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A minimal permutation representation of a finite group G is a
faithful G-set with the smallest possible size. We study the struc-
ture of such representations and show that for certain groups
they may be obtained by a greedy construction. In these situ-
ations (except when central involutions intervene) all minimal
permutation representations have the same set of orbit sizes.
Using the same ideas, we also show that if the size d(G) of
a minimal faithful G-set is at least c|G| for some c > 0, then
d(G) = |G|/m + O(1) for an integer m, with the implied con-
stant depending on c.

1. INTRODUCTION

It is a classical theorem of Cayley’s that a group G is
isomorphic to a subgroup of a symmetric group. Accord-
ingly, we let the degree d(G) of the finite group G be the
least integer d such that G can be embedded in Sd, the
symmetric group on d letters. More precisely, the dis-
cussion in [Cayley 78] implicitly relies on the observation
that the regular action of the group on itself gives an em-
bedding of G into Sn, where n = |G| is the order of G. It
is then natural to ask to what extent the resulting bound
d(G) ≤ n is sharp.

The problem of finding d(G) was first studied by John-
son [Johnson 71]. Among other things, he classified those
groups for which d(G) = n. Except for a family of
2-groups, these groups are precisely the cyclic p-groups.
A structure theorem for groups with d(G) ≥ cn, c any
fixed positive constant, was obtained in [Babai et al. 93]
(see Remark 4.2 below), while related results were ob-
tained in [Berkovich 99].

Although easy to define, the degree is difficult to com-
pute. It is more or less obvious that d(G) can be com-
puted by examining all subsets of the subgroup lattice
of G. The main conceptual finding of this note is that
in some cases a “greedy” algorithm is also available, that
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is, an algorithm that proceeds by making locally opti-
mal choices rather than directly searching for the global
minimum. This is hardly of practical application (the
subgroup lattice of a group may be exponentially larger
than the group itself), but it has surprising consequences
for the structure of a minimal permutation representa-
tion. We note that whenever a group G acts on a set X ,
the sizes of the orbits of the action determine a partition
of |X |. Our main application is the following theorem.

Theorem 1.1. Let G be a finite nilpotent group of odd
order. For each prime p, let ep be maximal such that the
center of G contains a subgroup isomorphic to the ele-
mentary abelian group F

ep
p . Let X be a minimal faithful

permutation representation of G. Then

1. The number of orbits for the G-action on X is
∑

p ep.

2. The multiset of sizes of the orbits is a group isomor-
phism invariant.

This is a special case of a more general result, Theo-
rem 3.18. We remark that a restriction of the odd-order
type is necessary, the simplest counterexample being the
four-group C2 ×C2. Its regular representation is a mini-
mal permutation representation, but it also has minimal
representations with two orbits of size 2. Though not
strictly necessary for the proofs of Theorems 1.1 and 3.18,
we include Theorem 3.16. This theorem, which gives a
method to find all perfect minimal faithful permutation
representations (cf. Definition 3.12), forms the concep-
tual backbone of our work.

The main motivation of this work was to understand
the distribution of Δ(G) def= d(G)/ |G| in the interval
[0, 1]. For example, it was easy to show that every num-
ber of the form 1

n , n a positive integer, is a limit point
of Δ(G) as |G| tends to infinity. Clearly, zero is also a
limit point. We show here (Theorem 4.6) that these are
the only limit points.

This paper is organized as follows. In Section 2 we re-
call basic definitions. Section 3 contains our main results.
Section 4 contains our study of limit points of Δ(G) in
the interval [0, 1], plus some numerical results.

2. DEFINITIONS

We review some notation dealing with standard construc-
tions of group actions. For further details and basic defi-
nitions see, e.g., [Cameron 99, Sections 1.1–1.4] or [Dixon
and Mortimer 96, Sections 1.3–1.4]. For basic materials
on the socle, see [Dixon and Mortimer 96, Section 4.3].

Let G be a finite group acting on a set X . We call
this action a minimal faithful permutation representation
if the action is faithful and the size of the set X is the
smallest possible among all sets on which G acts in a
faithful fashion. Under the action of G, the set X de-
composes as a disjoint union of orbits. Choosing a point
stabilizer subgroup in each orbit, it is clear that mini-
mal faithful permutation representations correspond to
collections1 H of subgroups of G such that

1. the core of H,

CoreG(H) def=
⋂

H∈H
CoreG(H) =

⋂
H∈H

⋂
g∈G

Hg,

is trivial, and

2.
∑

H∈H[G : H ] is minimal among all H satisfying (1).

We call such sets H “minimal faithful collections”;
they are the subject of this paper. The first condition
corresponds to faithfulness of the action, the second to
the minimality of the degree. Clearly, if H is a minimal
faithful collection, no two of its elements can be conju-
gate.

Note that the core of a subgroup H < G is precisely
the largest normal subgroup of G contained in H .

We shall make use of the socle, M(G), of a finite group
G, the subgroup generated by the set M(G) of all min-
imal normal subgroups of G. Specifically, the lattice
T (G) = {T � G | T ⊂ M(G)} of normal subgroups of G

contained in the socle will play a major role.
Every element T ∈ T can be written as a direct prod-

uct of minimal normal subgroups [Suzuki 82, Theorem
II.4.8]. Moreover, the number of factors in any such di-
rect product is an invariant of the pair (G, T ). We denote
it by dimG T and call it the dimension of T . In the lan-
guage of order theory, the lattice T is atomic, with the
minimal normal subgroups being the atoms. Since the
lattice of normal subgroups of G is modular, both T and
its dual are matroids. For readers unfamiliar with this
theory, one should heuristically think of T as behaving
in a similar fashion to the lattice of subspaces of a vector
space.

When G is nilpotent, every normal subgroup intersects
the center [Suzuki 86, Theorem IV.2.9]. The discussion
above is then elementary. Since every subgroup of the
center is normal, M(G) = M(Z(G)). Furthermore, the
socle is a product of elementary abelian p-groups.

For a subgroup H of G we write RCG(H) for the rel-
ative core of H , the subgroup CoreG(H) ∩ M(G). It is

1We shall use the term “collection” for such sets of subgroups.
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then clear that

RCG(H) = 〈N ∈ M(G) | N ⊂ H〉 .

For a collection H of subgroups we similarly set

RCG(H) def=
⋂

H∈H
RCG(H) = CoreG(H) ∩ M(G).

It is clear that CoreG(H) is trivial if and only if RCG(H)
is trivial. This simple observation underlies our later
analysis. We also occasionally write HM for RCG(H),
and HM for RCG(H).

We extend the notion of dimension above to all sub-
groups of G by setting dimG(H) = dimG(RCG(H)). In
particular, we write dim G for dimG(G) = dimG(M(G)).
We will also use the codimension codimG(H) = dimG−
dimG(H).

3. DETERMINING d(G)

We discuss here the (algorithmic) problem of construct-
ing a minimal permutation representation of G. As input,
we give ourselves the subgroup lattice of G and, in addi-
tion, the order of each subgroup and whether it is normal
in G. This analysis will shed light on the structure of the
minimal permutation representations.

3.1 A Special Class of Groups

Definition 3.1. Let G be an arbitrary finite group, and
let T be as above. We call G socle friendly if for all
H < G, T ∈ T , we have RCG(H · T ) = RCG(H) · T .

Lemma 3.2. If G is a nilpotent group, then G is socle
friendly.

Proof: Since the lattice T is relatively complemented,
we may write T = (T ∩ RCG(H)) · S for some T ∈ S

disjoint from RCG(H). We then have H · T = H · S and
RCG(H) · T = RCG(H) · S, so we may assume H ∩ T =
{1}. Clearly RCG(H) · T ⊂ RCG(H · T ).

Conversely, let N < HT be a minimal normal sub-
group of G. If N < T , there is nothing to prove, so we
may assume T∩N = {1}. Since H and T are disjoint, ev-
ery n ∈ N can be uniquely written in the form n = hntn
for some hn ∈ H and tn ∈ T . Note that the map n 	→ hn

is a group homomorphism (it is the restriction to N of
the quotient map H · T/T � H), and since N and T are
disjoint, it is an isomorphism onto its image N ′.

Since N and T are central subgroups (here we use the
nilpotency of G), it follows that N ′ is a central subgroup
as well, and since N was a cyclic group of prime order, so

is N ′. It follows that N ′ is a minimal normal subgroup
of G, contained in H . We conclude that N ⊂ N ′T ⊂
RCG(H) · T .

Remark 3.3. Not every finite group is socle friendly.
Here is the construction of an infinite family of exam-
ples simplifying the construction of [Saunders 07]. Let
H be any finite group with two nonisomorphic one-
dimensional representations V1, V2 over a finite field F.
We let V = V1 ⊕ V2 and G = H � V . Then M(G) = V

and T = {0, V1, V2, V }. Let W be any one-dimensional
F-subspace not containing either of V1, V2. Then W

is core-free, and consequently RCG(W ) · V1 = V1 and
RCG(W ) · V2 = V2. But W · V1 = W · V2 = V , and as
a result, RCG(W · V1) = RCG(W · V2) = V . This shows
that G is not socle friendly.

3.2 Minimal Faithful Collections and Codimension-
One Subgroups

Let G be a finite socle-friendly group. We are interested
in constructing a minimal faithful collection of subgroups
of G, and a natural way to do so is step by step, in-
crementally adding subgroups to our collection until it
is faithful. Rather than keeping track of CoreG(H), we
note that RCG(H) carries sufficient information to decide
whether CoreG(H) is trivial. Moreover, while the cores
CoreG(H) decrease through the lattice of all normal sub-
groups of G, the relative cores RCG(H) decrease through
the lattice T (G), which is much easier to work with.

We now turn to the “minimality” property of a col-
lection, which appears to push in the opposite direction
from that of “faithfulness.” The first favors selecting
large subgroups, and having few of them. The second
seems to suggest choosing small subgroups, or else many
large ones will be needed. The multiplicative property of
orders of subgroups actually implies that choosing many
large subgroups is the right way. The analysis is very
similar to that of [Johnson 71]. In both cases it is shown
that the elements of a minimal faithful collection may
be (and in some cases, must be) drawn from a particu-
lar class of subgroups, using the same trick. The reader
should compare the following lemma with [Johnson 71,
Lemma 1].

Lemma 3.4. (Replacement lemma.) Let H < G be
of codimension at least 2. Then there exist subgroups
H1 and H2 of G containing H such that RCG(H1) ∩
RCG(H2) = RCG(H) and 1

|H1| + 1
|H2| ≤ 1

|H| . More-
over, this inequality is strict unless G contains at least
two central involutions.
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Proof: Since T is a matroid and RCG(H) has codimen-
sion at least 2, there exist two minimal normal sub-
groups N1, N2 ∈ M(G) (“atoms of the lattice T (G)”)
such that the lattice join RCG(H)N1N2 has dimension
greater by 2 than that of RCG(H). In other words,
the lattice join is a direct product. The inclusions
RCG(H) < RCG(H)Ni are then proper, and we have
RCG(H) = RCG(H)N1 ∩ RCG(H)N2.

We thus set Hi = H ·Ni, i = 1, 2 (these are semidirect
products, since the Ni are minimal normal subgroups).
By Lemma 3.2, RCG(Hi) = RCG(H)Ni, and it follows
that RCG(H1) ∩ RCG(H2) = RCG(H). Since H is a
proper subgroup of both H1 and H2, its index in both
subgroups is at least 2, and we have

1
|H1|

+
1

|H2|
≤

(
1
2

+
1
2

)
1
|H | =

1
|H | .

Equality can happen only if both N1 and N2 are of
order 2, in which case the nontrivial elements of Ni are
both central involutions.

Definition 3.5. Let A = A(G) denote the set of sub-
groups of G of codimension 1.

The reader should compare the next theorem with
[Johnson 71, Corollary 1].

Theorem 3.6. There exist minimal faithful collections
contained in A, and these are the ones of maximal size.
If G has at most one central involution, then every min-
imal faithful collection is contained in A.

Proof: Let H be a faithful collection, and let H ∈ H. If
H is of codimension 0 (i.e., RCG(H) = M(G)), we have

{1} = RCG(H)

= RC (H \ {H}) ∩ RCG(H) = RC (H \ {H}) .

In particular, H\{H} is also faithful. If H has codimen-
sion at least 2, let H1, H2 be the subgroups constructed in
Lemma 3.4, and let H′ = (H \ {H})∪{H1, H2}. By con-
struction we have RCG(H′) = RCG(H) = {1}, so that H′

is faithful. In addition, Lemma 3.4 yields Δ(H′) ≤ Δ(H),
with strict inequality if G has at most one central involu-
tion. In general, we note that H′ has more elements than
H. In particular, a minimal faithful collection of maxi-
mal size must consist of codimension-one subgroups.

Definition 3.7. Call a collection H ⊂ A independent if
its relative core is strictly contained in that of any proper

subcollection, or in other words, if {RCG(H) | H ∈ H}
is an independent set of atoms in the lattice dual to T .

A minimal faithful collection H ⊂ A is certainly inde-
pendent; otherwise, it would have a faithful proper sub-
collection.

Proposition 3.8. The set of independent collections of A
forms a matroid, i.e., the following statements are true:

1. A subcollection of an independent collection is inde-
pendent.

2. H ⊂ A is independent if and only if codimG HM =
|H|.

3. If H, H′ are independent collections with |H′| > |H|,
then there exists H ′ ∈ H′ such that H∪ {H ′} is inde-
pendent.

Proof: This will follow via the replacement lemma from
the general fact that T is a matroid.

1. Let H ⊂ A be independent, and suppose H′′ is a
proper subcollection of H′ ⊂ H such that H′′

M = H′
M .

Letting H̄ = H \H′, we have

(
H̄ ∪ H′′)

M
= H̄M ∩H′′

M = H̄M ∩H′
M = HM ,

contradicting the independence of H.
2. Let S, T ∈ T (G) with codimG T = 1. Then ST

equals either T or M , and we have dimG S ∩T = dimG S

or dimG S − 1, respectively, by the inclusion–exclusion
formula for dimension. By induction on the size of any
collection H =

{
Hi

}k

i=1
⊂ A, we see that codimG HM ≤

|H|, with equality if and only if the sequence of inter-
sections

⋂m
i=1 RCG(Hi) is strictly decreasing with m,

1 ≤ m ≤ k.
3. We have dimG H′

M < dimG HM , and hence H′
M

does not contain HM . It follows that we can find H ′ ∈ H′

such that H ′
M does not contain HM . Then dimG(HM ∩

H ′
M ) = dimG HM−1 (equality is impossible by the choice

of H ′). By part (2), we see that H∪{H ′} is independent.

Corollary 3.9. Let H ⊂ A be independent. Then the
following are equivalent:

1. |H| = dim G;

2. H is faithful;

3. H is a maximal independent subset of A. Here, max-
imal means maximal with respect to inclusion.
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Proof: The equivalence of (1) and (2) is contained in
part (2) of Proposition 3.8. An independent collection
with HM = {1} is certainly maximal. An independent
collection with HM �= {1} is not maximal, since in that
case there exists some T ∈ T of codimension 1 that does
not contain HM , and we can add it to H to form a larger
independent collection.

Corollary 3.10. A subset H ⊂ A is a minimal faithful
collection if and only if it is independent and maximizes

w(H) =
∑

H∈H

(
2 − 1

|H |

)

among the independent subsets.

Proof: We have already noted that a minimal faithful col-
lection contained in A is independent and maximal (with
respect to inclusion), and that a maximal (with respect
to inclusion) independent set is a faithful collection. It
is clear that a subset maximizing this weight function is
maximal independent, since 2− 1

|H| > 0 for all subgroups
H . Finally, we note that a maximal independent set H
satisfies w(H) = 2 dimG − Δ(H).

Corollary 3.11. There exist minimal faithful collections
of size dimG. If G has more than one central involu-
tion, there may also exist minimal faithful collections of
smaller size.

Proof: We have seen that there exist minimal faithful
collections contained in A, that these are independent
sets, and that every independent set has dim G elements.

Inspired by this corollary, we make the following defi-
nition.

Definition 3.12. A minimal faithful collection of size
dimG is called perfect. Correspondingly, a minimal faith-
ful permutation representation with dim G orbits under
the G-action is called perfect.

Example 3.13. Let G be a p-group for a prime p, and let
Z = Z(G) be its center. It is well known (and follows
from the class formula) that every normal subgroup of G

intersects the center nontrivially. Since every subgroup
of the center is normal, it follows that M(G) = M(Z),
and in particular dim G = dimZ(G). This observation
recovers [Johnson 71, Theorem 3]:

Theorem 3.14. Let G be a p-group with center Z. Then
there exists a minimal faithful collection for G of size
dimZ. If p is odd, this holds for all minimal faithful
collections.

3.3 Construction

In the remainder of this section we assume that G is a
socle-friendly finite group. We have reduced the problem
of finding a minimal faithful collection to maximizing an
additive weight function on a matroid. This is a problem
that is solvable by a greedy algorithm, and thus we may
search for and construct perfect minimal faithful permu-
tation representations. Before we present our method,
we record a useful lemma.

Lemma 3.15. Let H ⊂ A be independent, and suppose
H ′ < G has the largest size possible such that H ′

M does
not contain HM . Then H ′ ∈ A, H∪{H ′} is independent,
and H ′ maximizes the function w(H) = 2 − 1

|H| among
all H ∈ A such that H ∪ {H} is independent.

Proof: We can find T ∈ T of codimension 1 containing
H ′

M but not containing HM . Setting H = H ′T , we have
HM = H ′

MT = T , which does not contain HM . By the
maximality of H ′ we have H = H ′, implying H ′

M = T , so
that H ′ is of codimension 1 and H∪{H ′} is independent.
Finally, H ′ was chosen to maximize w(H) in an even
larger family than needed.

We now describe a method to find all perfect minimal
faithful permutation representations. We assume that we
are given the following data:

1. The subgroup lattice of G;

2. the sizes of every element of the subgroup lattice;

3. and that normal subgroups are marked as such.

Then for each i ≥ 0 we recursively construct a se-
quence of triples (Hi, Ti, Δi) with each Hi a collection
of subgroups of G, Ti a subgroup of G, and Δi a non-
negative real number. In order to do this we proceed
as follows. Let H0 = ∅, T0 = M(G), Δ0 = 0. Now
suppose (Hi, Ti, Δi) is given, and Ti �= {1}. First we
find a subgroup Hi+1 of G of maximal size not con-
taining Ti. Then we set Hi+1 = Hi ∪ {Hi+1}, Ti+1 =
Ti ∩ CoreG(Hi+1), Δi+1 = Δi + 1

|Hi+1| . If Ti = {1},
we simply set (Hi+1, Ti+1, Δi+1) = (Hi, Ti, Δi). The se-
quence (Hi, Ti, Δi) is certainly not unique and depends
on the choices of the subgroups Hi. Then we have the
following theorem.
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Theorem 3.16. Let G be a socle-friendly finite group, and
let dimG = δ. Then

1. For any choice of the subgroups Hi, Tδ−1 �= {1}
whereas Tδ = {1}. Furthermore, Hδ is a minimal
faithful collection of size δ, and Δδ = Δ(G).

2. Conversely, up to G-isomorphism any minimal faith-
ful collection of size δ can be obtained this way.

Proof: First we prove the first part. From Lemma 3.15 it
is clear that for each i, the collection Hi is independent,
and Ti = (Hi)M . Also, it is easy to see that for each
i, dimTi+1 = dimTi − 1 as long as Ti �= {1}. These
observations immediately give the first assertion of the
theorem.

We show by induction that for k ≤ δ,
∑

H∈Hk

1
|H| is

minimal among independent collections of size k. This is
certainly the case for k = 0. Thus let Hk−1 be given, and
choose the subgroup Hk. Suppose there is an indepen-
dent collection H′ ⊂ A of size k such that

∑
H′∈H′

1
|H′| <

1
|Hk|+

∑
H∈Hk−1

1
|H| . We may then write H′ = H′′∪{H ′

k},
where H ′

k is a member of minimal size. By the inductive
hypothesis,

∑
H∈Hk−1

1
|H| ≤

∑
H′∈H′′

1
|H′| , and hence we

must have |Hk| < |H ′
k|. By the choice of H ′

k, we actually
have |Hk| < |H ′| for all H ′ ∈ H′.

We now use the matroid property of the independent
subcollections of A shown in Proposition 3.8(3): since
H′ is of size k, while Hk−1 is of size k − 1, there exists
some H ′ ∈ H′ such that Hk−1 ∪ {H ′} is independent. In
particular, this implies that (Hk−1 ∪ {H ′})M is strictly
contained in HM , and since |H ′| > |Hk|, we have a con-
tradiction to the existence of H′.

Now we prove the second part. Let H = {Hi}δ
i=1 be a

minimal faithful collection, ordered such that

|H1| ≥ |H2| ≥ · · · ≥ |Hδ| .

Then we claim that for each k, Hk has max-
imal size among all subgroups H ′ of G such
that

(
{Hi}k−1

i=1 ∪ {H}
)

M
is a proper subgroup of(

{Hi}k−1
i=1

)
M

. By induction, it suffices to check that if

a subgroup H ′ < G is independent of {Hi}k−1
i=1 , then

there exists l ≥ k such that H∪ {H ′} \ {Hl} is indepen-
dent. For this we set Sj = ∩j

i=1 RCG(Hi). It is then
easy to see that we may take l to be the first j such that
RCG(H ′)∩Sj = Sj . The assertion of the theorem is now
immediate.

3.4 The Main Theorem

In this section we state and prove our main theorem. We
start with a definition,

Definition 3.17. Let G be a finite group. Given a per-
mutation representation X , we denote by m(X) the mul-
tiset consisting of the sizes of the orbits of X under the
G-action.

Theorem 3.18. Let G be a socle-friendly finite group. Let
X be a minimal faithful permutation representation of G.
Then

1. The number of orbits of X under the action of G is at
most dim G;

2. G has perfect minimal faithful permutation represen-
tations; and if the center of G has at most one involu-
tion then every faithful permutation representation is
perfect;

3. If X1, X2 are two perfect minimal faithful representa-
tions of G, then m(X1) = m(X2).

Proof: The first two parts of the theorem follow from
Corollary 3.11. The third part easily follows from Theo-
rem 3.16 and its proof.

4. APPLICATIONS

4.1 Accumulation Points of Δ(G)

Let n, p ∈ N with p > n a prime. Then Δ(Cn × Cp) =
1
n + Δ(Cn)

p = 1
n + O( 1

p ). In particular, limp→∞ Δ(Cn ×
Cp) = 1

n . This means that for each positive inte-
ger n, the point 1

n is an accumulation point of the set
{Δ(G);G finite group} in the interval [0, 1]. In Theo-
rem 4.6 below, we show that these points are the only
nonzero accumulation points. We begin with some pre-
liminary lemmas.

Lemma 4.1. Let H < G be a subgroup. Then d(H) ≤
d(G) and Δ(G) ≤ Δ(H).

Proof: The first claim is obvious. For the second, let
H′ be a faithful collection of subgroups of H and note
that Δ(H) is independent of the ambient group. Then
KG(Hi) ⊂ KH(Hi) (larger intersection). In particular,
KG(H) = {1}. Choosing H minimal for H , we deduce
that Δ(G) ≤ Δ(H) = Δ(H).
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Remark 4.2. A cyclic p-group has relative degree 1. In
particular, if P < G is a cyclic p-group, then

Δ(G) ≥ d(P )
|G| =

1
[G : P ]

.

Conversely, [Babai et al. 93] gives an explicit function
f : [0, 1] → R such that if Δ(G) ≥ Δ, then G has a cyclic
p-subgroup of index at most f(Δ). In other words, as
|G| grows with Δ(G) ≥ Δ, the degree of G is controlled
(up to bounded multiplicative error) by the size of the
largest cyclic p-subgroup of G. Specifically, Babai et al.
show that when G does not possess a large cyclic group
of prime-power order, it has a pair of reasonably large
subgroups with trivial intersection.

Note that the above bound on Δ(G) is derived from a
faithful collection of size 2. In Lemma 4.3 we show that
when Δ(G) ≥ Δ, there exists k depending only on Δ such
that a minimal permutation representation of G has at
most k orbits. The case of groups of prime exponent and
nilpotency class two, studied in [Babai et al. 93, Theorem
3.6] as well as [Neumann 86], shows that we need k > 2
in general.

Lemma 4.3. Let k = dimG. Then Δ(G) ≤ k
2k−1 .

Proof: Write the socle M = M(G) as the direct product
of k minimal normal subgroups {Si}k

i=1. For 1 ≤ i ≤ k

let Hi =
∏

j �=i Sj . It is clear that {Hi} is a faithful
collection of size k and each of its elements has size at
least 2k−1.

Lemma 4.4. Let P be a cyclic p-subgroup of G. Then
RCG(P ) < M(P ). If |G| is large enough compared to
[G : P ], then equality holds.

Proof: Let N < P be nontrivial and normal in G. Then
M(P ) is a characteristic subgroup of N . It follows that
RCG(P ) is either trivial or equal to M(P ). In any case,
we have dimG P ≤ 1.

Finally, the core of P has index at most ([G : P ])! (it is
the kernel of a homomorphism into S[G:P ]). If |G| > ([G :
P ])!, then CoreG(P ) is a nontrivial normal subgroup of
G contained in P , hence containing its unique subgroup
of order p. In that case M(P ) is normal in G, and thus
RCG(P ) = M(P ).

In fact, if G has a large cyclic p-subgroup, then a
permutation representation with two orbits is almost
optimal:

Corollary 4.5. Let P be a cyclic p-subgroup of G, and
let l(G) be the order of the smallest point stabilizer in
an orbit in a minimal permutation representation of G.
Then

1
l(G)

≤ Δ(G) ≤ 1
l(G)

+
1
|P | .

Proof: Let H be a minimal faithful collection for G, cho-
sen so that it contains an element H1 of smallest possible
order (denoted above by l(G)). Clearly Δ(G) = Δ(H) ≥

1
l(G) . For the other assertion, we may as well assume
M(P ) ∈ M(G), for otherwise, CoreG(P ) = {1} and the
claim is clear. Then H, being faithful, must contain an
element H2 disjoint from M(P ); hence {P, H2} is a faith-
ful collection.

Theorem 4.6. Let Gn be a sequence of groups with or-
ders increasing to infinity such that limn→∞ Δ(Gn) > 0.
Then this limit is of the form 1/l for some l ∈ N.

Proof: For n large enough we have Δ(Gn) > Δ > 0. The
main result of [Babai et al. 93], already quoted above, is
that Gn has a cyclic pn-subgroup Pn of index at most
f(Δ) for some f : [0, 1] → N. It follows that∣∣∣∣Δ(Gn) − 1

l(Gn)

∣∣∣∣ ≤ f(Δ)
|Gn|

.

Here l(Gn) is as in the statement of Corollary 4.5. As
|Gn| → ∞, we see that 1

l(Gn) tends to a positive limit.
The sequence of integers l(Gn) must then be eventually
constant, equal to an integer l. Corollary 4.5, combined
with the fact that the size of Pn goes to infinity, implies
that limn→∞ Δ(Gn) = 1

l .

Note that we have shown more, namely that if Δ(G) ≥
Δ > 0, then any minimal permutation representation
consists of one large orbit of size essentially |G|Δ(G),
and several other orbits of size and number bounded in
terms of Δ. Indeed, the number of orbits is bounded
by Lemma 4.3. We have an obvious bound l(G) ≤
(Δ(G) − f(Δ)/ |G|)−1.

Next, as soon as |G| is large enough that 1
l(G)+1 +

f(Δ)
|G| < 1

l(G) , the subgroups H1, H2 of Lemma 4.4 must
have the same size. We conclude that if Δ(G) > Δ and
|G| is large enough (depending on Δ), then G has both
a cyclic p-subgroup P of index at most f(Δ) such that
M(P ) is normal in G, and also a subgroup H of order
l(G) belonging to a minimal faithful collection and dis-
joint from M(P ). Then every other member of that min-
imal faithful collection may be replaced with P , keeping
the collection faithful. Hence all other orbits in the rep-
resentation must have size at most f(Δ).
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4.2 Some Numerical Results

The thesis [Elias 05] contains an implementation of the
procedure preceding Theorem 3.16 in the algebraic pro-
gramming language Magma. Using the limited comput-
ing power of a personal computer, p-groups of order pn

for n ≤ 6 and small p were examined. Any such group
can be found in the Magma database. Let us summarize
the findings.

There is only one group G of order p, and for this
group, Δ(G) = 1. There are two groups of order p2,
namely Zp × Zp and Zp2 . Here Δ(Zp × Zp) = 2

p and
Δ(Zp2) = 1. Consequently,

∑
|G|=p2 Δ(G) = 1 + 2

p .
There are five groups of order p3: one cyclic with Δ = 1;
one elementary abelian with Δ = 3

p2 ; one abelian with
a generator of order p2, having Δ = 1

p + 1
p2 ; and two

nonabelian groups both having Δ = 1
p . Observe that∑

|G|=p3 Δ(G) = 1 + 3
p + 4

p2 . For groups of order p4 and
p5 we state the following conjecture.

Conjecture 4.7. For p > 3,

∑
|G|=p4

Δ(G) = 1 +
5
p

+
11
p2

+
9
p3

,

∑
|G|=p5

Δ(G) = 1 +
7
p

+
34 + 2 gcd(p − 1, 3) + gcd(p − 1, 4)

p2
+

54
p3

+
24
p4

.

For any prime p ≥ 3, there are exactly fifteen groups
of order p4, and these can be enumerated and described.
So the proof of the first part of the conjecture should be
straightforward. We have computationally verified the
conjecture for groups of order p4 for every prime p in the
range 3 < p < 50 and several larger values of p (≈ 1000).
We considered the groups of order p5 for p ≤ 19. Note
that the number of groups of order p5 is 61+2p+2 gcd(p−
1, 3) + gcd(p − 1, 4). For groups of order p6, we did not
have enough data points to be able to guess a formula.
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[Babai et al. 93] László Babai, Albert J. Goodman, and
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