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Let d(n) denote the corank of I + A over the field with two el-
ements, where A is the adjacency matrix of the discrete torus
Cn × Cn, and I is the identity matrix. We shall prove that
d(2n) = 2d(n) and d(2r + 1) = d(2r − 1) + 4. For the proof of
the latter result, we use an elliptic curve. Our motivation for this
study is the “lights out” puzzle.

1. INTRODUCTION

Let Γ be a finite undirected graph, V (Γ) the vertex set of
Γ, and F(Γ) the set of maps from V (Γ) to F2, the finite
field with two elements. Then F(Γ) is a vector space of
dimension |V (Γ)| over F2. We call an element of F(Γ) a
configuration of Γ, which we often identify with a column
vector in F

|V (Γ)|
2 , fixing an order in V (Γ).

Let A(Γ) be the adjacency matrix of Γ, I the identity
matrix of degree |V (Γ)|, and Δ(Γ) the linear transforma-
tion on F(Γ) defined by

(Δ(Γ)f)(v) = f(v) +
∑
u∼v

f(u),

where u ∼ v means that vertices u, v are adjacent. In
case Γ has loops or multiple edges, we explicitly write
the definition of Δ(Γ) as

(Δ(Γ)f)(v) = f(v) +
∑

u∈V (Γ)

Auvf(u),

where Auv is (mod 2 of) the (u, v)-component of A(Γ).
We may consider that

Δ(Γ)f = (I + A(Γ))f

under the identification F(V ) = F
|V (Γ)|
2 .

Define H(Γ) = kerΔ(Γ) and

d(Γ) = dimF2 H(Γ) = corankF2(I + A(Γ)).

As is well known, Δ(Γ) is an analogue of the Laplacian
(see, for example, [Cartier 72, Cartier 73]), and so H(Γ)
is the space of “harmonic” functions on Γ.
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n d(n) n d(n) n d(n) n d(n) n d(n) n d(n)

1 0 51 20 101 0 151 0 201 4 251 0

2 0 52 0 102 40 152 0 202 0 252 208

3 4 53 0 103 0 153 20 203 0 253 0

4 0 54 8 104 0 154 0 204 80 254 224

5 8 55 8 105 12 155 48 205 48 255 284

6 8 56 0 106 0 156 16 206 0 256 0

7 0 57 4 107 0 157 0 207 4 257 288

8 0 58 0 108 16 158 0 208 0 258 232

9 4 59 0 109 0 159 4 209 0 259 0

10 16 60 48 110 16 160 256 210 24 260 224

11 0 61 0 111 4 161 0 211 0 261 4

12 16 62 80 112 0 162 8 212 0 262 0

13 0 63 52 113 0 163 0 213 4 263 0

14 0 64 0 114 8 164 0 214 0 264 352

15 12 65 56 115 8 165 52 215 8 265 8

16 0 66 88 116 0 166 0 216 32 266 0

17 16 67 0 117 4 167 0 217 40 267 4

18 8 68 64 118 0 168 32 218 0 268 0

19 0 69 4 119 16 169 0 219 4 269 0

20 32 70 16 120 96 170 48 220 32 270 24

21 4 71 0 121 0 171 76 221 16 271 0

22 0 72 32 122 0 172 0 222 8 272 256

23 0 73 0 123 4 173 0 223 0 273 4

24 32 74 0 124 160 174 8 224 0 274 0

25 8 75 12 125 8 175 8 225 12 275 8

26 0 76 0 126 104 176 0 226 0 276 16

27 4 77 0 127 112 177 4 227 0 277 0

28 0 78 8 128 0 178 0 228 16 278 0

29 0 79 0 129 116 179 0 229 0 279 44

30 24 80 128 130 112 180 48 230 16 280 64

31 40 81 4 131 0 181 0 231 44 281 0

32 0 82 0 132 176 182 0 232 0 282 8

33 44 83 0 133 0 183 4 233 0 283 0

34 32 84 16 134 0 184 0 234 8 284 0

35 8 85 24 135 12 185 8 235 8 285 12

36 16 86 0 136 128 186 88 236 0 286 0

37 0 87 4 137 0 187 16 237 4 287 0

38 0 88 0 138 8 188 0 238 32 288 128

39 4 89 0 139 0 189 52 239 0 289 16

40 64 90 24 140 32 190 16 240 192 290 16

41 0 91 0 141 4 191 0 241 0 291 4

42 8 92 0 142 0 192 256 242 0 292 0

43 0 93 44 143 0 193 0 243 4 293 0

44 0 94 0 144 64 194 0 244 0 294 8

45 12 95 8 145 8 195 60 245 8 295 8

46 0 96 128 146 0 196 0 246 8 296 0

47 0 97 0 147 4 197 0 247 0 297 44

48 64 98 0 148 0 198 88 248 320 298 0

49 0 99 44 149 0 199 0 249 4 299 0

50 16 100 32 150 24 200 64 250 16 300 48

TABLE 1. Values of d(n) = d(Cn,n).
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We make this situation into a puzzle as follows. (This
is called the σ+-game in [Sutner 89, Sutner 90].) Each
vertex corresponds to a lighted button. A configuration
f ∈ F(Γ) represents the on/off state of the buttons: a
button corresponding to v ∈ V (Γ) is thought to be “on”
if f(v) = 1, “off” if f(v) = 0. Pushing a set of buttons
corresponding to a subset S ⊂ V (Γ) changes f to f +
Δ(Γ)χS , where χS ∈ F(Γ) is the characteristic function
of S:

χS(v) =

{
1 if v ∈ S,
0 if v �∈ S.

By the definition of Δ(Γ), pushing a single button v

reverses its state as well as that of the buttons that are
adjacent to v. A subset S ⊂ V (Γ) is said to be a solution
to f if f+Δ(Γ)χS = O, where O is the zero configuration.
A configuration is said to be solvable if it has a solution.
Since a configuration is solvable if and only if it belongs
to the image of Δ(Γ), we see that exactly 1/2d(Γ) of the
configurations of Γ are solvable. The purpose of this
puzzle is to determine whether a given configuration is
solvable and to find a solution if it is solvable.

Let Pn be the path with n vertices and Pm,n = Pm×Pn

the Cartesian product. In the case Γ = Pm,n, we call this
puzzle the m × n lights out puzzle. The case P5,5 is the
original lights out puzzle and d(P5,5) = 2. See [Joyner
02, Chapter 6].

Similarly, in the case Γ = Cm,n = Cm × Cn, where
Cn denotes the cycle graph with n vertices, we call this
puzzle the m × n torus lights out puzzle. The subject of
this paper is the sequence d(n) = d(Cn,n). No general
explicit formula for d(n) is known, and the behavior of
d(n) seems mysterious; see Table 1.

The dimension d(n) itself as well as the characteriza-
tion of n such that d(n) > 0 has been investigated by
several authors from various viewpoints: automata the-
ory, graph theory, harmonic analysis, and so on. See,
for example, [Barua and Ramakrishnan 96, Goldwasser
et al. 02, Hunziker et al. 04, Zaidenberg 08a, Zaidenberg
08b, Zaidenberg 09].

Our results are the following.

Theorem 1.1. We have d(C2m,2n) = 2d(Cm,n) for m ≥ 1,
n ≥ 1. In particular, we have d(2n) = 2d(n).1

Theorem 1.2. We have d(2r +1) = d(2r−1)+4 for r ≥ 1.

Combining Theorem 1.2 with Corollary 3.6 below, we
obtain the following.

1This is stated without proof in [Brouwer 08].

Corollary 1.3. The statement d(n) > 0 holds for positive
integers of the form n = 2r ± 1, n �= 1, 7.

This gives an alternative proof of [Goldwasser et al. 02,
Theorem 14], via a known relation between lights out and
torus lights out (see Section 4).

The characterization of n with nonzero d(n) is cer-
tainly an interesting problem, but the dimension d(n)
itself is a much more interesting subject, as our theorems
show.

The content of this paper is as follows. We prove The-
orem 1.1 in Section 2, by constructing an explicit isomor-
phism

H(Cm,n) ⊕H(Cm,n) ∼= H(C2m,2n).

We prove Theorem 1.2 in Section 3, using the
multiplication-by-2 map on the elliptic curve

(x + y + z)(xy + z2) + z3 = 0.

In Section 4 we present a conjecture, motivated by a
known relation between lights out and torus lights out.
Assuming this conjecture, we give alternative proofs of
Theorems 1.1 and 1.2. In Section 5 we make three fur-
ther observations on the sequence d(n). Table 1 gives
some values of d(n).

2. DOUBLING

Let Z denote the ring of rational integers. We identify
the vertex set V (Cm,n) with Z/mZ × Z/nZ, adjacency
relations being

(i, j) ∼ (i ± 1, j), (i, j) ∼ (i, j ± 1).

We also identify a configuration f ∈ F(Cm,n) with an
m × n matrix (aij) such that aij = f((i, j)). In the rest
of this section, we always assume that

i ∈ Z/mZ, j ∈ Z/nZ, k ∈ Z/2mZ, l ∈ Z/2nZ.

Let us write Fm,n = F(Cm,n), Δm,n = Δ(Cm,n), and
Hm,n = H(Cm,n). We introduce F2-linear maps

ι±m,n : Fm,n → F2m,2n,

π±
m,n : F2m,2n → Fm,n,

as follows:

ι+m,n : (aij) 	→ (bkl),

where

bkl =

{
ak/2,l/2, k ≡ l ≡ 0 (mod 2),
0, otherwise,
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and

ι−m,n : (aij) 	→ (bkl),

where

bkl =

{
a(k−1)/2,(l−1)/2, k ≡ l ≡ 1 (mod 2)
0 otherwise,

and

π+
m,n : (bkl) 	→ (aij), aij = b2i,2j ,

π−
m,n : (bkl) 	→ (aij), aij = b2i+1,2j+1.

Note that 2i ∈ Z/2mZ and so on are well defined.
We also define

D±
m,n = Δ2m,2n ◦ ι±m,n.

For example, D+
m,n sends (aij) to⎛

⎜⎜⎜⎜⎜⎝

a00 a00 + a01 a01 a01 + a02 · · ·
a00 + a10 0 a01 + a11 0 · · ·

a10 a10 + a11 a11 a11 + a12 · · ·
a10 + a20 0 a11 + a21 0 · · ·

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠ .

This map is essentially the same as the “doubling” map
in [Zaidenberg 08b, 2.35].

Lemma 2.1.

(i) ι±m,n, D±
m,n are injective.

(ii) image(ι+m,n) ∩ image(ι−m,n) = {O}.
(iii) image(D+

m,n) ∩ image(D−
m,n) = {O}.

(iv) Δ2m,2n ◦ D±
m,n = ι±m,n ◦ Δm,n.

(v) The restriction of D+
m,n ◦ π+

m,n + D−
m,n ◦ π−

m,n to
H2m,2n is the identity map.

(vi) π±
m,n(H2m,2n) ⊂ Hm,n.

Proof: Statements (i) through (iii) are clear. For
statement (iv), let f = (aij) ∈ Fm,n, (bkl) =
Δ2m,2n(D+

m,n(f)) and (ckl) = ι+m,n(Δm,n(f)). By the
description of D+

m,n above, we see that bkl = 0 unless
(k, l) = (2i, 2j) for some (i, j), in which case

bkl = aij + ai−1,j + ai+1,j + ai,j−1 + ai,j+1.

By the definition of ι+m,n, we see that ckl = 0 unless
(k, l) = (2i, 2j) for some (i, j), in which case ckl is equal
to the (i, j)-entry of Δm,n(f), namely

ckl = aij + ai−1,j + ai+1,j + ai,j−1 + ai,j+1.

Thus we have bkl = ckl for any (k, l). Similarly for the
“minus” case.

For (v), note that D+
m,n◦π+

m,n+D−
m,n◦π−

m,n = Δ2m,2n◦
(ι+m,n ◦ π+

m,n + ι−m,n ◦ π−
m,n). For f = (bkl) ∈ F2m,2n, we

have

(ι+m,n ◦ π+
m,n + ι−m,n ◦ π−

m,n)(f)

=

⎛
⎜⎜⎜⎜⎜⎝

b00 0 b02 0 · · ·
0 b11 0 b13 · · ·

b20 0 b22 0 · · ·
0 b31 0 b33 · · ·
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ .

If f ∈ H2m,2n, i.e., Δ2m,2n(f) = O, then

bkl = bk−1,l + bk+1,l + bk,l−1 + bk,l+1,

and hence(
Δ2m,2n ◦ (ι+m,n ◦ π+

m,n + ι−m,n ◦ π−
m,n)

)
(f) = f.

To prove (vi), let f ∈ H2m,2n. We have

O = Δ2m,2n(f)

= Δ2m,2n

(D+
m,n(π+

n (f)) + D−
m,n(π−

n (f)
)
)

= ι+m,n(Δm,n(π+
m,n(f))) + ι−m,n(Δm,n(π−

m,n(f))),

by (iv), (v). Hence by (ii), we have

Δm,n(π+
m,n(f)) = Δm,n(π−

m,n(f)) = O,

which completes the proof.

Proof of Theorem 1.1: We shall show that

D+
m,n(Hm,n) ⊕D−

m,n(Hm,n) = H2m,2n.

First, we claim that for f ∈ Fm,n,

f ∈ Hm,n ⇐⇒ D+
m,n(f) ∈ H2m,2n

⇐⇒ D−
m,n(f) ∈ H2m,2n.

Indeed, we have

f ∈ Hm,n ⇐⇒ Δm,n(f) = O

⇐⇒ ι±m,n(Δm,n(f)) = O

⇐⇒ Δ2m,2n(D±
m,n(f)) = O

⇐⇒ D±
m,n(f) ∈ H2m,2n

by Lemma 2.1(i), (iv). In particular, we have

D+
m,n(Hm,n) + D−

m,n(Hm,n) ⊂ H2m,2n.
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Second, we have

D+
m,n(Hm,n) ∩ D−

m,n(Hm,n) = {O}

by Lemma 2.1(iii). Finally, it follows from Lemma
2.1(v), (vi) that

H2m,2n ⊂ D+
m,n(Hm,n) + D−

m,n(Hm,n).

This completes the proof.

3. AN ELLIPTIC CURVE

The spectrum of Δ(Cm,n) is well known when mn is
prime to the characteristic.

Lemma 3.1. Let K be an algebraically closed field whose
characteristic is prime to mn, and ζm (respectively ζn) a
primitive mth (respectively nth) root of unity in K. The
adjacency matrix A(Cm,n) is diagonalizable over K, and
the eigenvalues are, multiplicity taken into account,

ζi
n + ζ−i

n + ζj
m + ζ−j

m , 0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1.

Let F2 be the algebraic closure of F2. Since

d(Cm,n) = corankF2(I + A(Cm,n))

= corank
F2

(I + A(Cm,n)),

we have the following.

Corollary 3.2. For m, n odd, we have d(Cm,n) =
|S(m, n)|, where

S(m, n)

=
{
(x, y) ∈ F

×
2 × F

×
2 | x + x−1 + y + y−1 + 1 = 0,

xm = yn = 1
}
.

See [Hunziker et al. 04, Zaidenberg 08b] for the proof
of Lemma 3.1 and Corollary 3.2.

Corollary 3.3. Suppose m, n are odd.

(i) d(Cm,n) ≡

⎧⎪⎨
⎪⎩

0 (mod 4), mn �≡ 0 (mod 3)
or m ≡ n ≡ 0 (mod 3),

2 (mod 4), otherwise.

(ii) d(n) ≡
{

0 (mod 8), n �≡ 0 (mod 3),
4 (mod 8), n ≡ 0 (mod 3).

Proof: Put

S0(m, n) = {(x, y) ∈ S(m, n) |x �= 1, y �= 1}.

If (x, y) ∈ S0(m, n), then the four pairs

(x, y), (x−1, y), (x, y−1), (x−1, y−1) ∈ S0(m, n)

are distinct. Hence |S0(m, n)| ≡ 0 (mod 4). Further-
more, if (x, y) ∈ S0(n, n), then the eight pairs

(x±, y±), (y±, x±) ∈ S0(n, n)

are distinct. Hence |S0(n, n)| ≡ 0 (mod 8). Let ω ∈ F2

be a third root of unity. Noting that in F2, x + x−1 = 0
(respectively x + x−1 = 1) if and only if x = 1 (respec-
tively x = ω, ω2), we have

S(m, n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S0(m, n),
if mn �≡ 0 (mod 3),

S0(m, n) ∪ {(1, ω), (1, ω2), (ω, 1), (ω2, 1)},
if m ≡ n ≡ 0 (mod 3),

S0(m, n) ∪ {(1, ω), (1, ω2)},
if m �≡ 0 ≡ n (mod 3),

S0(m, n) ∪ {(ω, 1), (ω2, 1)},
if m ≡ 0 �≡ n (mod 3).

The claim follows easily.

Let us now consider the equation

x + x−1 + y + y−1 + 1 = 0

over F2. Clearing denominators and homogenizing, we
obtain a projective curve

E : (x + y + z)(xy + z2) + z3 = 0

defined over F2. It turns out that E is an elliptic curve.
We list basic properties of E. Some of them are known
and used in [Zaidenberg 08b, Section 3.3]. We follow the
notation of [Silverman 86]; in particular, E[n] denotes
the set of n-torsion points. We write S(n) = S(n, n).

Lemma 3.4.

(i) E is an elliptic curve with identity element O =
[1, 1, 0].

(ii) E[2] = {O, P2}, where P2 = [0, 0, 1].

(iii) E is ordinary; i.e., E[2r] is a cyclic group of order
2r for each r ≥ 1.
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(iv) E(F2) = E[4] = E[2] ∪ {[1, 0, 0], [0, 1, 0]}, and there
is no point of E at infinity.

(v) The congruent zeta function of E/F2 is

Z(E/F2, T ) =
(1 − αT )(1 − ᾱT )
(1 − T )(1 − 2T )

,

where α + ᾱ = −1 and αᾱ = 2. Consequently,
|E(F2r )| = 2r + 1 − αr − ᾱr.

(vi) For n odd, we can consider S(n) as a subset of
E(F2) by (x, y) 	→ [x, y, 1]. Under this identifica-
tion, S(2r − 1) = E(F2r ) \ E[4].

(vii) Let [a, b, 1] ∈ E(F2) \ E[4].

(a) −[a, b, 1] = [b, a, 1].

(b) ab �= 0 and [a, b, 1] + P2 = [a−1, b−1, 1].

Proof: The verification is straightforward. (iii) E is or-
dinary because |E[2]| = 2.

(v) α + ᾱ = −1, since |E(F2)| = 4.
(vii)(a) The line through [a, b, 1] and O is −x + y +

(a − b)z = 0. The third intersection point of this line
with E is [b, a, 1].

(vii)(b) The line through [a, b, 1] and P2 is bx−ay = 0.
The third intersection point is [b−1, a−1, 1]. Therefore,
[a, b, 1] + P2 = −[b−1, a−1, 1] = [a−1, b−1, 1] by (a).

Remark 3.5. The curve E is isomorphic to 15A8 in Cre-
mona’s database [Cremona 97].

Corollary 3.6. (Cf. [Zaidenberg 08b], Lemma 3.5.)
d(2r − 1) = 2r − 3 − αr − ᾱr, where α, ᾱ are the roots of
t2 + t + 2.

Proof: This follows from Corollary 3.2 and Lemma
3.4(iv), (v), (vi).

Proof of Theorem 1.2: Consider the multiplication-by-2
map

[2] : E → E.

This is a 2-isogeny, since E is ordinary. The image of
E(F2) \ E[4] under this map is E(F2) \ E[2]. We claim
that

[2]−1 (E(F2r ) \ E[2]) = S(2r − 1) ∪ S(2r + 1).

Let P = [x, y, 1] ∈ E(F2) \ E[4] and suppose that
[2]P ∈ E(F2r ) \ E[2]. Let φ be the 2r-power Frobe-
nius automorphism of F2, which also acts on E(F2) as

an endomorphism. From

[2]P = ([2]P )φ = [2]Pφ,

it follows that

Pφ − P ∈ E[2] = {O, P2},

i.e., [x2r

, y2r

, 1] = [x, y, 1] or [x2r

, y2r

, 1] = [x, y, 1]+P2 =
[x−1, y−1, 1]. We have (x, y) ∈ S(2r − 1) in the former
case, and (x, y) ∈ S(2r+1) in the latter case. This proves
the claim.

Since S(2r−1) and S(2r +1) are disjoint and deg[2] =
2, we have

|S(2r − 1)| + |S(2r + 1)| = 2|E(F2r) \ E[2]|,

i.e.,

d(2r − 1) + d(2r + 1) = 2(d(2r − 1) + 2),

from which the theorem follows.

4. LIGHTS OUT AND TORUS LIGHTS OUT

It is known that

d(Cm,n) > 0 ⇐⇒ mn ≡ 0 (mod 3) or d(Pm−1,n−1) > 0

(cf. [Zaidenberg 08b, Corollary 2.12]). We sought a quan-
titative version of this fact, but could not find any in the
literature. Here we present the following conjecture.

Conjecture 4.1. For a positive integer k, let ν2(k) denote
the largest integer ν such that 2ν divides k. We have

d(Cm,n) = 2d(Pm−1,n−1) + 2δm,n,

where δm,n = δn,m and

• if mn �≡ 0 (mod 3), then δm,n = 0;

• if m �≡ 0 (mod 3), n ≡ 0 (mod 3), then

δm,n =

{
0, ν2(m) > ν2(n) + 1,

1, ν2(m) ≤ ν2(n) + 1;

• if m ≡ n ≡ 0 (mod 3), then

δm,n =

{
1, |ν2(m) − ν2(n)| > 1,

2, |ν2(m) − ν2(n)| ≤ 1.
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In particular, we have

d(n) =

{
2d(Pn−1,n−1), n �≡ 0 (mod 3),
2d(Pn−1,n−1) + 4, n ≡ 0 (mod 3).

We have checked the validity of this conjecture for
2 ≤ m ≤ n ≤ 65 and for m = n ≤ 345. If this conjecture
is true, then most of our observations on d(n) will have
counterparts for d(Pn−1,n−1). For example, Theorem 1.1
and Corollary 3.3 would settle Sutner’s conjecture [Sut-
ner 89, p. 52]. See also [Hunziker et al. 04, p. 475].

We have another formulation of this conjecture in
terms of Chebyshev–Dickson polynomials (cf. [Zaiden-
berg 08b, Appendix B]). In the rest of this section, we
always work in the polynomial ring F2[x]. Let Tn, En ∈
F2[x] be the Chebyshev–Dickson polynomials of respec-
tively the first and second kinds:

Tn+1(x) = xTn(x) + Tn−1(x), T0(x) = 0, T1(x) = x,

En+1(x) = xEn(x) + En−1(x), E0(x) = 1, E1(x) = x.

Here are some basic properties of Chebyshev–Dickson
polynomials. See [Zaidenberg 08b, Appendix B] or [Hun-
ziker et al. 04] for reference.

Lemma 4.2.

(i) deg Tn = deg En = n.

(ii) Tn(x) = xEn−1(x).

(iii) En(0) = 0 ⇐⇒ n ≡ 1 (mod 2).

(iv) En(1) = 0 ⇐⇒ n + 1 ≡ 0 (mod 3).

(v) E2km−1(x) = x2k−1Em−1(x)2
k

.

(vi) E2k−2(x)E2k (x) = (x2k−1 − 1)2.

The following two results explain the importance of
Chebyshev–Dickson polynomials for our subject.

Theorem 4.3. [Sutner 00]

d(Pm,n) = deg gcd(Em(x), En(x + 1)).

Theorem 4.4. [Barua and Ramakrishnan 96] d(Cm,n) >

0 holds if and only if deg gcd(Tm(x), Tn(x + 1)) > 0.

Our conjecture is a quantitative version of the latter
theorem.

Conjecture 4.5. d(Cm,n) = 2 deg gcd(Tm(x), Tn(x + 1)).

Proposition 4.6. Conjectures 4.1 and 4.5 are equivalent.

Proof: Put

εm,n = deg gcd(Tm(x), Tn(x + 1))

− deg gcd(Em−1(x), En−1(x + 1)).

By Theorem 4.3, we have to verify εm,n = δm,n. For
f, g ∈ F2[x], let νf (g) denote the largest integer ν such
that fν divides g, and let

a = νx(Em−1(x)), b = νx(En−1(x + 1))

and

c = νx+1(Em−1(x)), d = νx+1(En−1(x + 1)).

By Lemma 4.2(ii), we have

εm,n = min{a + 1, b} − min{a, b} + min{c, d + 1}
− min{c, d}

=

⎧⎪⎨
⎪⎩

0, a ≥ b, c ≤ d,

2, a < b, c > d,

1, otherwise.

By Lemma 4.2(iii), (iv), (v), we have

a = 2ν2(m) − 1,

b =

{
2ν2(n)+1, n ≡ 0 (mod 3),
0, otherwise,

c =

{
2ν2(m)+1, m ≡ 0 (mod 3),
0, otherwise,

d = 2ν2(n) − 1.

Putting these together, we obtain εm,n = δm,n.

We give alternative proofs of Theorems 1.1 and 1.2,
assuming Conjecture 4.5.

Theorem 1.1 follows from T2k(x) = Tk(x)2, which is a
consequence of Lemma 4.2(ii), (v).

By Lemma 4.2(ii), (vi) and noting that (x+1)2
r −(x+

1) = x2r − x, we have

T2r+1(x)T2r−1(x)T2r−1(x + 1) = (x2r − x)2T2r−1(x + 1),

and

T2r+1(x + 1)T2r−1(x)T2r−1(x + 1) = (x2r − x)2T2r−1(x).

By taking “2 deg gcd” of both sides, we obtain Theo-
rem 1.2.
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5. FURTHER OBSERVATIONS

We make three observations on d(n).

5.1 Prime Powers

Conjecture 5.1. d(pk) = d(p) if p is a prime.

We have checked the validity of this conjecture directly
for pk ≤ 54, and also for pk ≤ 216 assuming Conjecture
4.5. In [Goshima and Yamagishi 09], assuming Conjec-
ture 5.1 for p = 5, we gave a nice criterion for the solv-
ability of the 5k × 5k torus lights out puzzle.

5.2 Additivity

Additivity in the naive sense

gcd(m, n) = 1 =⇒ d(mn) = d(m) + d(n)

sometimes holds but does not hold in general. For exam-
ple, d(15) = d(3) + d(5), but d(63) > d(7) + d(9). The
“partnership graph” by Zagier seems to give the most
precise formulation; see [Zaidenberg 08b, Section 3.4].
Note that we have

gcd(m, n) = 1 =⇒ d(mn) ≥ d(m) + d(n),

by Corollary 3.2 and Theorem 1.1. Alternatively, we
can see this as follows. There is a natural graph cov-
ering map Cmn,mn → Cm,m, which induces an injec-
tion i1 : Hm,m ↪→ Hmn,mn. Similarly, we have i2 :
Hn,n ↪→ Hmn,mn. If gcd(m, n) = 1, then we can show
that i1(Hm,m), i2(Hn,n) are linearly independent, and
hence we have

Hm,m ⊕Hn,n
∼= i1(Hm,m) ⊕ i2(Hn,n) ⊂ Hmn,mn.

5.3 Primes p with d(p) > 0

As we have just seen, if d(n) > 0 then d(kn) > 0 for
all k ≥ 1. What is interesting therefore is the case that
d(n) > 0 but d(n′) = 0 for all proper divisors n′ of n.
Such an n is called MAD in [Brouwer 08]. For exam-
ple, a prime p with d(p) > 0 is MAD. By Corollary 1.3,
Mersenne primes except for 7 and Fermat primes have
this property. A natural question arises: do there exist
other primes with d(p) > 0? Some examples are given

in [Brouwer 08]:

683 =
211 + 1

3
, 2731 =

213 + 1
3

,

43691 =
217 + 1

3
, 61681 =

220 + 1
17

,

174763 =
219 + 1

3
, 178481 =

223 − 1
47

,

2796203 =
223 + 1

3
, 3033169 =

229 + 1
177

,

6700417 =
232 + 1

641
, 15790321 =

228 + 1
17

.

See also [Hunziker et al. 04] for the first four. It would
be interesting to be able to characterize such primes.
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