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We prove that the moduli space C(d) of plane curves of degree
d (with respect to projective equivalence) is rational except pos-
sibly if d = 6, 7, 8, 11, 12, 14, 15, 16, 18, 20, 23, 24, 26, 32, 48.

1. INTRODUCTION

Let C(d) := P(Symd(C3)∨)/SL3(C) be the moduli space
of plane curves of degree d. As a particular instance of the
general question of rationality for invariant function fields
under actions of connected linear algebraic groups (see
[Dolgachev 87] for a survey), one can ask whether C(d)
is always a rational space. The main results obtained in
this direction in the past can be summarized as follows:

• C(d) is rational for d ≡ 0 (mod 3) and d ≥ 210
[Katsylo 89].

• C(d) is rational for d ≡ 1 (mod 3), d ≥ 37, and for
d ≡ 2 (mod 3), d ≥ 65 [Böhning and Bothmer 08a].

• C(d) is rational for d ≡ 1 (mod 4) [Shepherd-Barron
88].

Apart from these general results, rationality of C(d)
was known for some sporadic smaller values of d, for
which the problem, however, can be very hard (see, for
example, [Katsylo 92b, Katsylo 96]).

In this paper, using methods of computer algebra, we
improve these results substantially so that only 15 values
of d remain for which rationality of C(d) is open. This is
the content of our main result, Theorem 4.1.

In Section 2 we discuss the algorithms used to improve
the result that C(d) is rational for d ≡ 0 (mod 3) and
d ≥ 210 (see above) to the degree that C(d) is rational for
d ≡ 0 (mod 3) and d ≥ 30 with the possible exception of
d = 48. This is the hardest part computationally. We use
the double bundle method of [Bogomolov and Katsylo 85]
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and an algorithm to find matrix representatives for cer-
tain SL3(C)-equivariant bilinear maps

ψ : V × U →W

(V , U , W being SL3(C)-representations) in a fast and
algorithmically efficient way. It is described in Section
2, and ultimately based on writing a homogeneous poly-
nomial as a sum of powers of linear forms. An immense
speedup of our software was achieved with the help of
the FFPACK library [Dumas et al. 08] for linear algebra
over finite fields.

In Section 3 we describe the methods and algorithms
to improve the degree bounds for d ≡ 1 (mod 3) and
d ≡ 2 (mod 3) mentioned above: we obtain rationality
of C(d) for d ≡ 1 (mod 3) and d ≥ 19 (for d ≡ 1 (mod
9), d ≥ 19, rationality had been proven in [Shepherd-
Barron 88]), and for d ≡ 2 (mod 3), d ≥ 35. This uses
techniques introduced in [Böhning and Bothmer 08a] and
is ultimately based on the method of covariants, which
appeared for the first time in [Shepherd-Barron 88], as
well as on writing a homogeneous polynomial as a sum
of powers of linear forms and interpolation.

In Section 4 we summarize these results, and combine
them with the known results for C(d) for smaller d and
with the proofs of rationality for C(10) and C(27) (the
method to prove rationality for C(10) was suggested in
[Bogomolov and Katsylo 85]).

2. THE DOUBLE BUNDLE METHOD: ALGORITHMS

In this section we give a brief account of the double bun-
dle method, and then describe the algorithms pertaining
to it that we use in our applications. The main technical
point is the “no-name lemma”:

Lemma 2.1. Let G be a linear algebraic group with an
almost free action on a variety X. Let π : E → X be
a G-vector bundle of rank r on X. Then one has the
following commutative diagram of G-varieties

E f �����

π
����������� X × Ar

pr1

��
X

where G acts trivially on Ar, pr1 is the projection onto
X, and the rational map f is birational.

If X embeds G-equivariantly in P(V ), V a G-module,
G is reductive, and X contains stable points of P(V ),

then this is an immediate application of descent theory
and the fact that a vector bundle in the étale topology
is a vector bundle in the Zariski topology. The result
appears in [Bogomolov and Katsylo 85]. A proof without
the previous technical restrictions is given in [Chernousov
et al. 06, Section 4.3]. The following result [Bogomolov
and Katsylo 85, Katsylo 89] is the form in which Lemma
2.1 is most often applied, since it allows one to extend its
scope to irreducible representations.

Theorem 2.2. Let G be a linear algebraic group, and let U ,
V and W , K be (finite-dimensional) G-representations.
Assume that the stabilizer in general position of G in U ,
V , and K is equal to one and the same subgroup H in G,
which is also assumed to equal the ineffectiveness kernel
in these representations (so that the action of G/H on U ,
V , K is almost free). The relations dimU − dimW = 1
and dimV − dimU > dimK are required to hold.

Suppose, moreover, that there are a G-equivariant bi-
linear map

ψ : V × U →W

and a point (x0, y0) ∈ V × U with ψ(x0, y0) = 0 and
ψ(x0, U) = W , ψ(V, y0) = W . Then if K/G is rational,
the same holds for P(V )/G.

Proof: We set Γ := G/H and let prU and prV be the
projections of V × U to U and V . By the genericity
assumption on ψ, there is a unique irreducible compo-
nent X of ψ−1(0) passing through (x0, y0), and there are
nonempty open Γ-invariant sets V0 ⊂ V and U0 ⊂ U on
which Γ acts with trivial stabilizer, and the respective
fibers X ∩ pr−1

V (v) and X ∩ pr−1
U (u) have the expected

dimensions dimU−dimW = 1 and dimV −dimW . Thus

pr−1
V (V0) ∩X → V0, pr−1

U (U0) ∩X → U0,

are Γ-equivariant bundles, and by Lemma 2.1 one obtains
vector bundles

(pr−1
V (V0) ∩X)/Γ → V0/Γ, (pr−1

U (U0) ∩X)/Γ → U0/Γ

of rank 1 and dimV − dimW , and there is still a homo-
thetic T := C∗ × C∗-action on these bundles. By a well-
known theorem of Rosenlicht [Rosenlicht 56], the action
of the torus T on the respective base spaces of these bun-
dles has a section over which the bundles are trivial; thus
we get

P(V )/Γ ∼ (P(U)/Γ) × Pdim V −dim W−1

= (P(U)/Γ) × Pdim V −dim U .



Böhning et al.: Rationality of Moduli Spaces of Plane Curves of Small Degree 501

On the other hand, one may view U ⊕ K as a Γ-vector
bundle over both U and K; hence, again by Lemma 2.1,

U/Γ × Pdim K ∼ K/Γ × Pdim U .

Since U/Γ is certainly stably rationally equivalent to
P(U)/Γ of level at most one, the inequality dimV −
dimU > dimK ensures that P(V )/Γ is rational as K/Γ
is rational.

In [Katsylo 89] this is used to prove the rationality of
the moduli spaces P(Symd(C3)∨)/SL3(C) of plane curves
of degree d ≡ 0 (mod 3) and d ≥ 210. A clever induc-
tive procedure is used there to reduce the genericity re-
quirement for the occurring bilinear maps ψ to a purely
numerical condition on the labels of highest weights of
irreducible summands in V , U , W . This method is ap-
plicable only if d is large. We will obtain rather compre-
hensive results for d ≡ 0 (mod 3) and d smaller than 210
by explicit computer calculations.

In the following we put G := SL3(C) and denote as
usual by V (a, b) the irreducible G-module whose highest
weight has numerical labels a, b with respect to the fun-
damental weights ω1, ω2 determined by the choice of the
torus T of diagonal matrices and the Borel subgroup B

of upper triangular matrices. In addition, we set

Sa := Syma(C3), Db := Symb(C3)∨

and introduce dual bases e1, e2, e3 in C3 and x1, x2, x3

in (C3)∨. Recall that V (a, b) is the kernel of the G-
equivariant operator

Δ : Sa ⊗Db → Sa−1 ⊗Db−1, Δ =
3∑

i=1

∂

∂ei
⊗ ∂

∂xi

(we will always view V (a, b) realized in this way in the
following), and there is also the G-equivariant operator

δ : Sa−1 ⊗Db−1 → Sa ⊗Db, δ =
3∑

i=1

ei ⊗ xi.

In particular,

Sa ⊗Db =
min(a, b)⊕

i=0

V (a− i, b− i)

as G-modules.
In the vast majority of cases in which we apply Theo-

rem 2.2 we will have

U := V (e, 0), V := V (0, f),

W := V (e− i1, f − i1) ⊕ · · · ⊕ V (e− im, f − im)

for some nonnegative integers e and f and integers 0 ≤
i1 < i2 < · · · < im ≤ M := min(e, f). We need a fast
method to compute the G-equivariant map

ψ : U ⊗ V →W. (2–1)

Remark 2.3. If we know how to compute the map ψ in
formula (2–1), in the sense, say, that upon choosing bases
u1, . . . , ur in U , v1, . . . , vs in V , w1, . . . , wt inW , we know
the t matrices

M1, . . . ,M t

of size r × s, given by

(Mk)ij := (wk)∨(ψ(ui, vj)),

then the map

ψ̃ : W∨ ⊗ V → U∨ ,

ψ̃(lW , v)(u) = lW (ψ(u, v)) lW ∈ W∨, v ∈ V, u ∈ U,

induced by ψ has a similar representation by r matrices

N1, . . . , Nr

of size t × s in terms of the bases w∨
1 , . . . , w

∨
t of W∨,

v1, . . . , vs of V , and u∨1 , . . . , u
∨
r of U∨. In fact,

(N i)kj = (ψ̃(w∨
k , vj))(ui) = w∨

k (ψ(ui, vj)) = (Mk)ij .

The map ψ̃ is occasionally convenient to use instead of ψ.

We now describe how we compute ψ by writing ele-
ments of U ⊗ V as sums of pure tensor products of pow-
ers of linear forms. We start by proving some helpful
formulas:

Lemma 2.4. Let u ∈ C3 and v ∈ (C3)∨. Then

1. Δ(ue ⊗ vf ) = efv(u)ue−1 ⊗ vf−1;

2. Δi(ue ⊗ vf ) = e!
(e−i)!

f !
(f−i)!v(u)iue−i ⊗ vf−i.

Proof: We can assume that v(u) �= 0, for otherwise,
Δ(ue ⊗ vf ) = 0. We put

u1 :=
u

v(u)
,
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so that v(u1) = 1, and complete v1 := v and u1 to dual
bases u1, u2, u3 in C3 and v1, v2, v3 in (C3)∨. Then

Δ(ue ⊗ vf )

=
(

∂

∂u1
⊗ ∂

∂v1
+

∂

∂u2
⊗ ∂

∂v2
+

∂

∂u3
⊗ ∂

∂v3

)
(ue ⊗ vf )

= f
∂

∂u1
((v(u)u1)e) ⊗ vf−1

= fe(v(u))eue−1
1 ⊗ vf−1

= efv(u)ue−1 ⊗ vf−1.

This gives the first formula. Iterating it gives the second
one.

Lemma 2.5. Let πe, f, i be the equivariant projection

πe, f, i : Se ⊗Df → V (e− i, f − i) ⊂ Se ⊗Df .

Then one has

πe, f,i =
min(e,f)∑

j=0

μi,jδ
jΔj

for certain μi,j ∈ Q.

Proof: Set πe,f := πe,f,0 and look at the following dia-
gram:

Se ⊗Df Δi
�� Se−i ⊗Df−i

πe−i, f−i

��
V (e− i, f − i) ⊂ Se−i ⊗Df−i

δi

�����������������

By Schur’s lemma,

πe, f, i = λiδ
iπe−i, f−iΔi (2–2)

for some nonzero constants λi. On the other hand,

πe, f = id −
min(e, f)∑

i=1

πe, f, i .

Therefore, since the assertion of the lemma holds trivially
if one of e and f is zero, the general case follows by
induction on i.

Note that to compute the μi,j in the expression of
πe, f,i in Lemma 2.5, it suffices to calculate the λi in
formula (2–2), which can be done by the rule

1
λi

(
ee−i
1 ⊗ xf−i

3

)
=

(
πe−i, f−i ◦ Δi ◦ δi

) (
ee−i
1 ⊗ xf−i

3

)
.

Notice that applying δi ◦ Δi to a decomposable element
can still yield a bihomogeneous polynomial with very
many terms. A final improvement in the complexity of
calculating ψ is obtained by representing these bihomoge-
neous polynomials not by a sum of monomials but rather
by their value on many points of C3×(C3)∨. Indeed, such
values can be calculated easily:

Lemma 2.6. Let a, b ≥ 0 be integers, u ∈ C3, v ∈ (C3)∨,
p ∈ (C3)∨, and q ∈ C3. Then

(
δi ◦ Δi(ua ⊗ vb)

)
(p, q)

=
a!

(a− i)!
b!

(b − i)!
(δ(p, q))iv(u)iu(p)a−iv(q)b−i.

Proof: By Lemma 2.4 we have

δi ◦ Δi(ua ⊗ vb)(p, q)

=
(
δi(v(u)i a!

(a− i)!
b!

(b − i)!
ua−i ⊗ vb−i)

)
(p, q).

Evaluation gives the above formula.

Corollary 2.7. Let ψ : V ⊗U →W be as above and assume
e ≤ f . Then there exists a homogeneous polynomial χ ∈
Q[x, y] of degree e such that

ψ(ue ⊗ vf )(p, q) = v(q)f−eχ
(
δ(p, q)v(u), u(p)v(q)

)

holds for all u ∈ C3, v ∈ (C3)∨, p ∈ (C3)∨, and q ∈ C3.

Proof: We have

ψ = (πe,f,i1 + · · · + πe,f,im).

Using that

πe,f,i =
e∑

j=0

λi,jδ
jΔj

for certain λi,j , we obtain

ψ(ue ⊗ vf )(p, q)

=

⎛
⎝ m∑

α=1

e∑
j=0

λiα,jδ
jΔj(ue ⊗ vf )

⎞
⎠ (p, q)

=
m∑

α=1

e∑
j=0

λiα,j(δ(p, q))jv(u)j

× e!
(e− j)!

f !
(f − j)!

u(p)e−jv(q)f−j
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= v(q)f−e
m∑

α=1

e∑
j=0

λiα,j

e!
(e− j)!

f !
(f − j)!

(
δ(p, q)v(u)

)j(
u(p)v(q)

)e−j

= v(q)f−eχ
(
δ(p, q)v(u), u(p)v(q)

)
.

Now we are in a position to check the important gener-
icity conditions of Theorem 2.2 efficiently:

Proposition 2.8. Let n be a positive integer, ui ∈ C3,
vi ∈ (C3)∨, pi ∈ (C3)∨, and qi ∈ C3 for 0 ≤ i ≤ n. Set
x0 =

∑n
i=0 ξiu

e
i and consider the n × n matrix M with

entries

Mj,k =
n∑

i=0

ξiψ(ue
i ⊗ vf

j )(pk, qk).

If rankM = dimW , then ψ(x0, V ) = W . Similarly, if
y0 =

∑n
j=0 ηjv

f
j and N is the n× n matrix with entries

Ni,k =
n∑

j=0

ηjψ(ue
i ⊗ vf

j )(pk, qk),

then rankN = dimW implies ψ(U, y0) = W .

Proof: Since ψ is bilinear, it follows that ψ(x0, v
f
j ) =∑

ξiψ(ue
i , v

f
j ). Therefore the jth row of M contains the

values of ψ(x0, v
f
j ) at the points (pk, qk) for all k. There-

fore rankM ≤ dimψ(x0, V ) ≤ dimW . If rankM =
dimW , the claim follows. The second claim follows sim-
ilarly.

Remark 2.9. Notice the following:

1. The rank condition of Proposition 2.8 can also be
checked over a finite field.

2. Over a finite field all possible values of the polyno-
mial χ can be precomputed and stored in a table.

3. Since ψ(ue ⊗ vf )(p, q) can be evaluated quickly us-
ing Corollary 2.7, we do not have to store the n3

values of this expression used in Proposition 2.8.
It is enough to store the 2n2 entries of M and N .
This is fortunate, since n must be at least 20,000 for
d = 217, and in this case n3 = 8×1012 values would
consume about 8 GB of memory.

4. Given the polynomial χ, the formula of Corollary 2.7
becomes so simple that it can easily be implemented
in C++. See, for example, our program nxnxn at
[Böhning et al. 08].

5. Calculating the rank of a 20,000 × 20,000 matrix
is still difficult and takes several weeks on current
computers if implemented naively. Using FFPACK
we could take advantage of a multicore system and
of optimized linear-algebra algorithms. For exam-
ple, the case d = 210 (the largest we computed)
required 23.8 hours run time on a cluster node with
two Quad-Core Xeon-E5472 CPUs.

6. The algorithm presented here is related to the one
presented in [Böhning and Bothmer 08c] with the
substantial improvements that the elements of U and
V are represented as sums of powers of linear forms
and that the elements of W are represented by their
values. This eliminates the need to calculate with
big bihomogeneous polynomials.

3. THE METHOD OF COVARIANTS: ALGORITHMS

Virtually all the methods for addressing the rationality
problem are based on introducing some fibration struc-
ture over a stably rational base in the space for which
one wants to prove rationality; with the double bundle
method, the fibers are linear, but it turns out that fibra-
tions with nonlinear fibers can also be useful if rationality
of the generic fiber of the fibration over the function field
of the base can be proven. The method of covariants (see
[Shepherd-Barron 88]) accomplishes this by inner linear
projection of the generic fiber from a very singular center.

Definition 3.1. If V and W are G-modules for a linear
algebraic group G, then a covariant ϕ of degree d from
V with values in W is a G-equivariant polynomial map
of degree d:

ϕ : V →W.

In other words, ϕ is an element of Symd(V ∨) ⊗W .

The method of covariants phrased in a way that we
find useful is contained in the following theorem.

Theorem 3.2. Let G be a connected linear algebraic group
whose semisimple part is a direct product of groups of
type SL or Sp. Let V and W be G-modules, and suppose
that the action of G on W is generically free. Let Z be the
ineffectivity kernel of the action of G on W , and assume
that the action of Ḡ := G/Z is generically free on P(W )
and that Z acts trivially on P(V ).

Let
ϕ : V → W
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be a (nonzero) covariant of degree d. Suppose the follow-
ing assumptions hold:

(a) P(W )/G is stably rational of level ≤ dim P(V ) −
dim P(W ).

(b) If we view ϕ as a map ϕ : P(V ) ��� P(W ) and
denote by B the base scheme of ϕ, then there is a
linear subspace L ⊂ V such that P(L) is contained in
B together with its full infinitesimal neighborhood of
order (d− 2), i.e.,

IB ⊂ Id−1
P(L).

Denote by πL the projection πL : P(V ) ��� P(V/L)
away from P(L) to P(V/L).

(c) Consider the diagram

P(V )
ϕ �����

πL

���
�
�

P(W )

P(V/L)

and assume that one can find a point [p̄] ∈ P(V/L)
such that

ϕ|P(L+Cp) : P(L+ Cp) ��� P(W )

is dominant.

Then P(V )/G is rational.

Proof: By assumption, the group G is special (cf. [Serre
58]), and thus W ��� W/G, which is generically a princi-
pal G-bundle in the étale topology, is a principal bundle
in the Zariski topology. Combining this with Rosenlicht’s
theorem on torus sections [Rosenlicht 56], we get that the
projection P(W ) ��� P(W )/G has a rational section σ.
Observe that property (c) implies that the generic fiber
of πL maps dominantly to P(W ) under ϕ, which means
that the generic fiber of ϕ maps dominantly to P(V/L)
under πL, too. Note also that the map ϕ becomes linear
on a fiber P(L + Cg) because of property (b) and that
thus the generic fiber of ϕ is birationally a vector bundle
via πL over the base P(V/L). Thus, if we introduce the
graph

Γ = {([q], [q̄], [f ]) |πL([q]) = [q̄], ϕ([q]) = [f ]}
⊂ P(V ) × P

(
V/L

) × P(W )

and look at the diagram

Γ

pr23

��

�� 1:1

pr1
�������� P(V ) ����� P(V )/Ḡ

ϕ̄

���
�
�
�
�
�
�

P
(
V/L

) × P(W )

��
P(W ) ������������ P(W )/Ḡ

σ

�� ���	�
��

we find that the projection pr23 is dominant and makes
Γ birationally into a vector bundle over P(V/L)× P(W ).
Hence Γ is birational to a succession of vector bundles
over P(W ) or has a ruled structure over P(W ). Since
Ḡ acts generically freely on P(W ), the generic fibers of
ϕ and ϕ̄ can be identified, and we can pull back this
ruled structure via σ (possibly replacing σ by a suitable
translate). Hence P(V )/Ḡ is birational to P(W )/Ḡ×PN

with N = dim P(V ) − dim P(W ). Thus by property (a),
P(V )/G is rational.

In [Shepherd-Barron 88], essentially this method is
used to prove the rationality of the moduli spaces of plane
curves of degrees d ≡ 1 (mod 9), d ≥ 19. In [Böhning and
Bothmer 08a], it is the basis of the proof that for d ≡ 1
(mod 3), d ≥ 37, and d ≡ 2 (mod 3), d ≥ 65, these mod-
uli spaces are rational. We improve these bounds here
substantially and now recall the results from [Böhning
and Bothmer 08a], which we use in our algorithms.

In that paper we used Theorem 3.2 with the following
data; G is SL3(C) throughout:

• For d = 3n + 1, n ∈ N, and V = V (0, d) =
Symd(C3)∨, we take W = V (0, 4) and produce co-
variants

Sd : V (0, d) → V (0, 4)

of degree 4. We show that property (b) of Theo-
rem 3.2 holds for the space

LS = x2n+3
1 · C[x1, x2, x3]n−2 ⊂ V (0, d).

Moreover, P(V (0, 4))/G is stably rational of level 8.
So for particular values of d, it suffices to check prop-
erty (c) by explicit computation. We give the details
as to how this is done below.

• For d = 3n + 2, n ∈ N, and V = V (0, d) =
Symd(C3)∨, we take W = V (0, 8) and produce co-
variants

Td : V (0, d) → V (0, 8),
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again of degree 4. In this case, property (b) of The-
orem 3.2 can be shown to be true for the subspace

LT = x2n+5
1 · C[x1, x2, x3]n−3 ⊂ V (0, d).

Moreover, P(V (0, 8))/G is stably rational of level 8,
too, and hence again everything comes down to
checking property (c) of Theorem 3.2.

Remark 3.3. As was pointed out to us by the referee,
the quotients V (0, 4)/G and V (0, 8)/G are even sta-
bly rational of level 3, which can be seen by considering
V = C3⊕W , where W = V (0, 4), V (0, 8), or indeed any
generically free representation of SL3(C). The action of
SL3(C) on V has a P -section, where P is a parabolic sub-
group with semisimple part SL2(C). This can be used to
reduce to the rationality result for SL2(C)-quotients [Bo-
gomolov and Katsylo 85, Katsylo 83, Katsylo 84]. Unfor-
tunately, this sharper bound does not allow us to improve
our results.

We recall from [Böhning and Bothmer 08a] how some
elements of LS (respectively LT ) can be written as sums
of powers of linear forms, which is very useful for eval-
uating Sd (respectively Td) easily. Let K be a positive
integer.

Definition 3.4. Let b = (b1, . . . , bK) ∈ CK be given.
Then we denote by

pbi (c) :=
∏
j �=i

1≤j≤K

c− bj
bi − bj

(3–1)

for i = 1, . . . ,K the interpolation polynomials of degree
K − 1 with respect to b in the one variable c.

Then we have the following easy lemma (see [Böhning
and Bothmer 08a, Lemma 5.2] for a proof).

Lemma 3.5. Let b = (b1, . . . , bK) ∈ CK , bi �= bj for i �= j,
and set x = x1, y = λx2 + μx3, (λ, μ) �= (0, 0). Suppose
d > K and put li := bix + y. Then for each c ∈ C with
c �= bi, ∀i,

f(c) = pb1 (c)ld1 + · · · + pbK(c)ldK − (cx+ y)d (3–2)

is nonzero and divisible by xK .

So for K = 2n + 3 we obtain elements in f(c) ∈ LS,
and for K = 2n+ 5 elements, f(c) ∈ LT . We now check
property (c) of Theorem 3.2 computationally in the fol-
lowing way. We choose a fixed g ∈ V (0, d), which we

write as a sum of powers of linear forms

g = md
1 + · · · +md

const,

where const is a positive integer. We choose a random
vector b, random λ and μ, and a random c, and use
[Böhning and Bothmer 08a, formula (30)], which reads

Sd(f(c) + g) =
∑

i,j,k,p

pbi (c)I(li, mj , mk, mp)nlimjmkmp

+ Sd

(−(cx+ y)d + g
)
,

to evaluate Sd. Here I is a function on quadruples of
linear forms to C: if in coordinates,

Lα = α1x1 + α2x2 + α3x3

and Lβ, Lγ , Lδ are linear forms defined analogously, and
if we moreover abbreviate

(α β γ) := det

⎛
⎝ α1 α2 α3

β1 β2 β3

γ1 γ2 γ3

⎞
⎠ , etc.,

as in the symbolic method of [Grace and Young 03], then

I(Lα, Lβ, Lγ , Lδ) := (αβγ)(αβδ)(αγδ)(βγδ) .

For Td we have by an entirely analogous computation

Td(f(c) + g) =
∑

i,j,k,p

pbi (c)I(li, mj , mk, mp)nl2im
2
jm

2
km

2
p

+ Td

(−(cx+ y)d + g
)
. (3–3)

So we can evaluate Td similarly. Thus for each particular
value of d we can produce points in P(V (0, 4)), for d =
3n+1, or P(V (0, 8)), for d = 3n+2, that are in the image
of the restriction of Sd to a fiber of πLS (respectively
in the image of the restriction of Td to a fiber of πLT ).
We then check that these span P(V (0, 4)) (respectively
P(V (0, 8))) to check condition (c) of Theorem 3.2.

4. APPLICATIONS TO MODULI OF PLANE CURVES

The results on the moduli spaces of plane curves C(d) of
degree d that we obtain are described below. We organize
them according to the method employed.

4.1 Double Bundle Method

As we mentioned above, Katsylo obtained in [Katsylo 89]
the rationality ofC(d), d ≡ 0 (mod 3) and d ≥ 210. Using
the computational scheme of Section 2 and our program
nxnxn, we obtain the rationality of all C(d) with d ≡ 0
(mod 3) and d ≥ 30 except for d = 48, 54, 69. Moreover,
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Degree d of Curves Result and Method of Proof/Reference

1 rational (trivial)

2 rational (trivial)

3 rational (moduli space affine j-line)

4 rational, [Katsylo 92b], [Katsylo 96]

5 rational, two-form trick [Shepherd-Barron 88]

6 rationality unknown

7 rationality unknown

8 rationality unknown

9 rational, two-form trick [Shepherd-Barron 88]

10 rational, double bundle method, this article

11 rationality unknown

12 rationality unknown

13 rational, two-form trick [Shepherd-Barron 88]

14 rationality unknown

15 rationality unknown

16 rationality unknown

17 rational, two-form trick [Shepherd-Barron 88]

18 rationality unknown

19 covariants, [Shepherd-Barron 88] and this article

20 rationality unknown

21 rational, two-form trick [Shepherd-Barron 88]

22 covariants, this article

23 rationality unknown

24 rationality unknown

25 rational, two-form trick [Shepherd-Barron 88]

26 rationality unknown

27 rational, this article (method cf. above)

28 covariants, [Shepherd-Barron 88] and this article

29 rational, two-form trick [Shepherd-Barron 88]

30 double bundle method, this article

31 covariants, this article

32 rationality unknown

≥ 33 (excl. 48) rational, this article, [Böhning and Bothmer 08a], [Katsylo 89]

TABLE 1. Table of known rationality results for C(d).

we obtain rationality for d = 10 and d = 21 (the lat-
ter was known before, since by the results of [Shepherd-
Barron 88], C(d) is rational for d ≡ 1 (mod 4)). A table of
U , V , and W used in each case can be found at [Böhning
et al. 08], UVW.html. We found these combinatorially us-
ing our program alldimensions2.m2, also at [Böhning
et al. 08].

For d = 69 the result is known by [Shepherd-Barron
88], since 69 ≡ 1 (mod 4). For the cases d = 27 and d =
54 we need more special U , V , W and use the methods
from our article [Böhning and Bothmer 08c].

4.2 The case d = 27

We establish the rationality of C(27) as follows: there is
a bilinear, SL3(C)-equivariant map

ψ : V (0, 27)× (V (11, 2) ⊕ V (15, 0)) → V (2, 14),

and

dimV (0, 27) = 406, dimV (11, 2) = 270,

dimV (15, 0) = 136, dim V (2, 14) = 405 .

We compute ψ by the method of [Böhning and Bothmer
08c] and find that ψ = ω2β11 ⊕ β13 in the notation of
that article. For a random x0 ∈ V (0, 27), the kernel of
ψ(x0, ·) turns out to be one-dimensional, generated by
y0, say, and ψ(·, y0) has likewise one-dimensional kernel
generated by x0 (See[Böhning et al. 08], degree27.m2, for
a Macaulay script for doing this calculation.) It follows
that the map induced by ψ,

P(V (0, 27)) ��� P(V (11, 2) ⊕ V (15, 0)),

is birational, and it is sufficient to prove rationality
of P(V (11, 2) ⊕ V (15, 0))/SL3(C). But P(V (11, 2) ⊕
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V (15, 0)) is birationally a vector bundle over P(V (15, 0)),
and P(V (15, 0))/SL3(C) is stably rational of level 19, so
P(V (11, 2)⊕V (15, 0))/SL3(C) is rational by the no-name
lemma (Lemma 2.1).

4.3 The case d = 54

We establish the rationality of C(54) as follows: there is
a bilinear, SL3(C)-equivariant map

ψ : V (0, 54)× (
V (11, 8)⊕ V (6, 3) ⊕ V (5, 2) ⊕ V (3, 0)

)
→ V (0, 51)

with

dim V (0, 54) = 1540, dimV (11, 8) = 1134,

dimV (6, 3) = 154, dimV (5, 2) = 81,

dimV (3, 0) = 10, dimV (0, 51) = 1378.

Since 1134+154+81+10 = 1379 = 1378+1 and 1540−
1379 > 19, we need to check only the genericity condition
of Theorem 2.2 to prove rationality. For this we compute
ψ by the method of [Böhning and Bothmer 08c] and find
that ψ = β11⊕β6⊕β5⊕β3 in the notation of that article.

For a random x0 ∈ V (0, 54), the kernel of ψ(x0, ·)
turns out to be one-dimensional, generated by y0,
say, and ψ(·, y0) has full rank 1378, and therefore
ψ(V (0, 54), y0) = V (0, 51), as required. See [Böhning
et al. 08], degree54.m2, for a Macaulay script for doing
this calculation.

4.4 Method of Covariants

According to [Böhning and Bothmer 08a], C(d) is ratio-
nal for d ≡ 1 (mod 3), d ≥ 37, and d ≡ 2 (mod 3), d ≥ 65
(for d ≡ 1 (mod 9), d ≥ 19, rationality was proven before
in [Shepherd-Barron 88]). By the method of Section 3,
we improve this and obtain that C(d) is rational for d ≡ 1
(mod 3), d ≥ 19, which uses the covariants Sd of Section
3, and rational for d ≡ 2 (mod 3), d ≥ 35, which uses the
family of covariants Td of Section 3. See [Böhning et al.
08], interpolation.m2, for a Macaulay script for doing
this calculation.

Combining what was stated above with the known ra-
tionality results for C(d) for small values of d, we can
summarize the current state of knowledge in Table 1.
Thus we obtain our main theorem:

Theorem 4.1. The moduli space C(d) of plane curves of
degree d is rational except possibly for one of the values
in the following list:

d = 6, 7, 8, 11, 12, 14, 15, 16, 18, 20, 23, 24, 26, 32, 48.
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[Böhning and Bothmer 08c] Chr. Böhning and H.-Chr. Graf
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