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For diagonal cubic surfaces S, we study the behavior of the
height m(S) of the smallest rational point versus the Tamagawa-
type number 7(S) introduced by E. Peyre. We determined both
quantities for a sample of 849,781 diagonal cubic surfaces. Our
methods are explained in some detail. The results suggest an
inequality of the type m(S) < C(e)/7(S)' <. We conclude the
article with the construction of a sequence of diagonal cubic
surfaces showing that the inequality m(S) < C/7(S) is false in
general.

1. INTRODUCTION

Let S C P% be a Fano variety defined over Q. If
S(Q,) # @ for every v € Val(Q), then it is natural
to ask whether S(Q) # @. When this is the case, S is
said to satisfy the Hasse principle. Further, it would be
desirable to have an a priori upper bound for the height
of the smallest Q-rational point on S, since this would
make it possible to effectively decide whether S(Q) # @.

When S is a conic, Legendre’s theorem on zeros of
ternary quadratic forms proves the Hasse principle and,
moreover, yields an effective bound for the smallest point.
For quadrics of arbitrary dimension, the same is true by
an observation of [Cassels 55]. Furthermore, [Siegel 69,
Satz 1] provides a generalization to hypersurfaces defined
by norm equations.

For more general Fano varieties, no theoretical upper
bound is known for the smallest height of a Q-rational
point. This already applies to diagonal cubic surfaces.
Furthermore, some of these fail to satisfy the Hasse prin-
ciple [Colliot-Thélene et al. 87].

In this article, we present some theoretical and exper-
imental results concerning the smallest height of a Q-
rational point on diagonal cubic surfaces in P%.

A conjecture due to Manin asserts that the num-
ber of Q-rational points of anticanonical height less
than B on a Fano variety S is asymptotically equal to
B logrkpic(s)f1 B, for B — .
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In the particular case of a cubic surface, the anticanon-
ical height is the same as the naive height. Further, the
coefficient 7 € R>( equals the Tamagawa-type number
7(S) introduced in [Peyre 95]. Hence, at least ~ 7(S)B
points of height less than B are supposed to exist. As-
sume that their heights are equally distributed within
[0, B). Then the height of the smallest point is less than
1/7(S).

Therefore, one might generally expect that m(.S), the
height of the smallest Q-rational point on S, is bounded
by C/7(S) for a certain absolute constant C'.

To test this expectation, we computed the Tamagawa
number and ascertained the smallest Q-rational point for
each of the cubic surfaces given by

az® + by +222 +w =0

fora=1,...,3000 and b=1,...,300.
We restricted our considerations to the case that

(i) a and b are odd,

(ii) there exists an odd prime p dividing a but not b
such that 3 {v,(a), or

(iii) there exists an odd prime p dividing b but not a
such that 3 { vp(b).

This guarantees that we are in the “first case” according
to the classification in [Colliot-Thélene et al. 87].

In addition, we assume that a > b+ 3. The inequality
a > b is necessary in order to avoid duplications. Fur-
ther, surfaces such that |a — b| < 3 trivially have rational
points of uncharacteristically small height. The results
are summarized in Figure 1. The sample described con-
sists of 849,781 surfaces. Among them, 802,891 turn out
to have rational points. Each such surface is marked at
its proper place (7(S), m(95)) in the diagram.

It is apparent that the experiment agrees with expec-
tation. The slope of a line tangent to the top right of
the scatter plot is indeed near (—1). However, as we will
show in Theorem 8.1, the inequality m(S) < % does
not hold in general. The following question remains open
as a logical possibility.

Question 1.1. For every € > 0, does there exist a constant
C'(e) such that

for every cubic surface?
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FIGURE 1. Height of smallest point versus Tamagawa number.

1.1 Plan of the Article

Sections 2 through 7 will be devoted to the computations
that led to the diagram shown as Figure 1.

In Section 2, we will recall Peyre’s constant 7(.5). The
next four sections will discuss the factors that consti-
tute this constant. First, in Section 3, we will use the
Lefschetz trace formula in order to estimate the product
over all local factors 7,(5) at the good primes p, uni-
formly over all cubic surfaces.

Sections 4 and 5 will be concerned with the L-factors.
In Section 4, for diagonal cubic surfaces, we will give
an explicit decomposition of the Galois representation
Pic(S) ®z C into irreducible components. As an appli-
cation of this, we efficiently computed the values of the
corresponding Artin L-functions at 1.

Our method will be presented in detail in Section 5. In
Section 6, we will explain our approach to dealing with
the factor 7 (.5).
Further, we will describe our computations of the Fuler

This requires numerical integration.

products over all non-Archimedean primes. Finally, in
Section 7, we will describe our method for finding the
smallest point on every surface in the sample.

Section 8 will be more theoretical in nature. We will
construct a sequence {S(®} cx of diagonal cubic surfaces
such that m(S@)7(S5(@) is unbounded.

Notation 1.2. Let a = (ag,...,a3) € (Z\ {0})* be a
vector. Then we denote by S® the cubic surface in P%
given by agzd + -+ + a3z = 0.
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2.  PEYRE'S CONSTANT

Recall that E. Peyre’s Tamagawa-type number is defined
in [Peyre and Tschinkel 01, Definition 2.4] as

7(S) := a(S)B(S) lim (s—1)"L(s, Xpic(sg)) T (S(A)™)

for t = rk Pic(.S). Here, Pic(S) denotes the Picard group
of the Q-scheme S.
The factor 3(S) is simply defined as

B(S) = #H' (Gal(Q/Q), Pic(5g)).

Further, «(S) 1is given as follows [Peyre 95,
Définition 2.4]. Let Aeg(S) C Pic(S) ®z R be the
cone generated by the effective divisors.  Identify
Pic(S) @z R with R! via a mapping induced by an
isomorphism Pic(S) =, 7Z!. Consider the dual cone
AY;(S) C (RY)Y. Then

a(S) =t -vol{x € Az(S) | (z,—K) <1}.

Since L( - ,Xpic(sa)) denotes the Artin L-function of the
Gal(Q/Q)-representation Pic(Sg)®zC that contains the
trivial representation ¢ times as a direct summand, it
follows that L(s, Xpic(sg)) = ((s)" - L(s, xp) and

lim (s — 1) L(s, Xpic(sg)) = L(1. xP),

where ¢ denotes the Riemann zeta function and P is a
representation that does not contain trivial components.
Corollaries 11.5 and 11.4 of [Murty] show that L(s, xp)
has neither a pole nor a zero at s = 1.

Finally, 7 is the Tamagawa measure on the set
S(Aq) of adelic points on S, and S(Ag)E" C S(Ag)
denotes the subset of the adelic points that are Brauer—
Manin unobstructed.

Since S is projective, we have

I[I s@)

veVal(RQ)

S(Aq) =

The Tamagawa measure 7 is defined to be a product

measure Ty = [ [, evaiq) Tv-
For a prime number p, the local measure 7, is given
as follows. Let a € S(Z/p*Z) and put

UF = {2 € 5(Q,) |z =a (mod p*)}.
Then
7 (UP) := det(1 — p~! Frob,, | Pic(Sg)™)

#{y € S(Z/p"Z) | y = a (mod p*)}
pndimS :

X lim

n—oo

Here Pic(S@)IP denotes the fixed module under the iner-
tia group.

The measure 7o is described in [Peyre 95, Lemme
5.4.7]. In the case of a hypersurface of degree d defined
by the equation f = 0, this yields

n+1—d
# WLeray

cU
[zolse o |wn|<1

Too(U) =

for every Borel set U C S(IR). Here wieray is the Leray

measure on the cone C'S(R) C R™"! associated to the

equation f = 0. It is given by the differential form
1

Wdl’l/\/\dfﬂn

Remark 2.1. The Leray measure differs from the “sur-
face area” that is typically introduced for hypersurfaces
in R™*! in multivariable calculus. It is related to that
measure by the formula Weeray = [rgaa p@hyp-

Remark 2.2. At least for diagonal cubic surfaces, the
reciprocal % admits a fundamental finiteness property.
More precisely, for each € > 0 there exists a constant
C(e) > 0 such that

> O(e) - Huaive (£ 10 2)F°

ao as

1
T(5%)
for every a € (Z\{0})*. In particular, there is an estimate

for m(9S) in terms of 7(S5). Details on this are given in
[Elsenhans and Jahnel 10b).

3. A TECHNICAL LEMMA

In this section, we will give estimates for the factors
T,(S(Qp)) of Peyre’s constant at the primes p of good
reduction. These are, in fact, regularized versions of the
numbers #S(IF,). Our main tool will be the Lefschetz
trace formula.

Lemma 3.1. Good reduction: If p 1 3ag---as, then the
sequence (#S(a""“"’s)(Z/p"Z)/pzn)nelN is constant.

Bad reduction:

(i) If p divides ag--- a3 but not 3, then the sequence

(#S(a07...,a3) (Z/an)/p2n)n€1N

becomes stationary as soon as p" does not divide
any of the coefficients aq, . .., as.

(ii) If p =3, then the sequence

(#8109 (L) p L) [p™") e
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becomes stationary as soon as 3" does nmot divide
any of the numbers 3ag, . .., 3as.

Lemma 3.2.

.,a3 € Z\ {0}, the infinite product

II »(st (@)

p prime

(a) For every ag, - .

is absolutely convergent.

(b) There are two positive constants C1 and Ca such that

for all ag, ..., a3 € Z\ {0},
i< [ m(Sto (@) < Ca.
s

Proof. For a prime p of good reduction, Lemma 3.1 shows
that

7p (S0 %3)(Q,)) = det (1 — p~! Frob,, | Pic(Sg))
(ao,-..,a3)
o H#S . (Fp)
p

Further, for the number of points on a nonsingular cubic
surface over a finite field, the Lefschetz trace formula can
be made completely explicit [Manin 74, Theorem 27.1].
It shows that

#S(af’""’a3)(IFp) =p>+p-tr (Frobp | Pic(S@)) + 1.

Denoting the eigenvalues of the Frobenius on Pic(Sz)
by A1,..., A7, we obtain

(8100 9(@))
=(1=Mp HA =dop™ )~ (1= Mp )
XL+ A+ +A)p ' +p 77
=(1—owp ' +owp PF-—omp )
X (1+op~ ' +p7?)
=1+ (1- crf +o)p 2= (01— 0100 +o3)p 3£

— (05 — 0106+ 07)p~ " + (06 — o107)p™ 8 — orp™?,

where the o; denote the elementary symmetric functions
in )\1,...,)\7.

We know that |\;| = 1 for all i. Estimating very
roughly, we have |o;| < (;) < 77 and see that

1—-99p 2 —-7-99p 3 —... —77.99p~°

<7 (S (@)
<1499 247-99p7 3+ +77.99p7°,

That is,

.1
1—99p 21_7/p

—2_ 1
7 (respec-

The infinite product over all 1 —99p
tively 1 4 99p—2 1_17/p) is convergent.
The left-hand side is positive for p > 13. For the
small primes remaining, we need a better lower bound.
For this, note that a cubic surface over a finite field IF,

always has at least one IF)-rational point. This yields
7p(S099)(Qy)) > (1 —1/p)7/p* > 0. O

Remark 3.3. The convergence generating factors
det (1 — p~" Frob, | Pic(Sﬁ)IP)

are all positive. Indeed, for a pair of complex conjugate
eigenvalues, we have

=2 Ha-XpH=1-X""P>0,

and an eigenvalue of 1 or (—1) contributes a factor 1 +
p~! > 0. Consequently, we always have

(1 - %)7 < det (1 —p~ ! Frob, | Pic(S@)IP) < (1 + }?)7

4. SPLITTING THE PICARD GROUP
4.1 Motivation

In the case of the diagonal cubic surface S§(%0:3) P2 |
given by agzy + -+ + azzi = 0 for ag,...,a3 € Z\ {0},
the 27 lines on S(@0~%) may easily be written down
explicitly. Indeed, for each pair (i,j) € (%/3%)?, the
system

{agro + C¥/arz =0, {asws + Y azzs =0,

of equations defines a line on S(%0:@3)  Decompos-
ing the index set {0,...,3} differently into two sub-
sets of two elements each yields all the lines. In par-
ticular, we see that the 27 lines may be defined over
L = Q(¢, ¥/a1/ao, ¥/az/ao, ¥/as/ao).

It is classically known that the classes of the 27 lines on
a smooth cubic surface generate its Picard group. Con-
sequently, Pic(S(@0+93)) is acted on by the Galois group
Gal(L/Q). The goal of this section is to study the Galois
module structure on Pic(S(#0+%)) more closely.
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Fact 4.1. Let p be a prime number and ag, . .
not divisible by p. Then

., a3 integers

#S(‘H}wwa‘Hﬂ)(IFp)

p? + (1 + xs(aoa1a3a3) + xs(agadaszas)

+ x3(apataza?) + xs(adaia3as)
+ x3(apaiaias) + xg(agalagag))p +1
if p=1 (mod 3),
p>+p+1 if p=2 (mod 3).

Here in the case p =1 (mod 3), x3: I, — C denotes a
cubic residue character.

Proof. If p =2 (mod 3), then every residue class modulo
p has a unique cube root. This immediately shows that
#5(00:23) () = p? + p + 1.

For p =1 (mod 3), the number of F,-rational points
on S may be determined using Jacobi sums. The formula
given follows directly from [Ireland and Rosen 82, Chap-
ter 10, Theorem 2] together with the well-known relation
9(x3)g(x3) = p for cubic Gauss sums. O

Lemma 4.2. Let ag,...,a3 € Z \ {0}. Then for each
prime p such that p{3ag---- - as,

XPic(S%O """ «3))(Froby)
= tr (Frob, | Pic(S™ V) @y, ©)
X3(CLOG1(L%G§) + xg(a?)a%agcm) + X3(GQCL%CL2G§)
+x3(adaia3as) + xs(apaladasz) + x3(adaiaza?)
+1 ifp=1 (mod 3),

1 if p=2 (mod 3).

Proof. Since we have good reduction, the trace of Frob,
on Pic(S@O"”’as)) ®z C is the same as that of Frob on
Pic(Sgo"”’%)) ®z C. Further, the Lefschetz trace for-
mula [Manin 74, Theorem 27.1] shows that

#S(ao,...,as)(]Fp)
=% +p- tr (Frob | Pie(S* ") 07 ©) + 1.

The explicit formulas for the numbers of points given in
Fact 4.1 therefore yield the assertion. O

Notation 4.3. Let A be an integer, K := Q((3, VA),
G = Gal(K/Q), H := Gal(K/Q((3)), and x: H — C*

Then we write v := ind%(x)

a primitive character.
for the induced character and V¥ for the corresponding

G-representation.

If K is of degree three over Q((3), then V¥ is an irre-
ducible rank-two representation of G = G3. Otherwise,
K = Q(¢3). Then VX = € @ M splits into the direct
sum of a trivial and a nontrivial one-dimensional repre-
sentation of H = 7Z/27.

We will freely consider V¥ as a Gal(Q/Q)-
representation.

Lemma 4.4. Let A be any integer. Then for a prime p
not dividing A, we have

if p=1 (mod 3),

VQ(C?,, YAy (FI’Ob ) _ X3 (A) + X3 (A)
: if p=2 (mod 3).

Proof. The primitive character is unique up to conjuga-
tion by an element of G. Therefore, the induced character
A is well defined.

The Kummer pairing allows us to make a definite
choice for y as follows. Fix an embedding o: Q({3) — C.
Then put x(g) := o (g(V'A)/VA).

If p = 2 (mod 3), then p remains prime in Q(¢3). This
means that Frob, acts nontrivially on Q(¢3). That is,
Frob, € G\ H. Since H is a normal subgroup in G, the
induced character vanishes on such an element.

For p =1 (mod 3), we have that (p) splits in Q((3).
Let us write (p) = pp. The choice of p is equivalent
to the choice of a homomorphism ¢: ((3) — ;. The
Frobenius Frob, is determined only up to conjugation,
and we may choose Frob, = Frob, € H. Then, directly
by the definition of an induced character,

RICHREY (Frob,) = x(Froby) 4+ X(Frob,).
We need to show that
X (Froby) = x3(4)
or
X (Froby) = X3(A).
For this, by the choice made above, we have
x(Froby) := o ( Frobp(ﬁ)/\S/Z).
After reduction modulo p, we may write
Frob(V/A)/ VA = (VA |VA = A™F.
Therefore,

Frob, (VA)/VA =1 (A"),

p—1

which shows that x(Frob,) = o(:7'(A™3)). The final
formula is a definition for a cubic residue character at A.
O
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Theorem 4.5. Let ap,...,a3 € Z \ {0}. Then the
Gal(Q/Q)-representation Pic(S%O""’a3))®ZC splits into
the direct sum

Pic (S{0)) @5 € = C @ VI @ VI @ VI

for K1 := Q((3, Vaoara3a3), Ko := Q(C3, Vapataza3),
and K3 = Q((3, V/aoaaas).

Proof. We will show that the representations on both
sides have the same character. For that, by virtue of
the Cebotarev density theorem, it suffices to consider the
values at Frob, for p{3aq - - as.

For the representation on the left-hand side,
xplc(s(ao ----- 23)) (Frob,) has been computed in Lemma 4.2.
For the representatlon on the right-hand side, Lemma 4.4
shows that exactly the same formula is true. O

Corollary 4.6. Let ay, ...,
sider

asz € Z\ {0} be integers. Con-

as a Gal(Q/Q)-representation, and let x(@0+93) be the
associated character. Put Ki = Q((s, {/apara3a?),
Ky := Q(¢s, ¥ aoaiaza3), and Ks := Q((s, ¥/ apaia3as).

Then for the Artin conductor N, ay....as of x(@0-a3)
we have

= D(K1) D(K2) D(K3)/(-27),

D(K) i {Discm/a:z) if [K: Q(G)] =
—27 it K= Q(¢).

Proof. We have to show that N2, = D(K)/(-3). As-
sume first that [K : Q(¢3)] = 3. Then the conductor—
discriminant formula [Neukirch 99, Chapter VII, Sec-
tion (11.9)] shows that Disc(K/Q) = NeNy N2, and
—3 = Disc(Q(¢3)/Q) = NeNar, which together yield the
assertion. In the opposite case, we have VE =CceM
and NVK = N@NM =-3. O

Lemma 4.7. Let a and b be integers different from zero.
Then
| Disc (Q(¢s, Vab?)/Q) |< 3%ab".

Proof. We have
| Dise (Q(¢s. Vab?)/Q) |

< | Disc (R¢)/Q)[* - Dise (Q(Val?)/@Q)°
= 27 - Disc (Q(W}/Q)Q.

Further, by [Marcus 77, Chapter 2, Exercise 41], we know
that | Disc (Q(Vab?)/Q)| < 3%a?b®. This shows that
| Disc (Q(Cs, Vab?)/Q)| < 3%*b™. O

Corollary 4.8. Let ag,...,a3 € Z \ {0} be integers
and x(@0) the character associated to the Gal(Q/Q)-
representation

V(03 = Pic (S00")) @y €.

Then for the Artin conductor Ny(ag....as), we have the
estimate
IN, aoua | < 3%(ag -+~ as)°®.

Proof. Lemma 4.7 shows that |D(K;)| < 3%(ag---asz)?
for i = 1,2, 3, from which the assertion follows immedi-
ately. O

5. THE COMPUTATION OF THE L-FUNCTION AT 1

We now return to the particular diagonal cubic surfaces
treated in the numerical experiment; cf. Section 1 for a
description of our sample.

Lemma 5.1. For a,b € Z\ {0}, consider in P% the diag-
onal cubic surface S = S(@v21)  Assume that S satisfies
condition (i), (ii), or (iii) of Section 1.

(i) Then rkPic(S) = 1.
(ii) Furthermore, we have the relation
il_{q(s - 1)L(Sa XPiC(S@))
= L1, 0501, 052)L(1,053)

for K1 = Q((3, V4ab), Ky = Q((3, V2ab?), and
K3 = Q(G, Vdab?).

Proof. (i) The assumptions imply that 4ab, 2ab?, and
4ab? are three noncubes. In particular, the Gal(Q/Q)-
representations VEL vE2 and VB¢ are irreducible of
rank two.

Further, a standard application of the Hoch-
schild—Serre spectral sequence ensures that
Pic(5) C Pic(Sg )Gal@/Q) is always a subgroup of
finite index.  Therefore, it suffices to verify that
rk PiC(SQ)Gal(Q/Q) =1. For this, we note that by
Theorem 4.5, PiC(SQ)Gal(Q/Q) ®z C splits into a trivial
and three irreducible Gal(Q/Q)-representations.

(ii) Note again that XPic(sg) = 1 + vEv R s,
The assertion follows directly from [Neukirch 99, Chapter
VII, Theorem (10.4).(ii))]. O
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We make the following observations:

(i) The character v is induced by a nontrivial char-
acter of the group Gal(K;/Q(¢3)) of order three.
Therefore, by [Neukirch 99, Chapter VII Theo-
rem (10.4.iv)], we may understand L(s, %) as the
Artin L-function over Q((3) associated to that char-
acter.

(ii) Further, K;/Q((3) is an abelian extension. Then
[Neukirch 99, Chapter VII, Theorem (10.6)] shows
that L(s, %) coincides with the Hecke L-function
given by the generalized Dirichlet character of or-
der three modulo 4ab, 2ab?, or 4ab® over Q((3). An
elementary proof of this fact requires the cubic reci-
procity law [Ireland and Rosen 82].

Remark 5.2. Since L(1, %) is not given by an absolutely
convergent series, we cannot evaluate it directly.

Remark 5.3. One could apply the analytic class number
formula to compute L(1,v%¢). This approach is, how-
ever, not practical for half a million L-functions.

Notation 5.4. From now on, we will denote the gener-
alized Dirichlet character of order three modulo A by
va and its conductor by m € Z[(3].

N:Q(G) —

Further, we write
Q for the norm map.

We complete the L-function by putting

A(s,va) = (—3N(m))s/2

(QW)SF(S)L(S’VA)'

The completed L-function is connected with a theta func-
tion via a Mellin transform. One has

A(s,va) /f tS/Q
0

where f is the function defined by
1 7r
f0)=5 Y vala)e BNV
a€Z[(3]

for t > 0. The connection to the Hecke theta function
associated to Z[(3] and v4 is given by

F(t) = éﬁ(i t,v4).

Inspecting the convergence properties of the series, we
see that it converges very rapidly for ¢ > 0, while con-
vergence is arbitrarily slow for ¢ close to zero.

The functional equation
0(~1/2,v4) = = 0(2,7.4)
i

interchanges the ranges of good and bad convergence.
Hence this equation should be used to compute f(¢) for
t small.

To be more precise, we split the half-line [0, 00) into

two parts and write
/ Fiye J2dt dt

A(s,va) /f tS/Q

Applying the functional equation of the Hecke theta func-
tion to the first summand yields

A(s,v4) (5-1)
1 13m| 1777 T
= — 2 x sd
6 ”A(G)G%N(aJ / cora
G.EZ[C';] 27N (a) 1
Bml v
|3m| 1° 7 e s
x, .S d
+ [%N( ) coroa
oV

for each u > 0. This is an absolutely convergent infinite
series.

Remark 5.5. The idea to evaluate an L-function at an
arbitrary point s € C using a series analogous to (5—1)
goes back at least to [Lavrik 67]. Descriptions of similar
methods may also be found in [Stark 75], [Cohen 00,
Section 10.3], and [Dokchitser 04].

Remark 5.6. The relation of A(s,v4) to a theta func-
tion is a particular case of the very general [Neukirch 99,
Chapter VII, Theorem (8.3)].
general case, many simplifications do occur, mainly be-

In comparison with the

cause Q(¢3) is an imaginary quadratic number field of
class number 1. Note that Q({3) has discriminant (—3)
and precisely six units.

Remark 5.7. In more generality, the functional equation
of a Hecke theta function is of the form

0(—1/2,v) = W2
Here, 7(v) is the Gauss sum associated to the character v
[Neukirch 99, Chapter VII, Definition (7.4)].

In our case, it is immediate from the definition that
T(va) is real. Further, [Neukirch 99, Chapter VII, The-
orem (7.7)] shows that |7(va)| = y/N(m), so that the
coefficient of the functional equation is £1.
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Radicand A | L(1,va) using u =1 | L(1,v4) using u = 1.2 | L(1,v4) using class number formula
166,249 4.419 173 379 082 995 4.419173 379082 997 4.419173 379082996 519 114 130
102,044,100 0.596 117703 616 924 0.596 117703 616 918 0.596 117703 616 923 884 079 232
3,586,804 0.888 154 374 767 605 0.888 154 374767 607 0.888 154 374767604 963 111 775
536,227,198 0.946 251 759 020 570 0.946 251 759 020 576 0.946 251 759 020 569 971 686 643
1,072,454,396 1.437 503 627 427 445 1.437 503 627 427 447 1.437 503 627 427 445 188 453 952

TABLE 1. Some values of the L-functions at s = 1.

Actually, the sign is always positive. Indeed, a direct
calculation shows that

Covm (8) = L(s,va)C(s).
Further, in the functional equation of the Dedekind zeta

function, the sign is always positive [Neukirch 99, Chap-
ter VII, Corollary (5.10)].

Remark 5.8. The convergence of the series (5-1) is op-
timal when w is close to 1. Calculations using different
values of u may be used for checks [Dokchitser 04].

Remark 5.9. The number of summands required for a
numerical approximation is about C|m|. The constant C
depends on the precision required.

Remark 5.10. There are several obvious ideas to optimize
the computations:

(i) The summand for a depends only on the ideal (a).
Hence, the summands arise in groups of six. We
calculate only once for each group.

(ii) Both integrals depend only on N(a) and |m]|.
Thus, we evaluate them only once for each pair
(N(a), [ml).

(iii) The computation of the generalized Dirichlet char-
acters v4 is speeded up using their multiplicativ-
ity in A. For a concrete value a € Z[(3], we first
use Euler’s criterion to compute v,(a) for all prime
numbers p less than 3000. These values having been
tabulated, the calculation of all the characters v4
at a is done rapidly.

Since we are interested in the evaluation of many L-
functions at s = 1, some further possibilities for opti-
mization arise:

(iv) The first integral is in fact the integral exponential
function, and the second one is just an exponential
function. The numerical evaluation of the integral
exponential function could be done by a combina-
tion of the power series expansion with a continued
fraction expansion [Press et al. 86].

However, there is another method that is better.
The arguments of the integral exponential function
we meet lie in a rather small range. This range was
split up into even smaller intervals. On each interval,
we used a polynomial approximation.

We organized the computations as follows. In a
first step, we enumerated all the radicands A for which
L(1,v4) had to be computed. We sorted the list and
eliminated all repetitions. In addition, for each radicand,
we stored its prime decomposition for later use. The re-
sulting list consisted of 557,270 radicands. Only 214,285
different conductors occurred.

Then we evaluated L(1,v4) for all the radicands A
that occurred. We used formula (5-1) for v = 1 and
u = 1.2. To evaluate the series numerically, we worked
with 64-bit hardware floats and used backward summa-
tion. The differences between the two results were always
negligible. The entire computation of the values of L took
around four days on a 2.2-GHz Opteron processor.

In Table 1, we present a few of the values com-
puted. The first two lines represent the absolutely largest
and the absolutely smallest values of L that we found.
The other three lines correspond to conductor 5,380,206,
which is the largest conductor appearing in our list. For
this maximal conductor, we worked in the summation
with all @ € Z[(3] such that N(a) < 38,276,797. For
smaller conductors, according to Remark 5.9, fewer sum-
mands were used.

6. COMPUTING THE TAMAGAWA NUMBERS

Lemma 6.1. For a,b € Z\ {0}, consider in P% the diag-
onal cubic surface S = S(@v21)  Assume that S satisfies
condition (i), (ii), or (iii) of Section 1.

(i) Then «(S) =1 and B(S) = 3.

(ii) Furthermore, one has precisely

i (S(8Q)™) = 371 (S(Be)).
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Proof. (i) On a cubic surface, the self-intersection num-
ber of the canonical divisor K is equal to 3, which is
square-free. Therefore, rkPic(S) = 1 immediately im-
plies that Pic(S) = (K). This is enough to ensure that
a(S) =1

The value (5) can be computed using the method de-
scribed in [Manin 74, Proposition 31.3]. Let F' C Div(S)
be the free abelian group over the 27 lines, Fy C F the
subset of principal divisors, and N: F' — F the norm
map under the operation of the Galois group G on F.
Then Manin states that

H'(Gal(Q/Q), Pic(Sg)) = Hom ((NFNFy)/NFy, Q/Z).

We have a group G of order 6, 18, or 54. If #G = 54,
then G decomposes the 27 lines into three orbits of nine
lines each. In this case, an easy calculation shows that

Hom ((NF N Fy)/NFy, Q/Z) = 7./3Z.

The smaller groups might lead to the decomposition
type [3,6,9,9] or [3,3,3,6,6,6]. A calculation in GAP
shows that Hom ((NF N Fy)/NFy,Q/Z) = Z/3Z in
these cases, too.

(ii) This assertion is known from [Colliot-Théléne et
al. 87, Proof of Proposition 2]. O

Corollary 6.2. For a,b € Z \ {0}, consider the diago-
nal cubic surface S = @021 Assume that S satisfies
condition (i), (i), or (iii) of Section 1.

Then, for E. Peyre’s Tamagawa-type number, one has

7(9) = lim(s — 1)L(s, Xpic(sg))
< JI m(S(Qp)) 7 (S(R)).

p prime

6.1 The Factor at the Infinite Place

Since S is a diagonal cubic surface, the projection from
the cone CS(R) to the (y,z,w)-space is one-to-one.
Therefore,

1 1
~6va // oy + 255 + oy v 4z dv-

Further, we have

3/ [by? + 223 4+ w3
a

< {fWFAZEF TP
< : .

lz(y, z,w)| =

Since |y| < 1, |z| <1, |w| < 1, and a > b+ 3, it turns
out that the condition |z(y, z, w)| < 1 is actually empty.
The integral in the formula for 7o (S(RR)) depends only
on b. We are left with just 300 different integrals.

A linear substitution leads to 300 integrals of the same
function on an increasing sequence of integration do-
mains. Hence, this sequence can be computed incremen-
tally. Doing this, the first integrals (for b = 1, 2, and 3)
are critical, since the integrand is singular in the do-
main of integration. Thus, they should not be computed
naively. We evaluated them using the approach described
in [Elsenhans and Jahnel 10a].

6.2 Computation of the Euler Product

By Lemma 3.2, the Euler product is absolutely conver-
gent, and for the relative error, we have the estimate

1 1
1+99p~2 ) (1--) —1‘
‘ UN ( 1=17/p EN p?

p=1 (mod 3) p=2 (mod 3)

99/2 . < 1 >
~ NlogN Nlog? N
if all bad primes are below N. In particular, the approx-
imation by the finite product over all primes up to 108
leads to a relative error of less than 4 - 1076,

The computation of the Euler products was done ac-
cording to their definition. An optimization that is worth
a mention is that we ran the outer loop over the prime
numbers and the inner loops over a and b. The whole
computation of the Euler products took a quarter of
an hour.

7.  SEARCHING FOR THE SMALLEST SOLUTION

We will now explain how we generated the data for Fig-
ure 1. In addition to computing the Tamagawa-type
numbers, we had to find the points of smallest height,
i.e., the smallest solutions of the equations

az® +by? + 223 + w3 =0,

where ¢ = 1,...,3000 and b =1, ..., 300 satisfy the con-
ditions (i), (ii), (iii) formulated in Section 1.

We applied a modification of the strategy from
[Colliot-Thélene et al. 87, pp. 79-80]. The algorithms
used are slight modifications of [Elsenhans and Jah-
nel 06, Algorithm 27]. We dealt with the decoupling
ax® 4 223 = —by® — w?.
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7.1  Description of the Method

Our method comprises the following steps:

(i) In a first stage, we worked with a search bound
of 100 and ran the algorithm simultaneously on all the
900,000 equations for a = 1,...,3000 and b = 1,..., 300.
For exactly 69,074 of these equations, no solution was
found. Among them, 67,787 satisfied the congruence con-
ditions (i)—(iii) formulated in Section 1. In this list, there
were only a few duplications. Altogether, 65,314 of the
equations also obeyed the limitation a > b + 3.

For these, we ran a test for p-adic solvability. It turned
out that only 18,424 of the remaining 65,314 equations
were solvable in Q,, for every prime p.

(ii) We executed the second stage with the correspond-
ing pairs. They were read from a file. The search algo-
rithm was run separately for each equation. We worked
with search bounds of 200, 400, and 800 and stopped
when a solution was found. Only 113 equations remained
unsolved by that stage.

(iii) In most of these cases, there was a prime p such
that 2 is a cubic nonresidue modulo p dividing both a
and b. This enforces that both z and w must be divisible
by p. We used these strong divisibility conditions when
working with search bounds of 4000 and 20,000.

Remark 7.1. In the last stage, there were only three equa-
tions remaining for which no solution had been found
with a search bound of B = 4000. They are repre-
sented by the pairs (a,b) = (2321,211), (2331,222), and
(2641,278). The corresponding smallest solutions are re-
spectively

(—125, —884, 4220, —211), (—389, 64,4033, 1813),

and
(—1023,—458,11259, —695).

Remark 7.2. Altogether, there are exactly 849,781 cubic
surfaces satisfying the congruence conditions and limita-
tions given in Section 1. It turned out that 46,890 of them
are p-adically unsolvable for some prime p = 1 (mod 3).
Each of the remaining cubic surfaces admits a Q-rational
point.

Thus, there are no counterexamples to the Hasse prin-
ciple in our sample. This confirms the conjecture [Colliot-
Thélene and Sansuc 81, Conjecture C|.

Remark 7.3. Tt should be noted that [Elsenhans and Jah-
nel 06, Algorithm 27] itself would not work very well in
this problem, at least not in the first stage. The point

is that there are some numbers that appear as values of
the expressions az® + 222 and (—by® — w?) many times.
Whether we chose one side or the other, we had a hash
function that was quite far from being uniform.

Our idea to overcome this difficulty was to replace
hashing by sorting. We generate sorted lists of all val-
ues taken by the expressions on the two sides. We look
for coincidences by a procedure similar to a step of the
sorting algorithm merge sort.

8. A NEGATIVE RESULT

In this section, we will show that the inequality m(S) <
C/7(S) is false, in general.
quence {S@},en of diagonal cubic surfaces such that
m(S@)7r(5@) is unbounded.

For an integer ¢ # 0, denote by S(@ c P% the cubic
surface given by qz® + 4y + 22% + w3 = 0 and let

We will construct a se-

m(g(q))
= min{Hpaive(:y: 2:w) | (z:y:2:w) € SD(Q)}

be the smallest height of a Q-rational point on (4. We
want to compare m(S(?)) with the Tamagawa-type num-
ber 7(@) .= 7(5(@).

Theorem 8.1. Assume the generalized Riemann hypothe-
sis. Then there is no constant C' such that

m(S@) < <

7‘(‘1)

for all g € 7\ {0}.

Proof. We will construct a sequence {g;}ien of primes
such that ¢; = 1 (mod 72) and m(S())7(@) — oo for
1 — 00. The proof will consist of several steps.

First step. It is sufficient to verify that
(gi)\ 13 _

> H Tp(g(qi)(Qp))TOO(S(qi)(R))_>OO.

p prime

Since ¢; = 1 (mod 72), the prime ¢; is odd. Hence, the
surface S satisfies condition (ii) of Section 1. The claim
follows directly from Corollary 6.2.
Second step. For the height of the smallest point, we have
m(S@) > {/Z.

There are no rational solutions of the equation 4y +
223 + w3 = 0, since this is impossible 2-adically. The
inequality |x| > 1 yields |[4y® + 22% + w3| > ¢ and

max{[yl, 2], lwl} > /1.
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Third step. For |¢q| > 7, one has

1
oo (SD(R)) = ——1,
Vldl
where I is independent of q. This was proved in Section 6.
Fourth step. There is a positive constant C' such that

II »69@Q)) >c

p prime

for every prime ¢ =1 (mod 72).
By Lemma 3.2, we have C; > 0 such that

H 7 (S (Q,)) > Ci.

p prime
p#2,3,q

It therefore remains to give lower bounds for the factors

72 (5 (Q2)), m3(S(Q3)), and 7, (S(Qy))-
Since 2 1 ¢, by virtue of Lemma 3.1 we have
1 #859(2/3%)
27 64
Further, #5(@(Z/8Z) > 1, since ¢ = 1 (mod 8) implies
(1:0:0:(—1)) € S9(z/87).
Similarly,

7(S?(Qq)) =

2\ #59(7/9Z)
3)  #S(Z/9Z)

n(sW@) = (3 .
Again, ¢ =1 (mod 9) ensures that
(1:0:0:(—1)) € S'9(z/97)

and #S(Z/97) > 1.
For the prime ¢ we argue a bit differently. First,

I 1\
det (1 — ¢ ' Frob,, | Pic (S%)) ) > (1 - a)

72\ "
> (=) .
—A\T73
Furthermore, the reduction of (@ modulo ¢ is the cone
over the elliptic curve given by 4y3+223+w? = 0. There-
fore, on S(@ there are at least (¢—21/q+1)(g—1) smooth

points defined over IF,.
Since Hensel’s lemma may be applied to them, we get

(a) n — -
o S gﬂ/q Z) . N&q—;l)(q 1

-2

> ;—;(1—\/17_3)

Fifth step. There is a sequence {¢; }ien of primes such
that ¢; =1 (mod 72) and

e 02 (s ) =

for i — oc.
Since rk Pic(S§(4)) = 1, the representation

: (g:)
Pic (S@ ) Rz C

contains exactly one trivial summand. Hence
L(S,XPiC(S%n)) = C(s) - Lls, x§™)
for X((qu) the character of a representation Vo(qi)
taining trivial components. Our goal is therefore to show

that L(l,Xé i)) — oo for i — oc.
For each 7 € N, denote by P; the ith prime number p

such that p =1 (mod 3).
We define ¢; to be the smallest prime such that

not con-

gi =1 (mod 72P; --- F}).

From this, we clearly have that ¢; > 72P; --- P, — oo for
1 — 00.
Furthermore, by Chebyshev, we know that

2P P < 7969(Pi)  790(210g2)P;

Hence, Linnik’s theorem in the version of [Heath-
Brown 92] shows that

¢ < Cy - (72621082 FPi)5:5 — (11108 2) P

for certain constants Cy and Cs.

Corollary 4.8 gives us an estimate for the Artin con-
ductor of the character y (%21 that is the same as that
of X((qu)' We see that

N @ < 312(gg - - a3)® = 312808 < Cy (06 1082) P
0

for another constant Cs.
Consequently,

log NX(%) < (66log2)P; + log Cs.
0

We observe that (log Nxé‘“))l/2 < P; for i sufficiently
large. We assume from now on that this inequality is
satisfied.

Recall from Theorem 4.5 that V") is actually the
direct sum of representations that are induced from one-
dimensional characters. In consequence, it is known that
the Artin L-function L( - , x\%) is entire. Since we also
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assume the generalized Riemann hypothesis, we may ap-
ply the estimate of [Duke 03, Proposition 5], which shows
that

logL(l X(QL)) Z

p<(log Nxéq”)

X5 (Frob,)p~ + O(1).
1/2

Here

Xo (Frob,,) = Xpi( stz (Froby) =

For p =2 (mod 3), this yields x(ql)(Frobp) =0.
On the other hand, for p = 1 (mod 3), we have, by
virtue of Lemma 4.2,

X0 (Froby) = x3(16q) + x3(324%) + x3(324) + x3(164?)
+ x3(649) + x3(8¢%)

= x3(9) + x3(29) + x3(49) + x3(¢°)
+ x3(2¢%) + x3(4¢°)

= (14 x3(2) + x3(4)) (x3(a) + x3(¢%))-

This may be written down in an explicit form as

0 ifp=2 (mod 3),
0 ifp=1 (mod3)and (2),# 1,
v 6 ifp=1 (mod3), (2),=1,
(g:) p 3
Xo ' (Frob,) = .
0 P (%)3 _ 1’
-3 ifp=1 (mod 3), (3)3 =1,
(%), #1

1 (mod 3) such that p <
(log N o) ))1/2 < P;, the number ¢; was constructed to
be a CU%IC residue. Further

Modulo all primes p =

Xéqi (Frobs) 37!

is of absolute value at most 2. Thus,

logL(Lxy") =6 >
p=1 (mod 3)
(3),=1

p<(log N (g ))'/?
Xo

1
]—?+O(1).

By the Cebotarev density theorem, the set of all primes
such that p = 1 (mod 3) and (2)3 = 1 is of density %
We therefore have log L(1, X(ql ) — 00 as soon as we may
guarantee N ) — 0.

Since only a trivial character is missing, we have, by
Corollary 4.6,

N @ = Ny = | D(K:) D(K2) D(K3)/27|'/?

Plc(S(ql))

> | D(K3)/27]'?,

where by choice of the coefficients,

= Q (G V610:) = Q (G, Vi) -

We have the estimate

| D(K3)| = | Disc (QGs, /4:)/Q)]
= Disc (Q(V/4.)/Q)°
x | N (Dise (QUG, Vai) /QYa))|
> Dise (Q(/a,)/Q)"
According to [Marcus 77, Chapter 2, Exercise 41], we
know that | Disc (Q({/4:)/Q)| > 3¢3. O

Remark 8.2. Note that the estimate for L(1, x(ql)) is the
only point where we used the generalized Riemann hy-
pothesis.

Observe in particular that we work with a version of
Linnik’s theorem that is true unconditionally. Here, the
generalized Riemann hypothesis would lead to the much
better exponent 2+ ¢. However, this improvement is not
necessary for our particular application.
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