth column. We then have the standard
identity

MI
j (1 − tai ) = MI

i (1 − taj ).

Consequently, if aj = 0, then MI
j = 0 anyway (by taking

i for which ai �= 0), and so there is no point in calculat-
ing this minor; but otherwise we have MI

j = δIψaj (t),
where δI is independent of j and ψk (t) is equal to
(1 − tk )/(1 − t). This is because only 1 − t can divide all
of 1 − ta1 , . . . , 1 − tan . Consequently, if we take the first
column j such that χ(xj ) �= 0, then we have that ∆G,χ is
the greatest common factor of the δI , where I is varied
over all possible subsets, thus indicating that we have re-
duced the number of minors that need to be calculated
to l =

(
m

m−n+1

)
.

If we are given a finitely presented group G that
we wish to prove is large, then if we can find a finite-
index subgroup H ≤f G and a surjective homomorphism
χ from H to Z such that the Alexander polynomial
∆H,χ with respect to χ is the zero polynomial, we will
be done by [Button 09, Theorem 2.1], which shows that
H is large. This result is derived from [Howie 98]; more
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specifically, we have that if K = kerχ, then the index-n
subgroup KHn maps onto F2 for all sufficiently large n.
However, we also have the following result.

Proposition 2.1. If H is a finitely presented group that has
a surjective homomorphism θ to a nonabelian free group
Fn of rank n ≥ 2, then we have homomorphisms χ from
H onto Z with ∆H,χ = 0.

Proof: There are homomorphisms χ onto Z that factor
through Fn ; take any one of these, so that χ = χ̃θ. Then
θ sends kerχ onto ker χ̃, but the free group Fn has no
nontrivial finitely generated normal subgroups of infi-
nite index, so ker χ̃ is an infinitely generated free group
with β1(ker χ̃; Q) = ∞. This implies that ∆H,χ = 0 by
[Button 09, Corollary 2.2].

Therefore, this condition of having a finite-index sub-
group with zero Alexander polynomial relative to some
homomorphism is both necessary and sufficient for a
finitely presented group to be large. This enables us now
to describe theoretically our partial algorithm.

Recall that there is an algorithm that takes as input a
finite presentation and a positive integer n and outputs
all the (finitely many) subgroups H having index n in the
group G defined by the presentation. This is presented in
[Dietze and Schaps 74] and is based on the Todd–Coxeter
coset-enumeration process. The output for eachH is a list
of generators of H and a coset table for the right regular
action of G on the cosets of H. This allows us by the
Reidemeister–Schreier rewriting process to give a finite
presentation for H.

We now describe in the first part of this section an
algorithm that given a finite presentation of a group G,
works out whether there is a homomorphism χ such that
∆G,χ = 0. Consequently, it is then clear that we have a
partial algorithm for largeness by applying this to each
finite-index subgroup of G in turn, terminating with the
answer yes as soon as we have found a zero Alexander
polynomial. (In fact, practical implementations of the
low-index-subgroups routine tend to output subgroups
only up to conjugacy, but this is good for us because we
are cutting down on duplication.)

We start by calculating the first Betti number β1(G),
which can be done by abelianizing the given presenta-
tion for G and taking the number of Z summands when
G/G′ is expressed as a finitely generated abelian group. If
β1(G) is zero, then there are no homomorphisms χ onto
Z, and we must reject G immediately. If β1(G) = 1, then
we have just one χ (up to sign), and the evaluation of

∆G,χ is a straight calculation that involves forming the
Alexander matrix above directly from the presentation
and then calculating determinants (in fact, we will find
that the Alexander polynomial is never zero in this case
by Lemma 2.4, and so we would reject G here too).

However, if b = β1(G) ≥ 2, we have infinitely many χ.
Thus we have the advantage of many chances to find a
χ with ∆G,χ zero but the disadvantage that we cannot
test all of the χ individually, and so we need a method
of narrowing our search.

Theorem 2.2. Given a finitely presented group G with
β1(G) ≥ 2, there is an algorithm that determines whether
there exists a homomorphism χ from G onto Z with
∆G,χ = 0.

Proof: In order to consider all χ together, we can re-
place the ring Z[t±1 ] above with the ring Z[t±1

1 , . . . , t±1
b ],

which is the integral group ring of the free abelianization
ab(G) = Zb of G. We also have a Fox calculus in this
case (see [Button 07, Section 2] for an exposition in line
with our approach here), and so can form a more gen-
eral Alexander matrix B with entries in Z[ab(G)] and
corresponding minors NI

j .
Since any surjective χ : G→ Z will factor through the

natural map α : G→ ab(G) and so can be written as χ̃α,
we have that the Alexander matrix A with respect to any
given homomorphism χ is just B evaluated at χ̃, and
consequently the minors MI

j are equal to NI
j |χ̃ .

Thus we calculate these minors NI
j , which are multi-

variable polynomials with coefficients in Z, and we now
need to consider which χ will make all the minors van-
ish. We do this by regarding the minor NI

j as a finite
subset of lattice points in Zb with each point weighted
by a nonzero integer, where each monomial that appears
in NI

j with a nonzero coefficient is a lattice point, and
the coefficient is the weight. (The ambiguity of units just
means that we can shift NI

j by unit translations.)
We picture evaluation of NI

j at χ̃ in the following way:
we extend χ̃ to an affine map φ : Rb → R. Then for x ∈ R

we know that φ−1(x) is a hyperplane and NI
j is zero

on evaluation precisely when the following condition is
satisfied: for all m ∈ Z with φ−1(m) ∩NI

j �= ∅, we require
that the sum of the weights corresponding to the points
of NI

j in this hyperplane φ−1(m) be zero. Let us refer to
this situation as “NI

j cancels along parallel hyperplanes
of constant χ.”

We start with N1 , which is defined to be the first
minor we calculate that happens not to be identically
zero (whereas if all minors are identically zero, then we
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conclude that the Alexander polynomial is zero over
all homomorphisms). We take any lattice point x in
N1 . Now x must cancel with other lattice points in
N1 on evaluation, so we take every other lattice point
y in turn and join x and y by a line x + U , where U
is a one-dimensional subspace of Rb . We now take the
quotient vector space V = Rb/U of dimension b− 1 and
use the quotient map q to regard N1 as a finite subset
of V with new weights obtained by summing within the
translates of U .

We now pick a base point of q(N1), draw a line from
it to the other points of q(N1), and continue recursively.
This process stops either because an image of N1 is the
zero polynomial in dimension d, or we reach d = 1 with a
nonzero polynomial. In the latter case, we can reject this
χ, but in the former we move on to the next minor N2 .

We first apply to N2 the composition of the quotient
maps applied so far, and then we continue in the same
way, by picking a base point for this image of N2 and
another point to which to join it and proceed as before,
thus reducing d (or N2 might become 0 by dimension d,
in which case we move on to the next minor and so on).

Eventually, either we have found that all the minors
have vanished at dimension d ≥ 1, in which case any χ

that factors through the composition of quotient maps
applied so far will have ∆G,χ = 0, or we reach dimension
1 and conclude that we have failed to reach a suitable χ
along this path, so we must backtrack.

This seems to be an algorithm that could be practical.
However, there are areas in which serious improvement
can be obtained. Although the above argument should
work on minors with few coefficients, the branching na-
ture of this approach means that it will be extremely
expensive for large minors (and indeed large numbers of
minors). Moreover, we need to calculate all of the minors,
but evaluating determinants over multivariable polyno-
mial rings takes considerably longer than in Z[t±1 ]. Fur-
thermore, a big gain comes from looking at the Alexander
polynomial modulo a prime p as well as over Z[t±1 ] (which
we refer to as the mod 0 case), as we now describe.

As above, we can let G/K act on the Fp vector space
K/K ′Kp and regard this as an Fp [t±1 ] module using the
conjugation action of 1 ∈ G/K = Z as before, and we can
also define the mod p Alexander polynomial ∆G,χ,p as the
greatest common factor of the respective minors of any
Fp [t±1 ] presentation matrix of the module.

If we want to find ∆G,χ,p for a particular p, then the
new Alexander matrix can be formed merely by reducing
modulo p the entries of the original Alexander matrix.

However, if ∆
p
G,χ denotes the mod 0 Alexander polyno-

mial ∆G,χ with coefficients reduced mod p, then we have
in general that ∆

p
G,χ divides ∆G,χ,p but not equality (for

instance, if we have two determinants 1 + t and 1 + 3t,
then ∆G,χ = 1 but ∆G,χ,2 = 1 + t).

The advantage of this approach is that the result
in [Howie 98] also proves that G is large if there is a
prime p with ∆G,χ,p = 0 (in which case we have that the
finite-index subgroup KGn maps onto the free product
Cp ∗ Cp ∗ Cp for n sufficiently large). Luckily, we have the
following:

Proposition 2.3. The reduction ∆
p
G,χ of the mod 0 Alexan-

der polynomial is 0 if and only if the mod p Alexander
polynomial ∆G,χ,p is equal to zero.

Proof: If ∆
p
G,χ = 0, then the only element having zero as

a factor is zero, whereas if the greatest common factor
in Fp [t±1 ] of all minors is zero, then every element is
equal to zero. But the minors in Fp [t±1 ] really are the
minors in Z[t±1 ] reduced mod p, so p divides each minor
in Z[t±1 ] and hence divides their common factor, which
is ∆G,χ .

Thus we can still calculate ∆G,χ , which we regard as
a polynomial with integer coefficients, and we have the
advantage that largeness is proved if the content of ∆G,χ

is not equal to 1.
We now describe the practical approach we adopted

for implementation in Magma. Suppose G is the group
defined by the input presentation and let b = β1(G). We
first form the full Alexander matrix B with entries in
Z[t±1

1 , . . . , t±1
b ] using the Fox calculus. This was always

quick, even for large presentations and higher values of
b. We can (and do) tidy up this matrix in multiplying
rows by units to clear negative powers. This will change
the minors only by units, which means that we can work
in the multivariate polynomial ring Z[t1 , . . . , tb ]. We also
find the first generator g, having infinite image in the
abelianization G/G′ of G.

We now split up into cases according to the value of b.

Case 1: First Betti number equal to 1. Here we do not
in fact calculate ∆G,χ for the following reason.

Lemma 2.4. If G is a finitely presented group with
β1(G) = 1, and χ is the unique homomorphism (up to
sign) from G onto Z, then ∆G,χ is not zero.

Proof: If all of the minors are identically zero, then they
continue to be zero when the Alexander matrix B is
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evaluated at t = 1. However, this is just a presentation
matrix for the abelianization G/G′, which is of the form

Cd1 × · · · × Cdk × Z for d1 | d2 | · · · | dk .
Thus the first elementary ideal of B|t=1, which is an in-
variant of the abelian group, is d1 · · · dk . Since any prime
dividing the content of a minor M will also divide M |t=1,
we have that a prime dividing the content of all the mi-
nors will divide dk .

Consequently, we reject groups whose abelianization
is just Z. Otherwise, we obtain the primes p dividing dk ,
and for each one, we work in Fp [t]. This is fast because
our polynomial ring is a Euclidean domain with a finite
coefficient field. Thus we make a copy A of the Alexander
matrix B such that the entries of A are coerced into Fp [t],
and we cross off the gth column. Since we are in the case
of a finitely generated module over a Euclidean domain,
we have that ∆G,χ,p = 0 if and only if this smaller matrix
has a zero elementary divisor, which is equivalent to its
rank being less than the number n− 1 of columns.

We can use the rank command over this ring to get a
quick answer. (Although rank really applies to a matrix
over the field of fractions of Fp [t], we can apply the rank
command directly here without having to convert.)

This turns out to be a major gain in practice because
largeness of a group G can sometimes be achieved using a
subgroup H for which β1(H) = 1, for which the calcula-
tions will be fast. Indeed, often this will work modulo 2.

Case 2: First Betti number equal to 2. We now de-
scribe the algorithm we implemented in Magma for this
special case. Given a finite presentation of a group G

with β1(G) = 2, it is guaranteed to determine in theory
whether there exists a homomorphism with a mod p or
a mod 0 Alexander polynomial that is equal to zero. In
practice, we found that it performed quickly too, since it
aims to calculate as few determinants over multivariable
polynomial rings as possible.

As in the case β1(G) = 1, there is a similar identity
between different minors for general b = β1(G) ≥ 2. Let
NI
j ∈ Z[t±1

1 , . . . , t±1
b ] be the minor taken from the multi-

variable Alexander polynomial B by deleting the rows in
I and the jth column, and let

α : Z[G] → Z[t±1
1 , . . . , t±1

b ]

be the natural extension of the free abelian map from G

to ab(G) = Zb . We have

NI
j (1 − α(xi)) = NI

i (1 − α(xj )),

which implies that NI
j = δI (1 − α(xj )), because any

common factor of 1 − α(x1), . . . , 1 − α(xn ) remains a
common factor when evaluated under any homomor-
phism onto Z.

Consequently, we build the Alexander matrix B, and
in doing so, we record the vectors v1 , . . . , vn ∈ Z2 , vj =
(aj , bj ), for

α(xj ) = xaj ybj ∈ Z[x±1 , y±1 ].

We first check the two special homomorphisms χy and
χx , which means that we set y and then x equal to 1 in
B to form the evaluated matrix By or Bx . We skip across
the columns until we find a generator xj with the first,
then second, component of vj being nonzero and delete
the jth column (note that if it were zero, then any minor
of By calculated with this column removed would be zero
anyway).

We then run through all possible choices of rows that
make the resulting matrix square when this column is
deleted and look to see whether the determinants vanish.
However, we will also want to see whether they all vanish
modulo some prime, so we proceed as follows: Let M (1) =
NI1
j (x, 1), . . . ,M (l) = NIl

j (x, 1) be the l minors we have
to evaluate, listed in some order. We keep a running value
c of the greatest common divisor of the contents of the
minors that have been examined so far, which means that
all possible primes that might make the minors vanish
will be contained in c. We do this using the following
pseudocode:

> let c equal 0

> for i equal 1 to l do

> calculate M (i) and

let con equal content(M (i))

> let c equal gcd(c,con)

> if c equal 1 then break

> end if

> end for

> if c not equal 1 then report "we have

largeness"

> else report "homomorphism does not work"

> end if

If the homomorphism χy fails to establish largeness,
then we repeat this process with χx . At this point we
have tried only two homomorphisms, but we can now
use a form of the Chinese remainder theorem to test the
rest.

Consider the homomorphism χ sending (x, y) to
(tl , tm ), where gcd(l,m) = 1. The monomial (or point in
Z2) xayb is sent to tla+mb , so in order for a multivariable
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polynomial P (x, y) =
∑
ca,bx

ayb to be 0 under evalua-
tion by χ, we need each sum of the ca,b ’s over (a, b) such
that la+mb is constant to be zero. If this happens for
a particular χ and a prime p divides m (so does not di-
vide l), then the set of points (a, b) making up each sum
is such that a is constant mod p. This works for prime
powers pi , too.

Consequently, we calculate a full minor N(x, y) that
is not identically zero. This can be done if we have re-
membered to record as we went along a list contain-
ing the content of each minor evaluated at χy that we
calculated.

If M (i) = NIi
j (x, 1) is the first nonzero minor in this

list, then N(x, y) = NIi
j (x, y) must be nonzero too, so we

calculate this and remove the factor 1 − α(xj ) to obtain
the polynomial P (x, y).

We wish to find out which homomorphisms can make
P vanish modulo zero or a prime. Thus for each pi at
most the degree of P (x, y) as a polynomial in x, we form
the “wrapped-up polynomial”

Wpi (x, y) =
∑

ca,bx
ayb ,

where a is a mod pi (so it is of degree at most pi − 1
in x), and we see whether the one-variable polynomial
Wpi (x, 1) has content equal to 1.

If so, then we conclude that a homomorphism of the
form (l,m) cannot work if pi divides m; but if the content
is not equal to 1, then pi is a possible factor of m.

We start with p = 2, then powers thereof, dropping
out if a power fails this test and moving on to the next
prime. We then record in some set the prime powers
that pass as possible factors of m, and we should not
have many possibilities for m. We next do the same
for l by swapping x and y, then try out all of these
χ to see whether any of them work. This can be done
efficiently by evaluating the Alexander matrix under
each potential homomorphism so that the entries are in
Z[t±1 ].

We then obtain a column k depending on χ such that
1 − χ(xk ) is not zero in Z[t±1 ] and remove that column.
We can then calculate the minors over all choices of rows
to be deleted, and this can be done quickly, since they
are single-variable polynomials. We have largeness if the
value of c returned by the pseudocode above is not 1.

However, let dy be the content of N(x, 1), which was
the first minor evaluated under χy found not to be iden-
tically zero. Note that if dy is not equal to 1, then every
prime power pi will pass the above test modulo dy when
we wrap up P (x, y), because the homomorphism χy is

where (l,m) = (1, 0), so that all pi will divide m. The
same is true with x and y swapped, where we set dx to
be the content of the first nonzero minor when evaluated
under χx .

We deal with this in the following way: Whenever we
are calculating the content of a polynomial that has been
obtained by wrapping up P (x, y) above, we remove from
the answer any primes that divide dy . We do the same for
the equivalent polynomial P ′(x, y) obtained by applying
χx and dx . We then check the candidate homomorphisms
χ obtained from this process to see whether all minors
evaluated at χ are 0 mod n for some n. This is fine, except
that it is still possible to have a homomorphism with an
Alexander polynomial that is zero modulo a prime r, but
only if r divides dy or dx .

We thus finish by going back to the prime factors r
of dy and of dx . For each such r we calculate in full two
more minors N ′′(x, y) and N ′′′(x, y) such that N ′′(x, 1)
and N ′′′(1, y) both have content coprime to r. We will
know which minors to choose from our list of contents
stored above.

We then run the process above to obtain candidate
homomorphisms, but this time we work modulo r

throughout. We have finally determined whether there
are a homomorphism χ and a prime p such that all mi-
nors evaluated at χ are 0 mod p.

Case 3: First Betti number equal to 3. Just as moving
from Z[t] to Z[x, y] means that calculations such as de-
terminants become considerably more expensive in the
latter ring, when moving to Z[x, y, z], we find that things
are even worse. Therefore, when β1(G) = 3, our approach
was to build the full Alexander matrix B with entries in
Z[x, y, z] and then to evaluate B under the three ring ho-
momorphisms that send (x, y, z) to (x, y, 1), (x, 1, z), and
(1, y, z) respectively.

We then fed each of these three double-variable ma-
trices in turn to the β1(G) = 2 routine in Case 2.
This means that the only homomorphisms (x, y, z) �→
(tl , tm , tn ) that are being checked are those for which at
least one of l,m, n is equal to 0, and so this process is not
guaranteed to find a homomorphism with zero Alexan-
der polynomial if one exists. However, if we regard the
space of homomorphisms from G to Z as Zβ1 (G) , then
we can think of Proposition 2.1 as saying that we must
have at least a whole 2-dimensional “subspace” of ho-
momorphisms χ with ∆G,χ = 0 for G to surject onto a
nonabelian free group.

Therefore, we will still recognize largeness, because if
β1(G) = 3 but G surjects onto F2 , then there will exist
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a homomorphism of the above special form with zero
Alexander polynomial.

Case 4: First Betti number equal to 4 or more. Here we
checked only the b canonical homomorphisms of the form

(t1 , . . . , tb) �→ (1, . . . , 1, tj , 1, . . . , 1)

for j between 1 and b. This means that we no longer have
a routine that is guaranteed to find largeness. We justify
this on the grounds that the expense of working with four
or more variables is now likely to be prohibitive for all
but small presentations. Moreover, the examples we will
try out in Sections 3 and 4 have the property that the
input group always has first Betti number at most two.
It turns out (perhaps fortuitously) that it is very rare for
Case 4 to be used, because largeness was nearly always
established before reaching such a subgroup.

Finally, we note that when we talk about the algo-
rithm being fast or slow, we are referring throughout to
practical rather than theoretical running time. Indeed, if
it is the case that the property of largeness is not algo-
rithmically solvable among finitely presented groups (as
seems to be the prevailing view), then the theoretical
running time for any partial algorithm must be an un-
computable function, since otherwise we could wait until
the predicted number of steps to prove largeness had oc-
curred, and then conclude that the input group was not
large.

3. TWO-GENERATOR ONE-RELATOR
PRESENTATIONS

3.1. Presentations in Magnus Form

The subclass of finitely presented groups that have a
one-relator presentation has been much studied. If such
a presentation has at least three generators, then it is
well known that the group is large, so it is only two-
generator one-relator presentations that are in doubt. We
shall briefly mention the presentations of this form that
are known not to yield large groups, but we presented
theoretical results in [Button 09] and [Button 10] sug-
gesting that a two-generator one-relator presentation is
very often large, and here we will present strong experi-
mental evidence.

Given any two-generator one-relator presentation
〈x, y | w(x, y)〉, we do of course get the same group if we
take a conjugate of w or w−1 . However, there are many
other presentations defining the same group, and so to
avoid dealing with this, we will consider only presenta-
tions in what we call Magnus form. This is based on the

fact that there is an automorphism α of F2 , with let us say
α(x) = a and α(y) = t, such that w(α−1(a), α−1(t)) has
exponent sum 0 in t when written as a word w′ in a and
t. We then say that w′ is in Magnus form with respect to
t. This is a consequence of the fact that the kernel of the
natural map from Aut(F2) to Aut(F2/F

′
2) ∼= GL(2,Z) is

the group of inner automorphisms of F2 .
The elementary Nielsen moves on an ordered pair of

group elements (g1 , g2) ∈ G×G are swapping the pair,
replacing either with its inverse, and replacing g1 with
g1g2 or g2 with g2g1 . These moves, when regarded as
elements of Aut(F2) by their effect on the standard ba-
sis (x, y), generate Aut(F2). We say that two pairs are
Nielsen equivalent if there is a finite sequence of elemen-
tary Nielsen moves taking one to the other, so in F2 the
equivalence class of (x, y) consists precisely of all gener-
ating pairs.

If the group G is given by a presentation 〈a, t | w(a, t)〉
with w cyclically reduced and in Magnus form with re-
spect to t, then we can keep w in this form by replacing
t with tak for any k ∈ Z (or sending t or a to its inverse),
but Out(F2) being isomorphic to GL(2,Z) implies that
these are the only automorphisms of F2 that we can make
up to conjugation that preserve Magnus form (at least if
β1(G) = 1: if β1(G) = 2, then every two-generator one-
relator presentation of G is in Magnus form with respect
to both generators). However, as we shall see later, there
exist two-generator one-relator groups with more than
one Nielsen equivalence class of generating pairs.

Therefore, given any two-generator one-relator presen-
tation, we can assume that w is of the form

tk1 al1 · · · tkn aln , (3–1)

where ki , li �= 0, and k1 + · · · + kn = 0 (excluding the
words al). Thus writing ai = tiat−i , we have

w = al1s1
al2s2

· · · alnsn , where s1 = k1 and si+1 = si+ki+1 .

We call h = max(si) − min(si) the height of w when it
is in Magnus form with respect to t, and 2n the syllable
length of w. Note that the moves above preserving Mag-
nus form also preserve the height and the syllable length,
though not necessarily the word length, of w.

The presentations that are known not to be large
all fall into two types: First, if the syllable length is 4
with k1 = −k2 = 1, then we have the Baumslag–Solitar
group BS(l1 ,−l2), and it is well known that this is
not large if and only if l1 and l2 are not coprime.
The other type comes from [Button 10, Theorem 4.3]
(based originally on a construction in [Higman 51]; see
also [Baumslag et al. 07]), which states that if g and h
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are conjugate elements of a group G where the relation
hkglh−k = gl±1 holds in all finite images of G, then g and
h must be trivial in any finite image of G. In particular, if
G =

〈
a, t | vkalv−k = al±1

〉
, where v is an element of F2

that is conjugate to a, then the presentation is in Magnus
form with respect to t, but all finite images are cyclic, so
G is not large.

Taking k = l = 1 and the plus sign with v =
tat−1 , we obtain the famous group first introduced in
[Baumslag 69]. Note that further examples can be ob-
tained by iterating this construction because if G =
〈a, t | w〉 is a presentation in which a is trivial in ev-
ery finite image of G, then we can take w and a con-
jugate of w to form a new relator in which w is triv-
ial in every finite image of this new group, and thus a
is too.

We also remark that these nonlarge groups (as well as
some others) typically have unusual presentations that
are not Nielsen equivalent to the well-known ones. This
observation dates back to [McCool and Pietrowski 71]
and is based on the following trick: if G = 〈x, y | w(x, y)〉
is such that we can write w in the form u(x, y)k =
y, then by introducing the letter z = u(x, y), we have
that G is also

〈
x, z | z = u(x, zk )

〉
, which for k �= 0,±1

is generally not Nielsen equivalent. For instance, tak-
ing the presentation

〈
x, y | (xyrx−1y±r )k = y

〉
, we get〈

x, z | xzkrx−1z±kr = z
〉
, so we have an alternative pre-

sentation for BS(kr,∓kr + 1). These are in Magnus form
with respect to x but have longer syllable length than
the usual presentation, so cannot be Nielsen equivalent.
Also, it was shown in [Brunner 76] that for any s ≥ 1,
the groups

〈
a, t | (ta2s t−1)a(ta2s t−1)−1 = a2〉

are all isomorphic to Baumslag’s example by putting b =
a2 , so that a = (tb2

s−1
t−1)−1b(tb2

s−1
t−1), thus giving the

same relation with b and s− 1 in place of a and s.
This is also one of a family of examples in

[Brunner 80]:

D(k, l,m) =
〈
a, t | (tak t−1)al(tak t−1)−1 = am

〉
,

so that Baumslag’s example is D(1, 1, 2) ∼= D(2s , 1, 2)
for s ≥ 0. Note that D(k, l,m) is large by the Alexan-
der polynomial if |l −m| �= 1 and has only finite cyclic
quotients otherwise by the above. Also, for the sake of
Table 1, we point out that not only is D(k, l,m) isomor-
phic to D(−k,−l,−m) by sending a to a−1 , but also to
D(−k, l,m) by further inverting both sides of the rela-
tion. Therefore we can assume that k and l are always
positive.

3.2. Height-1 Presentations

Let us suppose that the height of a presentation in the
form (3–1) is 1, so that n is even and (by sending t to
t−1 if necessary) ki is 1 for i odd and is −1 for i even.
Here we do not need anything as involved as in Section
2 to determine largeness because [Button 10, Corollary
4.2] tells us that G is large if and only if there is H ≤f

G with d(H/H ′) ≥ 3, where d is the minimum number
of generators for a group. Therefore we merely need to
compute for each i ≥ 2 the index-i subgroups of G and
their respective abelianizations, breaking off as soon as
one is found needing at least three generators.

When we have done this for reasonably high i, we can
look at which presentations are left and ask whether we
already recognize them as groups known not to be large.
To do this efficiently in such a way that we are not repeat-
edly taking the same group with many different presenta-
tions but without obsessively demanding only one presen-
tation per group, we adopt the following technique: First
note that for height-1 presentations the move t �→ tak

does not change (3–1). Then by taking cyclic permuta-
tions and sending a to a−1 if necessary, we can assume
that l1 > 0 and l1 ≥ |li | for all i. We can further arrange
it by reversing the word that l2 > ln , or if equal that
l3 > ln−1 , and so on. We then choose an upper bound for
the total word length that we will consider, which in our
case was 14. Then for syllable length 2n (starting at n = 4
because n = 2 yields only Baumslag–Solitar groups) and
a fixed l1 (starting at 1), we have an upper bound b on
the moduli of the other li (so that b will equal l1 , or less
if that value always makes the word too long).

Thus we take all presentations for which the val-
ues of (l2 , . . . , ln ) are counted (ignoring zeros) from
(−b, . . . ,−b) to (b, . . . , b), and we input them if the word
length is at most 14. We then choose a bound for the
index of the subgroups we examine that is as high as
possible without long delays in finding all subgroups of
this index: since some groups will be proved large well
before this, we went up to index 12, which with these
presentations usually took only a few seconds.

This allows us to draw up an initial list of what might
fail to be large. The policy adopted from then on was as
follows: First find the Alexander polynomials and try to
show that the group is BS(m,n) or D(k, l,m) by use of
the transformations above. If this fails, then it is also a
consequence of [Button 10, Section 4] that if G is given
by a height-1 presentation but is not large, then the finite
residual RG is equal to G′′. If G has the same Alexan-
der polynomial as B = BS(m,n), then since RB = B′′

too with G/G′′ isomorphic to B/B′′, any finite-index
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subgroup of B/B′′ is also one of G/G′′ and hence corre-
sponds under the inverse image to a unique finite-index
subgroup of G and of B too. Moreover, these subgroups
will have the same abelianization throughout, since if
H ≤f G, then

H ′′ ≥ RH = RG = G′′ ≥ H ′′,

so H ′′ = G′′, meaning that the abelianization of the cor-
responding subgroup H/G′′ of G/G′′ is

(H/G′′)/(H ′G′′/G′′) ∼= H/H ′G′′ = H/H ′,

which is equal to that of H. Also the same holds for
finite-index subgroups of B, so we compare the abelian-
izations of subgroups of G and of B up to index 12,
and even though it may be that all such subgroups H
of G have d(H/H ′) = 2, the torsion of H/H ′ might have
higher order than the torsion of the abelianization of the
equivalent subgroup of B. This worked for most of the
remaining presentations, with for some reason index-7
subgroups very often successful.

The upshot was that this process left only four pre-
sentations unknown as to whether they were large.

Table 1 lists all height-1 presentations of length up
to 14 giving rise to nonlarge groups, in order of syllable
length (starting at 4) and then word length, along with
these four.

We could resolve two of these presentations: they were
(using capital letters for inverses)

G1 =
〈
a, t | ta3Ta2ta3TA

〉

and

G2 =
〈
a, t | ta3Tata3TA2〉 .

For height-1 presentations it is enough to find a sin-
gle finite image that is (nonabelian) simple, since then
we do not have RGi

= G′′
i , so G1 and G2 are large by

[Button 10, Theorem 4.1]. The computer found that G1

maps onto the unitary group U(3, 3) of order 6048, and
G2 has the sporadic simple group J2 of order 604800 as
a finite image.

However, that still leaves two groups whose Alexander
polynomial is 1, so largeness is determined by the answer
to the following question:

Question 3.1. For the groups with presentations
〈
a, t|ta2TatATatATA

〉

and
〈
a, t|ta2TatATAtATA

〉
,

is it true that a is trivial in every finite image?

Consequently we have established that the vast ma-
jority of two-generator one-relator height-1 presentations
with short word length define large groups. However, the
only way we determined that some groups are not large
was to show them to be isomorphic to groups already
known to have this property, and there seems to be a
very limited number of methods that are able to prove
that presentations of this type are not large.

3.3. General Height Presentations

We now consider two-generator one-relator presentations
〈a, t | w(a, t)〉 in Magnus form with respect to t but with
height greater than 1. Here we need to implement using
Magma the algorithm described in Section 2. Before we
embark on running it, we note that not all presentations
of this type define large groups. The only example we
know of already in the literature is

〈
a, t | (tkat−k )a(tkat−k )−1 = a2〉

in [Moldavanskĭı and Sibyakova 95], which has height k.
However, since tk can be replaced here by any word

in F2 , it is clear that there are many more such presen-
tations. Given that the above example provides one of
length 13, we look in this subsection at presentations of
word length at most 12, and it seems surprising that we
will not encounter any nonlarge examples.

We had to work much harder than in the height-1 case.
However, an important point that makes these presenta-
tions tractable is that although a finite-index subgroup of
a two-generator one-relator group will not usually have
such a presentation itself, it will still have a deficiency-1
presentation, so that for each subgroup only one minor
need be calculated.

For a given n we fixed a t-shape, which we define to
be the vector (k1 , . . . , kn ) in the expression (3–1), and we
had a bound b such that if any exponent li of the letter a
had modulus greater than b, then the word was too long.
We then input all a-shapes (l1 , . . . , ln ) from (−b, . . . ,−b)
to (b, . . . , b) if the resulting word length was at most 12.
Note that because we can send a to a−1 in a presentation,
each group has been input at least twice. This is no bad
thing, because it acts as a check, and it could happen that
one presentation was proved large, whereas the other was
missed, although this anomaly can come about only on
subgroups with first Betti number at least 3, as described
in Section 2.

The initial results, when run up to index 12, were that
there was one remaining presentation not proved large of
length 9, four of length 10, fewer than thirty of length
11, and none of length 12. We then ran the program on
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these remaining presentations on subgroups of index 13,
14, and 15. It would take about a minute to obtain all
the subgroups of index 15, and the Alexander polynomial
checks would then be instant, although the time taken
to rewrite for a subgroup presentation was occasionally
significant.

We were then left with only one length-9 presenta-
tion and fifteen length-11 presentations, although some
of these were seen to be isomorphic to each other. We
then needed to find other ways of showing that these
groups are large.

One option is use the Magma command
LowIndexNormalSubgroups, which will be able to
find normal subgroups up to a higher index than that
for arbitrary subgroups, but there will be fewer of them.
The main tool we use is a form of bootstrapping: Pick
a low-index subgroup H with decent abelianization, by
which we usually mean β1(H) at least 2 or (though
preferably and) d(H/H ′) ≥ 3. Then rewrite to get a
finite presentation for H and regard this as our input.
Although the presentation will get longer, so that we
will be unable to find all subgroups up to index 15 again,
a subgroup L of H will have index [G : H][H : L] in
G, so we can go considerably higher by being selective.
We can even repeat the process until the calculations
become too long.

Let us discuss the solitary presentation of length 9
that was left over, sice this turns out to be an inter-
esting group that has already appeared in the liter-
ature. The presentation is

〈
a, t | t3at−2a−1t−1a−1

〉
and

the group Γ it defines is free-by-cyclic, since its ho-
momorphism onto Z has kernel the free group F3 of
rank 3. This can be seen by setting b = tat−1 and c =
tbt−1 , so that we have an alternative presentation of the
form

Γ =
〈
a, b, c, t | tat−1 = b, tbt−1 = c, tct−1 = ab

〉
,

which happily is the subject of the paper [Stallings 82],
in which it is shown that the corresponding automor-
phism φ of F3 is not topologically realizable as a homeo-
morphism of a compact surface with boundary. This was
followed up in the paper [Gersten and Stallings 91], in
which conditions were given to ensure that all positive
powers of an automorphism α of the free group Fn are
irreducible, where α is said to be reducible if there exist
proper nontrivial free factors R1 , . . . , Rk of Fn such that
the conjugacy classes of R1 , . . . , Rk are permuted transi-
tively by α (see [Bestvina and Handel 92]). In particular,
it was shown that all positive powers of φ are irreducible,

and furthermore that for k ≥ 1, no power φk can fix a
nontrivial word, even up to conjugacy.

As for largeness of groups G = Fn �α Z for n ≥ 2, this
is true by [Button 09] if G contains Z × Z, which is equiv-
alent to there being a nontrivial element w in Fn and
k ≥ 1 such that w is sent by αk to a conjugate of itself.
It is also equivalent to a group of this form not being
word-hyperbolic.

Thus our group Γ above is word-hyperbolic. However,
we can have cases in which G is not word-hyperbolic
but all powers of α are irreducible; for example, if α is
an automorphism of F2 = 〈x, y〉, then α2 will always fix
the conjugacy class of xyx−1y−1 , but αk need not fix a
generator of F2 for any k. We can also have G being
word-hyperbolic but α reducible; indeed, in [Button 10]
the first example of a large word-hyperbolic group of the
form Fn �α Z is given by putting together two copies of
Stallings’s automorphism φ. However, since the computer
managed to show that G is large (by finding a subgroup
H of index 56, where β1(H) = 4, and a homomorphism
χ with ∆H,χ = 0 mod 2), we have the first large example
in the following theorem:

Theorem 3.2. The word-hyperbolic group Γ = F3 �φ Z de-
fined above is large, even though φ is irreducible with ir-
reducible powers.

Details of the arguments that established largeness
for these 16 remaining presentations can be found in
[Button 08]. From our computations we have established
the following result:

Theorem 3.3. If G is given by a two-generator one-relator
presentation 〈x, y | r〉 in Magnus form and r is cyclically
reduced with length at most 12, then G is not large if
and only if either the presentation appears in Table 1 (up
to cyclic permutation of r or r−1 and replacing either
generator by its inverse), or the presentation is of the
form

〈
a, t | tapt−1 = aq

〉
, where p and q are coprime.

This also gives the full picture for the virtual first Betti
number of these groups:

Corollary 3.4. If G is as in Theorem 3.3, then G has in-
finite virtual first Betti number unless the presentation
appears in Table 1 (up to cyclic permutation of r or r−1

and replacing either generator by its inverse), in which
case the virtual first Betti number is 1; or the presenta-
tion is of the form

〈
a, t | tapt−1 = aq

〉
, where p and q are
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coprime, in which case the virtual first Betti number is 2
for p, q = ±1 and 1 otherwise.

Corollary 3.5. If G is as in Theorem 3.3 with r having
length at most 12 and height at least 2, then G is large.

As noted at the start of this subsection, this is not
true once we move to length 13. However, note that all
groups that have been shown not to be large contain
Baumslag–Solitar subgroups and so cannot be (nonele-
mentary) word-hyperbolic groups.

3.4. First Betti Number Equal to 2

It may have been noticed in this section that if the relator
r is in the commutator subgroup F ′

2 (which is equivalent
to the group G = 〈x, y | r〉 having β1(G) = 2), then no
examples have yet been found in which G is not large,
except for r = [x, y] = xyx−1y−1 . Although it is possible
for G not to be large and not equal to Z × Z in this case,
such as the example

〈
x, y | [y−1 , x][x, y][y−1 , x]−1 = [x, y]2

〉

in [Baumslag et al. 07, Corollary 2], there is theoretical
evidence that G is often large; the strongest result in
this area is [Button 09, Theorem 3.6], stating that if
r is actually a commutator and there is H ≤f G with
d(H/H ′) ≥ 3, thenG is large (and if the condition onH is
removed, then the only known counterexample is Z × Z).

In this subsection we describe our work that shows
that if G = 〈x, y | r〉 for r ∈ (F2)′ with word length at
most 16, then either G = Z × Z (which is well known
to happen only if r = [x, y] when reduced and cyclically
reduced, up to a cyclic permutation of r or of r−1 , so r al-
ways has length 4) or G is large. The example given above
suggests that this would not be true for word length 20;
in fact, writing this word out reveals that it has length 18.
While it might not be remarkable that no counterexam-
ples exist that have length shorter than 18, we also man-
aged to show with calculations on a substantial number
of cases the somewhat more surprising result that this is
the only counterexample among words of length 18.

Given r ∈ F ′
2 , it must have even length. From Theorem

3.3 we are fine for length at most 12, and in fact for
length 14, too: on running the program again applied to
relators of length 14 but subject to the condition that
the exponent sum of a is zero, we very quickly find that
all such presentations give large groups.

Moreover, we have by the combined results of
[Edjvet 84] and [Button 09] that G is always large (or
Z × Z) if r ∈ F ′

2 and has syllable length 4 or 6. There-

fore when we move on to length 16 we need only consider
words with eight syllables or more. We have that r is au-
tomatically in Magnus form with respect to both a and
t, and remains so under any Nielsen transformation, al-
though the word length can change. We therefore assume
that k1 > 0 and that k1 has largest modulus among both
the ki and the li (otherwise, we could swap a and t). We
then fix the ki while counting through the various li as
in Theorem 3.3 but subject to l1 + · · · + ln = 0 and word
length exactly 16.

Here we begin to encounter the problem that rewriting
can take a long time. There is also a tiny number of
presentations that complete the rewriting process on all
subgroups up to index 12 without being proved large. We
then use ad hoc arguments on the remainder as above,
but the same ideas will work on these too. Once again
the details are in [Button 08].

We then move up to length 18 and proceed in the same
way. Here the main consumption of time is taken up by
inputting each t-shape from the long list of possibilities
and waiting for the program to finish (or occasionally get
stuck, whereupon we would try a different strategy).

We find that all cases are proved large apart from those
in which the t-shape is (2,−1,−1, 2,−1, 1,−1,−1) and
the exponents of a have modulus 1 and alternate in sign,
which is our one exception given earlier. Thus we have
a result that is definitive for words in the commutator
subgroup with length at most 18.

Theorem 3.6. Suppose G is given by a two-generator one-
relator presentation 〈x, y | r〉 with r cyclically reduced and
in the commutator subgroup of F2 , with the word length of
r at most 18. Then r has word length 4 and G is isomor-
phic to Z × Z; r has word length greater than 4 but less
than 18, in which case G is large; or r has word length
18 and G is large except for

r = [y−1 , x][x, y][y−1 , x]−1 [x, y]−2 ,

up to cyclic permutation of r or r−1 and replacing either
generator by its inverse, whereupon G contains a non-
abelian free group but all finite images of G are abelian
and all finite-index subgroups of G have abelianization
Z × Z.

4. CLOSED HYPERBOLIC 3-MANIFOLDS

The other examples on which we tried out our pro-
gram were the fundamental groups of closed orientable
hyperbolic 3-manifolds (hereinafter, we refer to these
as 3-manifold groups), and again we met with some
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success. It is an open question whether every 3-manifold
group is large. The focus of our work was the closed cen-
sus of hyperbolic 3-manifolds [Hodgson and Weeks 01]
that accompanies the program SnapPea. This is avail-
able as a database in Magma of 11,126 entries, each
of which contains a presentation of the corresponding
3-manifold group, along with the manifold’s name and
volume (which provides an ordering for the database). A
3-manifold group always has a presentation of deficiency
0 (and never has a presentation of strictly positive defi-
ciency). In the census we find that most presentations are
of two-generator two-relator type with a fair number of
three-generator three-relator presentations, mainly con-
centrated among the higher-volume manifolds.

Consequently, we have no guarantee that the group
has a finite-index subgroup with positive first Betti num-
ber. Since our program merely ignores finite-index sub-
groups that have no homomorphisms onto Z, there would
be no point in entering a group if no such subgroup were
already known or easily found.

Fortunately, this has already been covered in the paper
[Dunfield and Thurston 03], in which it was proved that
all 3-manifold groups in this census have positive virtual
first Betti number. However, this was a major computa-
tional undertaking involving about a year of CPU time.
The final group to be completed was found to have this
property by running Magma to obtain its subgroups of
index 14 and then examining the abelianizations. This
took two days, which was about the time we had available
to look at the whole census. Moreover, the highest index
of a subgroup that provided positive virtual first Betti
number of a group was 515,100, which (although this may
not be the minimal index for this group) is far too high to
expect the computer to provide a presentation to check
for largeness. The paper [Dunfield and Thurston 03] ex-
ploited the fact that one wants to know only whether
the abelianization of a subgroup is infinite, rather than
needing explicitly to find the rank and torsion, and there
some representation theory of finite groups was utilized.

Therefore, the approach we adopted was to look for
largeness among groups that have a very low index sub-
group with infinite abelianization. Trying this out with
index at most 5, we found in less than two minutes
that there are 2856 groups with this property, which at
just over a quarter is a decent proportion. The choice
of 5 reflected our desire for a bound that ensured that
we were covering a large enough sample of the census
in our program, but was also chosen because we ran
our largeness routine up to index 10 on all of these
groups. The reason for going up to double the initial

choice of index is that because a group with a homo-
morphism onto Z has all finite index subgroups with the
same property, we knew that we would have more than
one subgroup of the original group with positive Betti
number that could be checked for largeness. (Note that
the proportion of groups having a low-index subgroup
with positive first Betti number is higher here than in
[Dunfield and Thurston 03], because there, other meth-
ods were first used to find such subgroups, rather than
the enumeration of all low-index subgroups.)

We then ran the routine described in Section 2 on this
list of 2856 3-manifold groups, checking subgroups up
to index 10. The results were encouraging. We ran the
program in batches of a few hundred at a time, and only
130 failed to be proved large by this method. Some 3-
manifold groups were dealt with very quickly, although
several toward the end took quite a long time (there were
three cases in which we gave up on finding the index-10
subgroups after waiting for over an hour).

For a few of the very early 3-manifold groups with
more tractable presentations, we increased the index for
finding subgroups up to 12 or 14. This produced four
other large groups in our sample. We then used the
data in Snap1 to see whether any 3-manifold groups in
the leftover list were arithmetic. We did so because ev-
ery arithmetic 3-manifold group in the census is large,
which can be seen by combining [Lackenby et al. 08, The-
orem 6.1] (an arithmetic 3-manifold group with a finite-
index subgroup having first Betti number at least 4
is large), [Cooper et al. 07] or [Venkataramana 08] (an
arithmetic 3-manifold group with positive virtual first
Betti number has infinite virtual first Betti number), and
[Dunfield and Thurston 03] (every census 3-manifold has
positive virtual first Betti number). This provided eight
more examples, although they all came from early in the
census. Combining the data, we were left with 118 3-
manifold groups left over that were not proved large.

Among these 118 were two groups that themselves
have positive first Betti number, out of 132 in the
database. We pushed up the index to 11 or 12 here and
established largeness for this pair. Moreover, we observe
that all of the 305 further 3-manifolds in the census hav-
ing a double cover with positive first Betti number have
been proved large, giving the following theorem.

Theorem 4.1. If G is the fundamental group of a closed
hyperbolic 3-manifold in the census and β1(G) ≥ 1 or G

1 Available at http://www.ms.unimelb.edu.au/∼snap/.
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has a double cover with positive first Betti number, then
G is large.

Details are given in [Button 08] on how to determine
whether a given census 3-manifold is one of the 2740 that
have here been proved large.

One point to mention: a finite-index subgroup of a
3-manifold group always has a presentation of deficiency
zero, because it is itself a 3-manifold group, being the fun-
damental group of a finite cover of a 3-manifold. However,
the computer does not know this, and often on rewriting
we obtained presentations of strictly negative deficiency
(−4 was the lowest value observed, with −1 appearing
quite often and −2 or −3 cropping up occasionally). The
approach we first adopted during the runs was to ignore
these subgroups and extend our routine for deficiency-1
group presentations just to the case of deficiency 0, be-
cause we feared the running time might otherwise be sub-
stantially lengthened owing to the larger number of mi-
nors that need to be calculated. However, this was over-
cautious, because when the program was extended to the
version described in Section 2 that allows presentations
of arbitrary deficiency, it then ran more quickly, because
lower-index subgroups could establish largeness earlier.

Update: After the first version of this paper, we further
developed the routine during a visit to the Magma re-
search group. In particular, the bootstrapping described
in Section 3.3 was incorporated automatically, and this
significantly improved the performance. An attack on the
first 500 3-manifolds in the census using the newer code
managed to establish largeness for all of these apart from
three cases: numbers 75, 268, and 304. We hope that this
routine will be available in a future release of Magma.
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