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In families of Painleve VI differential equations having common
algebraic solutions we classify all the members that come from
geometry, i.e., the corresponding linear differential equations
that are Picard–Fuchs associated to families of algebraic vari-
eties. In our case, we have one family with zero-dimensional
fibers and all others are families of curves. We use the clas-
sification of families of elliptic curves with four singular fibers
carried out by Herfurtner in 1991 and generalize the results of
Doran in 2001 and Ben Hamed and Gavrilov in 2005.

1. INTRODUCTION

Along the solutions of the sixth Painlevé differential
equation written in the vector field form

PV Iθ :
∂K

∂μ

∂

∂λ
− ∂K

∂λ

∂

∂μ
+

∂

∂t
(1–1)

in C3 with coordinates (λ, μ, t), where

t(t − 1)K

= λ(λ − 1)(λ − t)μ2

− (θ2(λ − 1)(λ − t) + θ3λ(λ − t) + (θ1 − 1)λ(λ − 1)
)
μ

+ κ(λ − t), κ =
1
4

(( 3∑
i=1

θi − 1
)2

− θ2
4

)
,

and θ = (θ1, θ2, θ3, θ4) is a fixed multiparameter, the lin-
ear differential equation

y′′ + p1(z)y′ + p2(z)y = 0, (1–2)

where

p1(z) :=
1 − θ1

z − t
+

1 − θ2

z
+

1 − θ3

z − 1
− 1

z − λ
,

p2(z) :=
κ

z(z − 1)
− t(t − 1)K

z(z − 1)(z − t)
+

λ(λ − 1)μ
z(z − 1)(z − λ)

,
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is isomonodromic, i.e., its monodromy group representa-
tion is constant. In the literature the Painlevé VI equa-
tion is usually written in λ and t parameters (see [Iwasaki
et al. 91, p. 119])

d2λ

dt2
=

1
2

(
1
λ

+
1

λ − 1
+

1
λ − t

)(
dλ

dt

)2

−
(

1
t

+
1

t − 1
+

1
λ − t

)
dλ

dt

+
λ (λ − 1) (λ − t)

t2 (t − 1)2(
α − β

t

λ2
+ γ

t − 1
(λ − 1)2

+
(

1
2
− δ

)
t (t − 1)
(λ − t)2

)
,

where

α =
1
2
θ2
4, β =

1
2
θ2
2, γ =

1
2
θ2
3, δ =

1
2
θ2
1 .

It is obtained from the ordinary differential equation as-
sociated to (1–1) by discarding the μ parameter.

We say that the linear differential equation (1–2)
comes from geometry if there are a proper family of
algebraic varieties X → P1 over C and a differential
form ω ∈ Hi

dR(X/P1) such that the periods
∫

δz
ω, where

δz ∈ Hi(Xz, Z) is a continuous family of cycles, spans
the solution space of the linear differential equation.
Such linear differential equations are also called Picard–
Fuchs equations (for further details see [André 89, Sec-
tion II.1]). In the present text we mainly encounter fam-
ilies of curves, and ω is represented by a meromorphic
differential 1-form with no residues around its poles.

If further, the fibration X → P1 lies in a family
Xb → P1, b ∈ P1, then one usually gets algebraic solu-
tions of (1–1). An algebraic solution of (1–1) is a curve
in (λ, μ, t)-space that is tangent to the vector field (1–1).
In this article we prove the following theorem.

Theorem 1.1. The linear differential equations (1–2) with
the parameters in columns 1 and 2 of Table 1 come from
geometry if and only if the corresponding exponent pa-
rameters θ1, θ2, θ3, and θ4 are rational numbers. The
corresponding families of algebraic varieties and differ-
ential forms are listed in column 3.

It is a well-known fact that if a linear differential equa-
tion comes from geometry, then its exponents are ratio-
nal numbers (see, for instance, [Katz 70]). Therefore,
the nontrivial part of Theorem 1.1 is that this condition
is also sufficient for linear differential equations of type
(1–2) with parameters in the first and second columns of
Table 1.

In Table 1, b is an arbitrary parameter. The corre-
sponding algebraic curve in (λ, t) is independent of the
θ’s. In this way, Table 1, columns 1 and 2, is exactly
the classification of families of Painlevé VI equations
with common algebraic solution done in [Ben Hamed and
Gavrilov 05, Table 2.1]. Note that we have written our
table up to Möbius transformations in z of the differential
equation (1–2).

In the first row of Table 1, the corresponding linear
differential equation (1–2) is the Gauss hypergeometric
equation, and the geometric interpretation is classical; it
has nice applications in the theory of the special values
of Gauss hypergeometric functions (see [Shiga et al. 04]).
Note that in this case, the projection of the correspond-
ing algebraic curve in the (λ, μ, t)-space into the (λ, t)-
space is just the zero-dimensional variety {(0, 0), (1, 1)}.
In all other cases it is a curve in the (λ, t)-space. In the
literature one finds mainly the equations of such curves.

In Table 1 let us put the parameters a and c in col-
umn 2 and set rows 3, 4, 5, 6 equal to 1

2 . In row 3, we
put also ã = 1

2 (in this case we have two apparently
different geometric interpretations for the same Painlevé
equation). We obtain five families of elliptic curves
y2 = 4x3 − g2(z̃, b̃)x − g3(z̃, b̃) with exactly four singular
fibers and with j-invariant depending on an extra param-
eter b (see Table 2). These are exactly the only families
of elliptic curves with the mentioned properties. This fol-
lows from the classification of elliptic curves with exactly
four singular fibers appearing in [Herfurtner 91].

In [Doran 01], the author took these five families of
elliptic curves and obtained algebraic solutions for (1–1)
(see Table 1, columns 1 and 2, rows 3–6). In [Ben Hamed
and Gavrilov 05], the authors took zero-dimensional fam-
ilies of three points varieties 4x3−g2(z̃, b̃)x−g3(z̃, b̃) = 0,
and they obtained the same algebraic solutions in the
(t, λ)-space (see Table 1, columns 1 and 2, rows 3–6 for
a = c = 0) but for different parameters θ. In this way
they also noticed that in the parameter space of Painlevé
equations (1–1), the points obtained by them and Do-
ran lie in families with algebraic solutions for which the
projections in the (t, λ)-space is independent of the θ pa-
rameter of the family.

Then by a straightforward calculation they showed
that up to the Okamoto transformations correspond-
ing to the Möbius transformation of P1, such families
of Painlevé equations are given by the first and second
columns of Table 1. For an overview of the symmetries
of Painlevé VI and Okamoto transformations, see, for
instance, [Boalch 06, Section 2]. We further prove the
following theorem.
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Algebraic Solution (θ1, θ2, θ3, θ4) Family of Algebraic Varieties

{λ = t = 0} ∪ {λ = t = 1} (0, 1 − α3, α3 − α1 − α2, α2 − α1) y = x1−α1 (1 − x)α2 (z − x)1+α1−α3 , dx
y

λ =
(

−a+1
a+2c−3

)
b, t = b2

(
1
2
, a − 1, 1

2
,− (a + 2c − 3)

)
zero-dimensional varieties

μ = −a−2c+3
2b

λ = −b, t = b2
(
c − 1

2
, a + c − 1, c − 1

2
, a + c − 1

)
y =

(
4x2 − g̃2x + g̃3

)c
(x + g̃2/4)

a , dx
y

μ = −a−2c+2
2b

g̃2 = 4
(
z̃2 + z̃

)
g̃3 =

(−9b2z̃3 − 8bz̃4 + 2bz̃3 − 8bz̃2 − 9z̃3
)
/b

z̃ = −1
b

z

If c = 5
6
, a = ã − 1

3
we have also

y =
(
4x3 − g2x − g3

)ã
, dx

y

g2 = 3 (z − 1)
(
z − b2

)3
g3 = (z − 1)

(
z − b2

)4
(z − b)

λ = −2b−1
b2

, t = 2b+1
b4+2b3

(
a − 1

2
, 3
(
a − 1

2

)
, a − 1

2
, a − 1

2

)
y =

(
4x3 − g2x − g3

)a
, dx

y

g2 = 12z̃2
(
z̃2 + 2b̃z̃ + 1

)
μ = (−3a+2)b2(b+2)

3(b+1)2
g3 = 4z̃3

(
2z̃3 + 3

(
b̃2 + 1

)
z̃2 + 6b̃z̃ + 2

)
b̃ = 2

3

(
b + 1

b

)− 1
3
, z̃ = − b2+2b

3
z

λ =
(b+1)(b2+3)
(b−1)2(b+3)

, t = (b+1)3(b−3)

(b−1)3(b+3)

(
a − 1

2
, 1

2
, a − 1

2
, a − 1

2

)
y =

(
4x3 − g2x − g3

)a
, dx

y

g2 = 3z̃3
(
z̃ + b̃

)
, g3 = z̃5 (z̃ + 1)

μ = (3a−2)(b−1)2(b+3)
24(b+1)

b̃ = 2
3

b2−3
b2+3

+ 1
3
, z̃ = − b3−3b2+3b−1

b3−3b2+3b−9
z

λ = −2b2−4
b4−6b2

, t = −12b2+8
b6−6b4

(
a − 1

2
, 1

3
, a − 1

2
, 2a − 1

)
y =

(
4x3 − g2x − g3

)a
, dx

y

g2 = 3z̃3
(
z̃ + 2b̃

)
μ =

(−3a+2)b2(b2+2)(b2−6)
12(b2−2)2

g3 = z̃4
(
z̃2 + 3b̃z̃ + 1

)
b̃ = 1

4

(
b + 2

b

)
, z̃ = − 2b3

3b2−2
z

TABLE 1. Algebraic solutions of families of the sixth Painlevé equation.

Theorem 1.2. The Painlevé VI equation with parame-
ters in Table 1, row 2 (respectively row 4) is Okamoto
equivalent to the Painlevé VI equation associated to the
parameters in Table 1, row 3 (respectively row 5).

For rational numbers a and c in row 2 we show that
the monodromy group of the linear equation (1–2) is a
dihedral group and so is finite. Also, the other families
are related via the middle convolution to (third-order)
differential equations whose monodromy groups are finite
imprimitive reflection groups for rational parameters.

In [Boalch 03], the author started with third-order dif-
ferential equations with finite monodromy to obtain al-
gebraic solutions and the parameters of the correspond-
ing Painlevé VI differential equations. Recently it was
shown in [Cantat and Loray 07, Proposition 5.4] that
any algebraic solution of a Painlevé VI differential equa-
tion having degree 2, 3, or 4 belongs (up to Okamoto
transformation) to one of the families in Table 1. (This

was done via the classification of finite braid group orbits
of length 2, 3, and 4.)

Linear differential equations (1–2) with finite mon-
odromy come automatically from geometry, and this is
the origin of many algebraic solutions known until now
(see [Boalch 06] and the references therein). One can also
obtain equations (1–2) coming from geometry by taking
pullbacks of the Gauss hypergeometric equation (see [Ki-
taev 05] and the references therein).

Our proofs of Theorems 1.1 and 1.2 are heavily based
on computer calculations done with Singular (see [Greuel
et al. 01]). The details of the calculation are explained
only for the example in row 3 of Table 1.

Let us explain the content of each section. In Sec-
tion 2 we introduce systems of linear differential equa-
tions in two and three variables. Pulling these back, we
get Fuchsian systems with four singularities. In Section 3
we recall some well-known facts about linear differential
equations, and in Section 4 we explain the Schlesinger
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system associated to (1–2). In Section 5 we recall some
basic facts about the middle convolution. Sections 6 and
9 are dedicated to the proof of Theorem 1.1. Finally, in
Sections 7 and 8 we prove Theorem 1.2.

2. LINEAR SYSTEMS IN TWO VARIABLES

For a, b, c ∈ C fixed, we consider the following family of
transcendent curves:

E : y = f(x), (2–1)

with

f(x) := (t1 − t3)
1
2 (1−a−c)(t1 − t2)

1
2 (1−a−b)

× (t2 − t3)
1
2 (1−b−c)(x − t1)a(x − t2)b(x − t3)c.

Here t = (t1, t2, t3) is a parameter in

T := {t ∈ C3 | (t1 − t2)(t2 − t3)(t3 − t1) �= 0}.

We distinguish three, not necessarily closed, paths in
E. In the x-plane let δ̃i, i = 1, 2, 3, be the straight path
connecting ti+1 to ti−1, i = 1, 2, 3 (by definition, t4 := t1
and t0 = t3). There are many paths in E that are mapped
to δ̃i under the projection on x. We choose one of them
and call it δi. We can make our choices so that δ1+δ2+δ3

is a limit of a closed and homotopic-to-zero path in E.
We have the integral∫

δ

p(x)dx

y
=
∫

δ̃

p(x)dx

f(x)
, p ∈ C[x], (2–2)

where δ is one of the paths explained above. By a linear
change in the variable x such integrals can be written in
terms of the Gauss hypergeometric function (see [Iwasaki
et al. 91]).

Another way to study the integrals (2–2) is with
Pochhammer cycles. For simplicity we explain this for
the pairs (t1, t2). The Pochhammer cycle associated to
the points t1, t2 ∈ C and the path δ̃3 is the commutator

α̃3 = [γ1, γ2] = γ−1
1 · γ−1

2 · γ1 · γ2,

where γ1 is a loop along δ̃3 starting and ending at some
point in the middle of δ̃1 that encircles t1 once counter-
clockwise, and γ2 is a similar loop with respect to t2. It
is easy to see that the cycle α̃3 lifts to a closed path α3

in Et, and if a, b �∈ Z, then∫
α3

p(x)dx

y
= (1 − e−2πia)(1 − e−2πib)

∫
α̃3

p(x)
f(x)

dx

(see [Iwasaki et al. 91, Proposition 3.3.7]).

For a fixed a ∈ T , the period map is given by

pm : (T, a) → GL(2, C), t �→
( ∫

δ1

dx
y

∫
δ2

dx
y∫

δ1

xdx
y

∫
δ2

xdx
y

)
,

(2–3)
where (T, a) means a small neighborhood of a in T .

The map pm can be extended along any path in T with
the starting point a. The period map pm is a fundamental
system for the linear differential equation dY = AY in
C3, where

A =
1

(t1 − t2)(t1 − t3)

(
N1 N2

N3 N4

)
dt1 (2–4)

+ (· · · )dt2 + (· · · )dt3,

where

N1 =
1
2
(b + c − 2)t1 +

1
2
(a + c − 1)t2 +

1
2
(a + b − 1)t3,

N2 = −a − b − c + 2,

N3 = at2t3 + (b − 1)t1t3 + (c − 1)t1t2,

N4 = −1
2
(b + c − 2)t1 − 1

2
(a + c − 1)t2

− 1
2
(a + b − 1)t3,

and the matrix coefficient (· · · ) of dt2 (respectively dt3)
is obtained by permutation of t1 with t2 and a with b

(respectively t1 with t3 and a with c) in the matrix co-
efficient of dt1 written above. Now, for the multivalued
function

y = (27t23 − t32)
1
2 ( 1

2−a)(4x3 − t2x − t3)a

we have the system

A =
1

27t23 − t32

((
1
4 t22 −27at3 + 18t3

− 9
4at2t3 + 3

4 t2t3 − 1
4 t22

)
dt2

+
( − 9

2 t3 18at2 − 12t2
3
2at22 − 1

2 t22
9
2 t3

)
dt3

)
,

(2–5)

and for

y =
(
t22 + 2t3

) 1
2 (1−a−c) (

t22 − 16t3
) 1

2 ( 1
2−c) (4x2 − t2x + t3

)c
×
(

x +
1
4
t2

)a

we have

A =
1

(t22 − 16t3)(t22 + 2t3)
(2–6)

×
((

M1 M2

M3 M4

)
dt2 +

(
N1 N2

N3 N4

)
dt3

)
,
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where

M1 =
(

6at2t3 − 6ct2t3 − 1
2
t32 + 5t2t3

)
,

M2 = (−48at3 − 96ct3 + 96t3) ,

M3 =
(
12at23 − 3ct22t3 + t22t3 − 4t23

)
,

M4 =
(
−6at2t3 + 6ct2t3 +

1
2
t32 − 5t2t3

)
,

N1 =
(−3at22 + 3ct22 + t22 + 8t3

)
,

N2 = (24at2 + 48ct2 − 48t2) ,

N3 =
(
−6at2t3 +

3
2
ct32 −

1
2
t32 + 2t2t3

)
,

N4 =
(
3at22 − 3ct22 − t22 − 8t3

)
.

The calculation of the matrix A for the elliptic case
a = b = c = 1

2 is classical and goes back to [Griffiths 66].
In fact, the matrix A in (2–4) can also be calculated
from the well-known Fuchsian system for hypergeometric
functions, i.e., for the case t1 = 0, t2 = 1, t3 = t. The
algorithms for calculating such a matrix are explained in
[Movasati 08], and the computer implementation of such
algorithms can be found at the first author’s homepage.

3. REVIEW OF FUCHSIAN DIFFERENTIAL
EQUATIONS

Here we collect some basic facts about Fuchsian differ-
ential equations, all of which can be found in [Iwasaki et
al. 91]. Let D = d

dz and let

D2y + p1(z)Dy + p2(z)y = 0 (3–1)

be a Fuchsian differential equation with regular singular-
ities at t1, . . . , tm ∈ C and tm+1 = ∞. Then by [Iwasaki
et al. 91, Proposition 4.2],

p1(z) =
m∑

i=1

ai

z − ti
,

p2(z) =
m∑

i=1

bi

(z − ti)2
+

m∑
i=1

ci

(z − ti)
, ai, bi, ci ∈ C,

where p2(z)
∏m

i=1(z−ti)2 is a polynomial in C[z] of degree
at most 2(m − 1), i.e.,

∑
ci = 0.

The exponents si
j , j = 1, 2, at the singularity ti, i =

1, . . . , m, are the roots of s(s − 1) + ais + bi = 0 (see
[Iwasaki et al. 91, p. 170]), and at tm+1 the exponents
satisfy

s(s + 1) −
( m∑

i=1

ai

)
s +

( m∑
i=1

bi +
( m∑

i=1

citi

))
= 0.

Furthermore, we have the Fuchs relation

m+1∑
i=1

2∑
j=1

si
j = m − 1.

All these facts are summarized in the Riemann scheme⎛
⎝ t1 · · · tm+1

s1
1 · · · s1

m+1

s2
1 · · · s2

m+1

⎞
⎠ .

The second-order Fuchsian differential equation (3–1) can
be transformed into SL-form by replacing y by fy, where
0 �= f satisfies Df = − 1

2p1(z)f . Then by [Iwasaki et
al. 91, p. 166],

D2y = p(z)y,

p(z) = −p2(z) +
1
4
p1(z)2 +

1
2
Dp1(z). (3–2)

From a two-dimensional system DY = QY , Q = (qij)
(not necessarily a Fuchsian system), we obtain the
second-order differential equation (3–1) for the first co-
ordinate y1 of Y = (y1, y2)tr (see [Iwasaki et al. 91,
Lemma 6.1.1]) with

p1(z) = −D log(q12(z)) − Tr(Q), (3–3)

p2(z) = det(Q(z)) − Dq11 + q11D log q12.

If λ is a zero of q12 of order r and λ �∈ {t1, . . . , tm}, then
z = λ is an apparent singular point with the exponents
0 and r + 1 (see [Iwasaki et al. 91, Lemma 6.1.2]).

4. SCHLESINGER SYSTEM

In this section we describe the system

DY = QY, Q =
3∑

k=1

Qk

z − tk
, (4–1)

Qk = Qk(t) = (qk
ij) ∈ Mat2(C), k = 1, 2, 3,

of Schlesinger type with the four regular singularities at
t1 = t, t2 = 0, t3 = 1, t4 = ∞ associated to (1–2) (see
[Iwasaki et al. 91]). We can assume that θi and 0 are the
eigenvalues of Qi and that (if θ4 �= 1)

−
3∑

i=1

Qi(t) =
(

α 0
0 α + θ4 − 1

)
, 2α +

4∑
i=1

θi = 1.

By [Iwasaki et al. 91, Proposition 6.3.1] the matrices
Qi, i = 1, 2, 3, can be expressed as follows:

Qi =
(

Mi(Wi−W ) −Mi

−(Wi−W )(Mi(W−Wi)+θi) θi−Mi(Wi−W )

)
,

i = 1, . . . , 3, (4–2)
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with

M1 =
λ − t

t (t − 1)
, W1 = λ (λ − 1)

(
μ +

α

λ

)
,

M2 =
λ

t
, W2 = (λ − t) (λ − 1)

(
μ +

α

λ

)
− tα

λ
,

M3 =
λ − 1
1 − t

, W3 = λ (λ − t)
(
μ +

α

λ

)
,

(θ4 − 1)W =
3∑

i=1

Wi (MiWi − θi) ,

μ = ν − 1
2

3∑
i=1

1 − θi

λ − ti
,

α = −1
2

( 4∑
i=1

θi − 1
)
.

Note that a zero of Q1,2 has order r = 1, which is the ap-
parent singularity λ for the first coordinate (see [Iwasaki
et al. 91, Lemma 6.1.2]).

Remark 4.1. Considering λ, μ, t, and the θi’s as pa-
rameters, one can check with any commutative algebra
software ([Greuel et al. 01], for instance) that the first
coordinate of a solution of the system (4–1) with θ4 �= 1
satisfies (1–2), and this fact does not depend on the non-
resonance conditions that appear in [Iwasaki et al. 91, pp.
204, 169]. The same is true for obtaining the SL-form of
(1–2). One must only take care about the poles of the
entries of the matrices Q1, Q2, Q3 (see Remark 5.2).

5. MIDDLE CONVOLUTION

The middle convolution functor on the category of per-
verse sheaves was introduced in [Katz 96]. It preserves
important properties of local systems (respectively per-
verse sheaves) such as the index of rigidity and irre-
ducibility but changes in general the rank and the mon-
odromy group. A down-to-earth version of this functor
was presented in [Dettweiler and Reiter 00] and [Det-
tweiler and Reiter 07a].

Thus given a Fuchsian system together with its mon-
odromy group generators, it is possible to write down
explicitly the new Fuchsian system and its monodromy
group generators under the effect of the convolution func-
tor. This explicit approach reveals that the middle convo-
lution also commutes with the action of the braid group
(cf. [Dettweiler and Reiter 07a, Theorem 2.4.iv]).

This has the following consequence in the Painlevé VI
(PVI) case: If one has an algebraic solution of a PVI

equation, the corresponding Fuchsian system has a finite

braid group orbit. Thus if one applies a suitable mid-
dle convolution operation (which is always possible) that
does not change the rank of the Fuchsian system but does
change the local monodromy, one gets again an algebraic
solution of a different PVI equation. (The corresponding
transformation of the parameters θi, i = 1, . . . 4, of the
PVI equation and the birational transformation of the
algebraic solution were found by Okamoto (cf. [Haraoka
and Filipuk 07, Section 5]).

A further possibility can be found in [Boalch 03],
where the author started with third-order differential
equations with finite monodromy to obtain algebraic so-
lutions and the parameters of the corresponding Painlevé
VI differential equations. This can also be interpreted as
an application of the middle convolution (cf. [Dettweiler
and Reiter 07b]).

For the convenience of the reader we give here a
short review of the middle convolution for Fuchsian sys-
tems (see [Dettweiler and Reiter 07a]). Let f(z) =
(f1(z), . . . , fn(z))tr be a solution of the Fuchsian system

DY = AY =
r∑

i=1

Ai

z − ti
Y, Ai ∈ Matn(C),

and let [ti, y] = γ−1
ti

γ−1
y γtiγy be a Pochhammer cycle

around ti and y. Then the Euler transform
⎛
⎜⎜⎝
∫
[ti,y]

f(z)(y − z)μ dz
z−t1

...∫
[ti,y]

f(z)(y − z)μ dz
z−tr

⎞
⎟⎟⎠ , i = 1, . . . , r,

of f(z) with respect to μ ∈ C and [ti, y] is a solution of
the (Okubo) system

(yInr − T )DY = BY :=

⎛
⎜⎝
⎛
⎜⎝

A1 . . . Ar

...
A1 . . . Ar

⎞
⎟⎠+ μ Inr

⎞
⎟⎠Y,

T = diag(t1In, . . . , trIn) ⇔ DY =
r∑

i=1

Bi

y − ti
Y,

Bi ∈ Matnr(C),

where In is the n × n identity matrix.
In general, this system is not irreducible and has the

following two 〈B1, . . . , Br〉-invariant subspaces:

k = ⊕r
i=1 ker(Ai),

l = ker(B) =
〈
(v, . . . , v)tr | v ∈ ker

( r∑
i=1

Ai + μIn

)〉
.
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Factoring out this subspace, we obtain a Fuchsian system
in dimension m:

m = nr −
r∑

i=1

dim(kerAi) − dim
(

ker
( r∑

i=1

Ai + μIn

))
.

Let Mi be the monodromy of the system DY = AY

at ti. Then if the system is irreducible and

rk(Ai) = rk(Mi − In), i = 1, . . . , r

rk
( r∑

i=1

Ai + μIn

)
= rk(M1 · · ·Mrλ − In), λ = e2πiμ,

then the factor system is again irreducible, and it is called
the middle convolution of DY = AY with μ.

We start with a two-dimensional system in Schlesinger
form (4–1), where the parameters are (θ1, . . . , θ4). Then
there are in general two possibilities to obtain again a
new two-dimensional system (4–1) via the middle convo-
lution. Here we have n = 2, r = 3, and dim(kerAi) = 1,
i = 1, 2, 3.

If we choose μ such that dim(ker(
∑r

i=1 Ai +μI2) = 1),
we obtain a Fuchsian system in dimension 2 · 3 − (1 +
1 + 1) − 1 = 2. For this case we can apply the middle
convolution either with μ = α or with μ = α+θ4−1 and
diagonalize the residue matrix at ∞ to(

α̃ 0
0 α̃ + θ̃4 − 1

)
.

This changes the parameters as follows:

(θ̃1, . . . , θ̃4) = (θ1 + μ, . . . , θ3 + μ, θ4 − μ + 2α),

α̃ = −μ.

Remark 5.1. The described construction of the middle
convolution results also in a transformation of the ap-
parent singularity, which is known as an Okamoto trans-
formation. This is worked out in detail in [Haraoka and
Filipuk 07, Section 5].

Since we also want to determine the monodromy group
of the transformed differential equation, it is more con-
venient to use the middle convolution than the Okamoto
transformation. In the latter case, one still needs one pa-
rameter (e.g., K) to determine the differential equation
(1–2).

Remark 5.2. For the proof of Theorem 1.2 we use the
system (4–1) of Schlesinger type, which has poles at θ4 =
1. Theorem 1.2 is still true for the case θ4 = 1. In
this case an Okamoto transformation corresponding to a
convenient Möbius transformation in z gives us a linear
differential equation (1–2) with θ4 �= 1.

6. PROOF OF THEOREM 1.1 FOR ROWS 3, 4, 5, 6
OF TABLE 1

In this section we explain how to obtain the algebraic
solutions of the Painlevé VI differential equation starting
from the families of curves in Table 1, column 3, rows 3,
4, 5, 6, which are constructed directly from the Herfurt-
ner list of families of elliptic curves (see [Herfurtner 91]).
For the convenience of the reader we have listed the five
families that we need in Table 2.

Let us consider f(x) = 4x3 − g2x − g3, where g2, g3

correspond to one of the five families of elliptic curves
with parameter b̃ in the Herfurtner list. Since the roots
of the discriminant Δ = 27g3

2 − g2
3 of f , which will be

the singular points of the corresponding differential equa-
tion for

∫
δ

dx
y , are not all rational functions in b̃, we sub-

stitute b̃ by a suitable rational function in b such that
the transformed roots are rational in b. Such substitu-
tions are effected by the equalities b̃ = · · · in Table 1,
column 3.

In the next step we check whether the polynomial f(x)
factors over Q(b, z). It turns out that this happens only
for the second family. In that case we have

f(x) = (4x2 − g̃2x + g̃3)
(

x +
g̃2

4

)
. (6–1)

Substituting g̃2 and g̃3 in row 2 (respectively 1, 3, 4, 5)
of Table 2 for t2 and t3 in (2–6) (respectively (2–5)), we
obtain a system DY = AY .

We can now compute the second-order differential
equation satisfied by

∫
δ

dx
y , where δ is a Pochhammer

cycle, using (3–3) and (3–2). It always turns out that
(3–1) has four singularities, at t1 = t, t2 = 0, t3 = 1, and
t4 = ∞, and one apparent singularity at λ with expo-
nents 0 and 2.

Hence the SL-form y′′ = p(z)y can be written as fol-
lows [Iwasaki et al. 91, pp. 173–174]; see also Remark 4.1:

t(t − 1) · L
z(z − t)(z − 1)

+
3
4

1
(z − λ)2

− λ(λ − 1) · ν
z(z − 1)(z − λ)

,

where

ai =
1
4
(θ2

i − 1), i = 1, 2, 3,

a4 = −1
4

( 3∑
i=1

θ2
i − θ2

4 − 1
)
− 1

2
,

and

L = K +
(1 − θ1)

2

(
1 − θ2

t
+

1 − θ3

t − 1
+

1
λ − t

)
.
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Name Deformation

1 g2 = 3(z̃ − 1)(z̃ − b̃2)3 g3 = (z̃ − 1)(z̃ − b̃2)4(z̃ − b̃)

2 g2 = 12z̃2(z̃2 + b̃z̃ + 1) g3 = 4z̃3(2z̃3 + 3b̃z̃2 + 3b̃z̃ + 2)

3 g2 = 12z̃2(z̃2 + 2b̃z̃ + 1) g3 = 4z̃3(2z̃3 + 3(b̃2 + 1)z̃2 + 6b̃z̃ + 2)

4 g2 = 3z̃3(z̃ + b̃) g3 = z̃5(z̃ + 1)

5 g2 = 3z̃3(z̃ + 2b̃) g3 = z̃4(z̃2 + 3b̃z̃ + 1)

TABLE 2. List of deformable families of elliptic curves y2 = 4x3 − g2x− g3 with four singular fibers and with nonconstant
j-invariant along the deformation.

Example 6.1. We demonstrate how the above algorithm
yields the results for the third row of Table 1. We start
with the second family in Table 2. The roots of the dis-
criminant of f are

0, ω1, ω2, ω1,2 = −1
3

(
2b̃ − 1 ± 2

√
b̃2 − b̃ − 2

)
.

Solving the Diophantine equation α2 − α − 2 = β2, we
substitute b̃ by 3

4 (b + 1
b ) + 1

2 in g2 and g3. Thus the new
roots are

t1 = −b, t2 = 0, t3 = −1
b
.

Since f(x) = 4x3 − g2x − g3 factors, we obtain (6–1)
with the new coefficients

g̃2 := 4(z̃2 + z̃),

g̃3 :=
−9b2z̃3 − 8bz̃4 + 2bz̃3 − 8bz̃2 − 9z̃3

b
.

Substituting g̃2 and g̃3 for t2 and t3 in (2–6), we obtain a
system that does not fit in our paper, and we do not write
it here. Computing the SL-form (3–2) of the differential
equation for the first coordinate of the system, we obtain
the following parameters:

(θ1, θ2, θ3, θ4) =
(

c − 1
2
, a + c − 1, c − 1

2
, a + c − 1

)
,

λ = −b, t = b2,

μ =
−a − 2c + 2

2b
, ν = − 3

4b
,

and

L =
1

8b4 − 8b2

(
2a2b2 + 4a2b + 2a2 + 4acb2 + 8acb + 4ac

− 4ab2 − 8ab − 4a + 4c2 − 2cb2 − 4cb

− 6c + 3b2 + 6b
)
.

We conclude that for a and c rational numbers, the SL-
form of the Picard–Fuchs equation of the family of curves
y = (4x2− g̃2x+ g̃3)c(x+ g̃2/4)a and the differential form

dx
y are of type (1–2) with the above parameters. Thus

Theorem 1.1 for row 3 of Table 1 follows.

In a similar way, we have calculated all the data in
Table 1, rows 4, 5, 6.

7. PROOF OF THEOREM 1.2, PART I

In this section we show that the algebraic solution in
row 2 of Table 1 can be obtained via the middle con-
volution of the Schlesinger system corresponding to the
algebraic solution in row 3 of Table 1.

Proposition 7.1. The Painlevé VI equation with param-
eters in Table 1, row 2, is Okamoto equivalent to the
Painlevé VI equation associated to the parameters in Ta-
ble 1, row 3.

Proof. We will show that the middle convolution relates
the Schlesinger systems corresponding to the Painlevé
VI equation with parameters in Table 1, row 2, and the
Painlevé VI equation with the parameters in Table 1,
row 3. Then the claim follows from Remark 5.1.

We continue with our example in Section 6.1 by writ-
ing down in Table 3 the corresponding Schlesinger system
(4–1) using (4–2).

Now we proceed as explained in Section 5: We deter-
mine the middle convolution of DY = QY with μ = −c.
Hence for the (Okubo) system

(zI6 − T )DY = BY ⇐⇒ DY =
3∑

i=1

Bi

y − ti
Y,

Bi ∈ Mat6(C),

we get

B =

⎛
⎝ Q1 − c · I2 Q2 Q3

Q1 Q2 − c · I2 Q3

Q1 Q2 Q3 − c · I2

⎞
⎠

and T = diag(t, t, 0, 0, 1, 1).
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q1
11 =

(ba + a + 2bc − 3b − 1)(a + 2c − 2)

4b(a + c − 2)
,

q1
12 =

1

b(b − 1)
,

q1
21 =

(b − 1)(ba + a − 2b + 2c − 2)(−ba − a − 2bc + 3b + 1)(a + 2c − 2)(a − 1)

16b(a + c − 2)2
,

q1
22 = −q1

11 + (c − 1

2
)

q2
11 =

(−b2 + 2b − 1)(a + 2c − 2)(a − 1)

4b(a + c − 2)
,

q2
12 =

1

b
,

q2
21 =

(b − 1)2((2 − a − 2c)(a − 1)(b2 + 1) + (−2a2 − 4ac + 6a − 4c2 + 8c − 4)b)(a + 2c − 2)(a − 1)

16b(a + c − 2)2
,

q2
22 = −q2

11 + (a − c − 1),

q3
11 =

(ba + a − b + 2c − 3)(a + 2c − 2)

4(a + c − 2)
,

q3
12 = − 1

b − 1
,

q3
21 =

(b − 1)(ba + a − b + 2c − 3)(ba + a + 2bc − 2b − 2)(a + 2c − 2)(a − 1)

16(a + c − 2)2
,

q3
22 = −q3

11 + (c − 1

2
)

− (Q1 + Q2 + Q3) =

( −(a + 2c − 2) 0
0 −c

)
.

TABLE 3. The coefficients of the Schlesinger system of Table 1, row 3.

The 〈B1, B2, B3〉-invariant subspace has dimension 4,
since

kerQi =
〈(

qi
1,2

−qi
1,1

)〉
, l = 〈(0, 1, 0, 1, 0, 1)tr〉.

In order to obtain a 2-dimensional factor system, we set

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

q1
1,2 0 0 0 0 0

−q1
1,1 0 0 1 0 0
0 q2

1,2 0 0 1 0
0 −q2

1,1 0 1 0 0
0 0 q3

1,2 0 0 1
0 0 −q3

1,1 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Thus

D(SY ) =
3∑

i=1

SBiS
−1

z − ti
(SY )

=

⎛
⎜⎜⎜⎜⎝

∗ 0 0 0 ∗
0 ∗ 0 0 ∗
0 0 ∗ 0 ∗
0 0 0 0 ∗
0 0 0 0 Ã

⎞
⎟⎟⎟⎟⎠ (SY ),

and we obtain the 2-dimensional factor system DY =
ÃY =

∑3
i=1

Ãi

z−ti
Y . Transforming this system into

Schlesinger form via

Y �→ S̃Y, S̃ =
(

N1 N2

N3 N4

)
,

where

N1 = −
( 3∑

i=1

Ãi + c · I2

)
1,2

,

N2 = −
( 3∑

i=1

Ãi − c · I2 − a · I2 + 2 · I2

)
1,2

,

N3 =
( 3∑

i=1

Ãi + c · I2

)
1,1

,

N4 =
( 3∑

i=1

Ãi − c · I2 − a · I2 + 2 · I2

)
1,1

,

and the columns of S̃ consist of eigenvectors of
∑3

i=1 Ãi

with respect to the eigenvalues −c and c+a−2, we obtain
finally

DY = AY, A =
A1

z − b2
+

A2

z
+

A3

z − 1
, (7–1)
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q1
1,1 =

(18a2b2 + 18a2b + 18a2 − 3ab3 − 30ab2 − 48ab − 36a + 2b3 + 12b2 + 24b + 16)

18ab + 18a − 27b − 27

q1
1,2 =

−b4 − 2b3

b2 − 1

q1
2,1 =

q1
11q

1
22

q1
12

q1
2,2 = (a − 1

2
) − q1

1,1

q2
1,1 =

(3a − 2)(b2 + (−6a + 7)b + 1)(b − 1)2

18ab2 − 27b2

q2
1,2 = b2 + 2b

q2
2,1 =

q2
11q

2
22

q2
12

q2
2,2 = (3a − 3

2
) − q2

1,1

q3
1,1 =

(18a2b3 + 18a2b2 + 18a2b − 36ab3 − 48ab2 − 30ab − 3a + 16b3 + 24b2 + 12b + 2)

18ab3 + 18ab2 − 27b3 − 27b2

q3
1,2 =

b2 + 2b

b2 − 1

q3
2,1 =

q3
11q

3
22

q3
12

q3
2,2 = (a − 1

2
) − q3

1,1

− (Q1 + Q2 + Q3) =

( −3a + 2 0
0 −2a + 1

2

)
.

TABLE 4. The coefficients of the Schlesinger system of Table 1, row 4.

where

A1 =
1
4b

(−ab−a−2bc+b+1 ab+a+2bc−3b−1
−ab−a−2bc+b+1 ab+a+2bc−3b−1

)
,

A2 =
1
4b

(
ab2+2ab+a−b2−2b−1 ab2−a−b2+1

−ab2+a+b2−1 −ab2+2ab−a+b2−2b+1

)
,

A3 =
1
4
(−ab−a+b−2c+1 −ab−a+b−2c+3

ab+a−b+2c−1 ab+a−b+2c−3

)
,

and

−(A1 + A2 + A3) =
(

c 0
0 −(a + c − 2)

)
.

Computing the entries of A, we get

A11 =
1

4z(z − 1)(z − b2)
× (− 4cz2 + ((1 − a + 2c)(b2 + 1) + 2(1 − a)b)z

+ (a − 1)(b + 1)2b
)
,

A12 =
1

4z(z − 1)(z − b2)
× ((b2 − 1)((a + 2c − 3)z + b(a − 1))

)
,

A21 =
1

4z(z − 1)(z − b2)
× ((b2 − 1)((1 − a − 2c)z + (b − ab))

)
,

A22 =
1

4z(z − 1)(z − b2)
× (4(a + c − 2)z2

+ ((5 − 3a − 2c)(b2 + 1)

+ 2(a − 1)b)z + (1 − a)(b − 1)2b
)
.

Thus the parameters are

(θ1, . . . , θ4) =
(
−1

2
, a − 1, −1

2
, −(a + 2c − 3)

)
.

The apparent singularity λ1 for the first coordinate and
λ2 for the second coordinate is the zero of the numerator
of A12 respectively A21 (see Section 4):

λ1 =
( −a + 1

a + 2c − 3

)
b, λ2 =

( −a + 1
a + 2c − 1

)
b.

Since t = b2, we obtain the relation

θ2
4λ

2
1 = tθ2

2, (2 − θ4)2λ2
2 = tθ2

2 .

Computing the SL-form for the first coordinate after
transforming Y �→ (z − 1)1/2(z − t)1/2Y , which changes
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q1
1,1 =

(3a − 2)(b + (−6a + 2))(b + 2)2

9(4a − 1)(b + 1)

q1
1,2 =

b + 2

(72a − 18)(b + 1)

q1
2,1 =

(3a − 2)((6a − 4)b3 + (−36a2 + 60a − 24)b2 + (24a − 21)b − 5)(−b + (6a − 2))(b + 2)

9(4a − 1)(b + 1)

q1
2,2 = (−2a +

3

2
) − q1

1,1

q2
1,1 =

(−3a + 2)(b2 + (−6a + 4)b + 1)(b2 + b + 1)

9(4a − 1)b2

q2
1,2 =

−(b2 + b + 1)

18(4a − 1)b2

q2
2,1 =

((4 − 6a)b4 + (36a2 − 54a + 20)b3 + (36a2 − 96a + 33)b2 + (36a2 − 54a + 20)b + 4 − 6a)

9(4a − 1)b2
(3a − 2)(−b2 + (6a − 4)b − 1)

q2
2,2 =

1

2
− q2

1,1

q3
1,1 =

(3a − 2)((−6a + 2)b + 1)(2b + 1)2

9(4a − 1)b2(b + 1)

q3
1,2 =

2b + 1

18(4a − 1)b2(b + 1)

q3
2,1 =

(3a − 2)(−5b3 + (24a − 21)b2 + (−36a2 + 60a − 24)b + (6a − 4))((6a − 2)b − 1)(2b + 1)

9(4a − 1)b2(b + 1)

q3
2,2 = (−2a +

3

2
) − q3

1,1

− (Q1 + Q2 + Q3) =

(
3a − 2 0

0 a − 3
2

)
=

(
3a − 2 0

0 3a − 2 + (−2a + 3
2
) − 1

)
.

TABLE 5. The coefficients of the Schlesinger system of Table 4 after convolution.

the parameters (θ1, . . . , θ4) (but not the apparent singu-
larities) to (1/2, a − 1, 1/2,−(a + 2c − 3)), we obtain a
simple formula for μ1:

μ1 =
−a − 2c + 3

2b
.

8. PROOF OF THEOREM 1.2, PART II

As in the previous example, we show that the middle
convolution relates the results in Table 1, rows 4 and 5.

Proposition 8.1. The Painlevé VI equation with param-
eters in Table 1, row 4, is Okamoto equivalent to the
Painlevé VI equation associated to the parameters in Ta-
ble 1, row 5.

Proof. We will show as in Proposition 7.1 that the middle
convolution relates the Schlesinger systems correspond-
ing to the Painlevé VI equation with parameters in Ta-
ble 1, row 4, and the Painlevé VI equation with the pa-
rameters in Table 1, row 5. Then the claim follows again
from Remark 5.1

The system (4–1) in Schlesinger form corresponding
to the differential equation satisfied by

∫
δ

dx
y , where y is

taken from row 4 in Table 1, is given in Table 4.
Applying the middle convolution to DY = QY with

μ = −(3a−2) and transforming the 2-dimensional factor
system into Schlesinger form with singularities at t, 0,
1, and ∞, we get the system (4–1) values as shown in
Table 5.

We obtain the parameters

(θ1, . . . , θ4) =
(
−2a +

3
2
,
1
2
,−2a +

3
2
,−2a +

3
2

)
.

The apparent singularity for the first coordinate is

λ =
b2 + b + 1
b3 + 2b2

.

Using that

t =
2b + 1

b4 + 2b3
,

we see that λ and t satisfy

λ4 − 2tλ3 − 2λ3 + 6tλ2 − 2t2λ − 2tλ + t3 − t2 + t = 0.
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Since this is also the relation for

t =
b4 − 6b2 − 8b − 3
b4 − 6b2 + 8b − 3

, λ =
b3 + b2 + 3b + 3
b3 + b2 − 5b + 3

,

the claim follows from Table 1, row 5.

9. PROOF OF THEOREM 1.1 FOR ROW 2 OF TABLE 1

In this section we show that (7–1) arises also as a pullback
of hypergeometric differential equations. By determining
the monodromy group, it turns out that this monodromy
group is finite, and therefore the claim follows by a well-
known result of Klein. Furthermore, we indicate that all
the other families of Picard–Fuchs equations are related
to those with finite monodromy.

Proposition 9.1. The monodromy group of (7–1) is (up
to conjugation) contained in the group T �2, where T de-
notes the group of diagonal matrices in GL2(C). More-
over, if the parameters a and c are rational numbers,
i.e., if (7–1) is a Picard–Fuchs equation, then the mon-
odromy group is even finite, i.e., a dihedral group, and
the differential equation is a pullback of a hypergeometric
differential equation.

Proof. To prove this statement, let Mt, M0, M1 denote
the monodromy at t, 0, and 1 of (7–1). If the parameter
b tends to 1, we see that the system becomes reducible
and the monodromy group is abelian:

A →
( −a−cz+1

z2−z 0
0 a+c−2

z−1

)
.

Hence MtM1 and M0 are diagonal matrices and there-
fore commute. Since Mt and M1 are reflections, the
group generated by them is a dihedral group. Thus Mt

and M1 also normalize M0, and we get that

〈Mt, M1, M0〉 ⊆ T � 2.

Hence if the parameters a and c are rational numbers,
the monodromy group is finite. And in this case the
differential equation is a pullback of a hypergeometric
one by a well-known result of Klein; see [Klein 84, I,
Chapter 3].

Proposition 9.2. Via the middle convolution of the
Schlesinger system corresponding to row 5 (respectively
row 6), column 2, in Table 1, we obtain a three-
dimensional system with imprimitive monodromy group
contained in T � S3, where T denotes the group of diag-
onal matrices in GL3(C) and S3 the symmetric group on

three letters. Moreover, these groups are finite imprim-
itive reflection groups if the parameter a is a rational
number.

Proof. We only sketch the proof, since it requires the ex-
plicit construction of the 3-dimensional Fuchsian systems
to determine the monodromy.

Applying the Möbius transformation z �→ 1
z that per-

mutes the residue matrices Qi of the Schlesinger system
corresponding to row 5 (respectively row 6), column 2,
in Table 1 and scaling the new Q2, we get the following
pairs of eigenvalues for Q1, Q2, Q3,−(Q1 + Q2 + Q3); see
Section 5:(

a − 1
2
, 0
)

,

(
a − 3

2
, 0
)

,(
a − 1

2
, 0
)

,

(
−3a− 3

2
,−3a − 2

2

)
,

respectively (
a − 1

2
, 0
)

, (−2a + 2, 0) ,(
a − 1

2
, 0
)

,

(
−1

3
,−2

3

)
.

The middle convolution with μ = − (a − 1) yields a
three-dimensional Fuchsian system with the following
triples of eigenvalues of the residue matrices(

1
2
, 0, 0

)
,

(
−1

2
, 0, 0

)
,(

1
2
, 0, 0

)
,

(
−a − 1

2
,−a

2
, a − 1

)
,

respectively(
1
2
, 0, 0

)
, (−3a + 3, 0, 0) ,(

1
2
, 0, 0

)
,

(
−1

3
+ a − 1,−2

3
+ a − 1, a − 1

)
.

Using the explicit construction for the middle convo-
lution and similar arguments as in the above proposi-
tion, one easily sees that the monodromy groups of these
third-order differential equations are imprimitive reflec-
tion groups contained in T � S3, where T denotes the
group of diagonal matrices in GL3(C). These become
finite if the parameter a is rational.

Remark 9.3. In the previous section we showed that in
Table 1, rows 4 and 5 are also related via the middle
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convolution. Hence all the families of Picard–Fuchs equa-
tions corresponding to Table 1 are related to those with
finite monodromy.

Since the corresponding Picard–Fuchs differential
equation of row 1 in Table 1 is the hypergeometric
one, it is well known that it is obtained via the con-
volution of a one-dimensional differential equation with
finite monodromy. Since a differential equation with fi-
nite monodromy has obviously a finite braid group orbit
and the middle convolution commutes with braiding (see
[Dettweiler and Reiter 07a, Theorem 2.4]), our exam-
ples corresponding to Table 1 have a finite braid orbit.
But this implies that the solutions of the Painlevé VI
equations are algebraic (the ramification data at 0, 1,∞
of Q(λ, t)/Q(t) are given by the cycle decomposition of
the braids β1, β2, β1β2). This yields the remark following
Theorem 1.2 in the introduction.
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