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We describe a general method to compute weight- 3
2

modular
forms “associated” with a given weight-2 modular form f of
level N , and relate its Fourier coefficients to central values of
quadratic twists (real and imaginary) of L(f, s). We will focus
on examples for levels N = 27, N = 15, and N = 75.

1. INTRODUCTION

Let f ∈ S2(N) be a newform of weight 2 and level N .
If f(z) =

∑∞
m=1 a(m)qm, where q = e2πiz, and D is a

fundamental discriminant, we define the twisted L-series

L(f, D, s) =
∞∑

m=1

a(m)
ms

(
D

m

)
.

We will assume that the twisted L-series are primitive
(i.e., the corresponding twisted modular forms are new-
forms). There is no loss of generality in making this
assumption: if this were not the case, then f would be a
quadratic twist of a newform of smaller level, which we
could choose instead.

The question of efficiently computing the family of
central values L(f, D, 1), for fundamental discriminants
D, has been considered by several authors (see [Gross
87, Böcherer and Schulze-Pillot 90, Pacetti and Tornaŕıa
07a, Pacetti and Tornaŕıa 07b, Mao et al. 07]). By Wald-
spurger’s formula [Waldspurger 81], these values are re-
lated to the Fourier coefficients of certain modular forms
of weight 3

2 .
Gross [Gross 87] gives a method to construct, for the

case of prime level p and provided that L(f, 1) �= 0,
a weight- 3

2 modular form of level 4p, and gives an ex-
plicit version of Waldspurger’s formula for the imaginary
quadratic twists. In [Böcherer and Schulze-Pillot 90], the
authors extend Gross’s method to the case of square-free
level, but their method works only for a fraction of imag-
inary quadratic twists (determined by quadratic residue
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conditions). Later, in [Pacetti and Tornaŕıa 07a], the
case of level p2 (p a prime) is considered, and this is used
in [Pacetti and Tornaŕıa 07b], provided p ≡ 3 (mod 4),
to compute central values for real quadratic twists.

In [Mao et al. 07], the nonvanishing condition is re-
moved, and in the case of prime level, two modular forms
of weight 3

2 (one giving the imaginary quadratic twists
and another giving the real quadratic twists) are con-
structed.

The aim of this paper is to show how some of these
ideas can be combined to handle the case of composite
levels. In the case of odd square-free level N , for instance,
this method constructs 2t modular forms, where t is the
number of prime factors of N , whose coefficients give
the central values of all the quadratic twists. We will
focus on examples for levels N = 27, N = 15, and N =
75, which exhibit our methods for the nonsquare case.
For the square case see [Pacetti and Tornaŕıa 07a] and
[Pacetti and Tornaŕıa 07b].

2. THE CURVE 27A

Let f be the modular form of level 27, corresponding to
the elliptic curve X0(27), of minimal equation

y2 + y = x3 − 7

(see [Cremona 08]). The eigenvalue of f for the Atkin–
Lehner involution W27 is −1, and the sign of the func-
tional equation for L(f, s) is +1.

Let B = (−1,−3) be the quaternion algebra ramified
at 3 and ∞, and consider the order R =

〈
1, 3i, 1+3j

2 , i+k
2

〉
,

a Pizer order of reduced discriminant 27 (see [Pizer 80]
for the basic definitions of quaternion algebras, Brandt
matrices, and special orders). The class number of left
R-ideals for such an order is 2, and representatives for left
R-ideals are {R, I}, where I =

〈
4, 12i, 7+6i+3j

2 , 6+13i+k
2

〉
.

The eigenvector for the Brandt matrices that corresponds
to f is (1,−1), with height 3.

The ternary quadratic forms associated with their
right orders are

Q1(x, y, z) = 4x2 + 27y2 + 28z2 − 4xz

and

Q2(x, y, z) = 7x2 + 16y2 + 31z2 + 16yz + 2xz + 4xy,

respectively.
Note that since the twist of f by the quadratic char-

acter of conductor 3 is f itself, we have

L(f,−3D, s) = L(f, D, s),

D c(D) L(f, D, 1)

−4 1 1.529954
−7 −1 1.156537

−19 −1 0.701991
−31 0 0.000000
−40 −2 1.935256
−43 2 1.866526
−52 1 0.424333
−55 2 1.650392
−67 −1 0.373827
−79 1 0.344267
−88 −2 1.304749
−91 1 0.320766

−103 1 0.301502
−115 −2 1.141352
−127 −2 1.086092
−136 2 1.049540
−139 3 2.335842
−148 1 0.251523
−151 −1 0.249012
−163 −1 0.239670
−184 2 0.902318
−187 −2 0.895051
−199 −3 1.952200

TABLE 1. Coefficients of g and imaginary quadratic
twists of 27A.

for −3D a fundamental discriminant. We will thus as-
sume that 3 � D.

2.1 Imaginary Quadratic Twists

Let D < 0 be a fundamental discriminant. If
(

D
3

)
= +1,

the sign of the functional equation for L(f, D, s) is −1, so
its central value vanishes trivially. Hence we can restrict
to the case

(
D
3

)
= −1. In this case, we can follow Gross’s

method, using classical theta series

Θ(Qi) :=
1
2

∑
(x,y,z)∈Z3

qQi(x,y,z);

we obtain a weight- 3
2 modular form of level 4 ·27, namely

g = Θ(Q1)−Θ(Q2) = q4−q7−q19+q28−2q40+2q43+· · · .

Table 1 shows the values of the Fourier coefficients
c(D) of g and of L(f, D, 1), where −200 < D < 0 is
a fundamental discriminant such that

(
D
3

)
= −1. The

Gross type formula

L(f, D, 1) = k
|c(D)|2√|D| , D < 0,



Pacetti and Tornaría: Computing Central Values of Twisted L-Series: The Case of Composite Levels 461

is satisfied, where c(D) is the |D|th Fourier coefficient of
g, and

k =
1
3
· (f, f)
L(f, 1)

= 2L(f,−4, 1)

≈ 3.059908074114385749826388345.

2.2 Real Quadratic Twists

Let D > 0 be a fundamental discriminant. In this case,
if

(
D
3

)
= −1, the sign of the functional equation for

L(f, D, s) will be −1, and its central value will vanish
trivially. For

(
D
3

)
= +1, we will employ a method sim-

ilar to the one used in [Mao et al. 07] for prime levels.
We need to choose an auxiliary prime l ≡ 3 (mod 4)
such that

(−l
3

)
= −1 and such that L(f,−l, 1) �= 0, for

example l = 7. Following [Mao et al. 07], we define a
generalized theta series

Θ−7(Qi)

:=
1
2

∑
(x,y,z)∈Z3

ω
(i)
7 (x, y, z) ω

(i)
3 (x, y, z) qQi(x,y,z)/7,

where ω7 and ω3 are the two kinds of weight function in-
troduced in [Mao et al. 07, Sections 2.2 and 2.3], respec-
tively. The superscript in ω

(i)
3 and ω

(i)
7 indicates that we

are writing the weight functions in the basis correspond-
ing to the quadratic form Qi.

The weight function of the first kind can be computed
as

ω
(1)
7 (x, y, z) =

⎧⎪⎨
⎪⎩

0 if 7 � Q1(x, y, z),(
x
7

)
if 7 � x,(

5z
7

)
otherwise;

and

ω
(2)
7 (x, y, z) =

⎧⎪⎨
⎪⎩

0 if 7 � Q2(x, y, z),(
3y+5z

7

)
if 7 � 3y + 5z,(

6x
7

)
otherwise.

The weight function of the second kind can be com-
puted as

ω
(1)
3 (x, y, z) =

(
x + z

3

)
,

and

ω
(2)
3 (x, y, z) =

(
2x + y + 2z

3

)
.

The generalized theta series will be

Θ−7(Q1)

= −2q4 + 2q13 + 4q16 − 4q25 + 2q28 − 2q37 − 4q40 + · · ·

D c−7(D) L(f, D, 1)

1 1 0.588880
13 −3 1.469932
28 −3 1.001590
37 3 0.871301
40 6 3.351961
61 3 0.678585
73 −3 0.620308
76 −3 0.607942
85 0 0.000000
88 −6 2.259892
97 −3 0.538125

109 0 0.000000
124 6 1.903786
133 −3 0.459561
136 6 1.817856
145 6 1.760536
157 6 1.691917
172 0 0.000000
181 −9 3.545457
184 −6 1.562860
193 3 0.381496

TABLE 2. Coefficients of g−7 and real quadratic twists
of 27A.

and

Θ−7(Q2) = q−q4−q13+2q16−3q25−q28+q37+2q40+· · · .

Note that Θ−7(Q1) + 2Θ−7(Q2) = 2q − 4q4 + 8q16 −
10q25 + · · · , corresponding to the Eisenstein eigenvector
for the Brandt matrices, has nonzero Fourier coefficients
only at square indices. Since Θ−7(Q1) + 2Θ−7(Q2) ≡
Θ−7(Q1)−Θ−7(Q2) (mod 3), this explains the fact that
the coefficients in Table 2, with the exception of c−7(1),
are all divisible by 3.

Thus we obtain a modular form of weight 3
2 , namely

g−7 = Θ−7(Q1) − Θ−7(Q2)

= q + q4 − 3q13 − 2q16 + q25 − 3q28 + 3q37

+ 6q40 + · · · ,

and the formula is now

L(f, D, 1) = k−7
|c−7(D)|2√|D| , D > 0,

where c−7(D) is the Dth Fourier coefficient of g−7, and

k−7 =
1
3
· (f, f)
L(f,−7, 1)

√
7

= L(f, 1)

≈ 0.5888795834284833191045631668.

Table 2 shows the values of the Fourier coefficients
c−7(D) of g−7 and of L(f, D, 1), where 0 < D < 200 is a
fundamental discriminant such that

(
D
3

)
= 1.
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3. THE CURVE 15A

Let f be the modular form of level 15, corresponding to
the elliptic curve X0(15), of minimal equation

y2 + xy + y = x3 + x2 − 10x − 10.

The eigenvalues of f for the Atkin–Lehner involutions W3

and W5 are +1 and −1, and the sign of the functional
equation for L(f, s) is +1.

The method of Gross, as extended by Böcherer and
Schulze-Pillot to the case of square-free levels, requires
that the ramification of the quaternion algebra agree with
the Atkin–Lehner eigenvalues. In this case, it would be
necessary to work with the quaternion algebra ramified
at 5 and ∞. To exhibit the generality of our method, we
will work with the quaternion algebra ramified at 3 and
∞ instead.

Let B = (−1,−3) be such a quaternion algebra; an
Eichler order of level 15 (index 5 in a maximal or-
der) is given by R =

〈
1, i, 1+5j

2 , 1+i+3j+k
2

〉
. The num-

ber of classes of left R-ideals is 2, and a set of rep-
resentatives of the classes is given by {R, I}, where
I =

〈
2, 2i, 3+2i+5j

2 , 3+i+3j+k
2

〉
. The eigenvector for the

Brandt matrices corresponding to f is (1,−1), with
height 4, and the ternary quadratic forms associated with
R and I are

Q1(x, y, z) = Q2(x, y, z) = 4x2 + 15y2 + 16z2 − 4xz.

3.1 Imaginary Quadratic Twists

Let D < 0 be a fundamental discriminant. We say that
D is of type (s1, s2) if

(
D
3

)
= s1 and

(
D
5

)
= s2. We

need the sign of the functional equation for L(f, D, s) to
be +1, so that its central value does not vanish trivially.
For this to hold, we need D to be of type (−, +), (+,−),
(+, 0), (0,−), or (0, 0) (see [Atkin and Lehner 70]).

Note that the linear combination of classical theta se-
ries Θ(Q1) − Θ(Q2) is trivially zero, since Q1 = Q2; this
reflects the fact that the ramification does not match the
Atkin–Lehner eigenvalues. Instead, we set

Θ1(Qi) :=
1
4

∑
(x,y,z)∈Z3

ω
(i)
3 (x, y, z) ω

(i)
5 (x, y, z) qQi(x,y,z),

where ω3 and ω5 are weight functions of the second kind
as in [Mao et al. 07, Section 2.3]. We have Θ1(Q1) =
−Θ1(Q2), and hence we obtain a modular form of weight
3
2 and level 4 · 152, namely

g1 = 2 Θ1(Q1) = q4 + q16 + 2q19 + 2q31 + q64 + · · · .

D c1(D) L(f, D, 1)

−4 1 1.596242
−19 2 2.929625
−31 2 2.293549
−79 −2 1.436730
−91 −4 5.354613

−136 −4 4.380053
−139 −2 1.083132
−151 2 1.039203
−184 −4 3.765649
−199 −2 0.905237

TABLE 3. Coefficients of g1 and imaginary twists of 15A.

D c17(D) L(f, D, 1)

−3 2 0.921591
−8 −4 1.128714

−15 −2 0.824296
−20 4 1.427722
−23 4 0.665679
−35 −4 1.079257
−47 −4 0.465672
−68 0 0.000000
−83 4 0.350421
−87 4 0.684541
−95 0 0.000000

−107 4 0.308629
−120 −4 1.165730
−123 −4 0.575713
−132 −8 2.222961
−143 −8 1.067876
−152 8 1.035779
−155 8 2.051412
−167 4 0.247042
−168 8 1.970444
−183 0 0.000000
−195 −4 0.91447

TABLE 4. Coefficients of g17, and imaginary twists of 15A.

The corresponding formula is

L(f, D, 1) = k1
|c1(D)|2√|D| , D < 0 of type (−, +),

where c1(D) is the |D|th Fourier coefficient of g1, and

k1 =
1
4
· (f, f)
L(f, 1)

= 2L(f,−4, 1)

≈ 3.192484444263567020297938143;

see Table 3.
To obtain the other four types of negative D, we need

to choose an auxiliary prime l ≡ 1 (mod 4) such that(
l
3

)
=

(
l
5

)
= −1, and such that L(f, l, 1) �= 0, e.g.,
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l = 17. We then define the generalized theta series

Θ17(Qi) :=
1
4

∑
(x,y,z)∈Z3

ω
(i)
17 (x, y, z) qQi(x,y,z)/17,

where ω17 is the weight function of the first kind defined
in [Mao et al. 07, Section 2.2]. Now

g17 = 2 Θ17(Q1) = 2q3 − 4q8 − 2q15 + 4q20 + 4q23 + · · ·
is a weight- 3

2 modular form of level 4 · 15. As expected
by the multiplicity-one theorem of Kohnen [Kohnen 82],
this form turns out to be the same as the one constructed
by Böcherer and Schulze-Pillot. The formula in this case
is

L(f, D, 1) = � k17
|c17(D)|2√|D|

with D < 0 of type (+,−), (+, 0), (0,−), or (0, 0), and
� = 1, 2, 2, or 4 respectively, where c17(D) is the |D|th
Fourier coefficient of g17, and

k17 =
1
4
· (f, f)
L(f, 17, 1)

√
17

≈ 0.1995302777664729387686211340;

see Table 4.

3.2 Real Quadratic Twists

Let D > 0 be a fundamental discriminant. In order for
the sign of the functional equation of L(f, D, s) to be +1,
we need D to be of type (+, +), (0, +), (−,−), or (−, 0).

For the first two types we need an auxiliary prime
l ≡ 3 (mod 4) such that

(−l
3

)
= −1 and

(−l
5

)
= +1, and

such that L(f,−l, 1) �= 0, e.g., l = 19. Again

Θ−19(Qi)

:=
1
4

∑
(x,y,z)∈Z3

ω
(i)
19 (x, y, z) ω

(i)
5 (x, y, z) qQi(x,y,z)/19,

with ω19 of the first kind and ω5 of the second kind. The
modular form

g−19 = 2 Θ−19(Q1) = 2q − 4q4 + 2q9 − 8q21 + 8q24 + · · ·
has level 4 · 15 · 5, and the formula is

L(f, D, 1) = � k−19
|c−19(D)|2√|D| ,

D > 0 of type (+, +) or (0, +), � = 1 or 2 respectively;
c−19(D) is the Dth Fourier coefficient of g−19, and

k−19 =
1
4
· (f, f)
L(f,−19, 1)

√
19

=
1
4
L(f, 1)

≈ 0.08753769014578762644876130241.

D c−19(D) L(f, D, 1)

1 2 0.350151
21 −8 2.445093
24 8 2.287175
61 16 2.869261
69 −8 1.348902
76 −16 2.570563

109 16 2.146455
124 16 2.012446
129 −8 0.986530
136 0 0.000000
141 −8 0.943616
156 16 3.588416
181 0 0.000000
184 −16 1.652061

TABLE 5. Coefficients of g−19, and real twists of 15A.

D c−23(D) L(f, D, 1)

5 2 1.252737
8 −4 1.980752

17 4 1.358785
53 4 0.769550
65 −4 1.389787
77 −8 2.553816
92 8 2.336367

113 −4 0.527031
137 −4 0.478646
140 8 3.787922
152 0 0.000000
173 −12 3.833492
185 4 0.823795
188 −8 1.634392
197 12 3.592398

TABLE 6. Coefficients of g−23, and real twists of 15A.

Table 5 shows the values of the coefficients c−19(D)
and the central values L(f, D, 1) for 0 < D < 200 a
fundamental discriminant of type (+, +) or (0, +).

For the remaining two types we need an auxiliary
prime l ≡ 3 (mod 4) such that

(−l
3

)
= +1 and

(−l
5

)
=

−1, and such that L(f,−l, 1) �= 0, e.g., l = 23. As before,
we define

Θ−23(Qi)

:=
1
4

∑
(x,y,z)∈Z3

ω
(i)
23 (x, y, z) ω

(i)
3 (x, y, z) qQi(x,y,z)/23,

with ω23 of the first kind and ω3 of the second kind. The
modular form

g−23 = 2 Θ−23(Q1) = 2q5 − 4q8 + 4q17 − 4q32 + 4q53 + · · ·
has level 4 · 15 · 3, and the formula is

L(f, D, 1) = � k−23
|c−23(D)|2√|D| ,
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D > 0 of type (−,−) or (−, 0), � = 1 or 2 respectively;
c−23(D) is the Dth Fourier coefficient of g−23 and

k−23 =
1
4
· (f, f)
L(f,−23, 1)

√
23

≈ 0.3501507605831505057950452092 .

Table 6 shows the values of the coefficients c−19(D)
and the central values L(f, D, 1) for 0 < D < 200 a
fundamental discriminant of type (−,−) or (−, 0).

4. THE CURVE 75A

Let f be the modular form of level 75 corresponding to
the elliptic curve of minimal equation

y2 + y = x3 − x2 − 8x − 7.

The eigenvalue of f for the Atkin–Lehner involution W3

is +1, and for W25 it is −1; and the sign of the functional
equation for L(f, s) is +1.

Let B = (−1,−3) be the quaternion algebra ramified
at 3 and ∞, and consider the order R =

〈
1, i, 1+5j

2 , i+5k
2

〉
,

an Eichler order of level 75 (index 25 in a maximal or-
der). The class number of left R-ideals is 6, and the
eigenvector for the Brandt matrices that corresponds to
f is (1,−1, 1,−1, 0, 0), with height 6.

The ternary quadratic forms associated with the right
orders of the chosen ideal class representatives are

Q1(x, y, z) = Q2(x, y, z) = 4x2 + 75y2 + 76z2 − 4xz,

Q3(x, y, z) = Q4(x, y, z)

= 16x2 + 19y2 + 79z2 + 4xy + 16xz + 2yz,

Q5(x, y, z) = Q6(x, y, z)

= 24x2 + 31y2 + 39z2 + 24xy + 12xz + 6yz,

respectively.
We will assume that 5 � D. Indeed, the twist of f by

the quadratic character of conductor 5 is another modu-
lar form f ′ of level 75; thus we have

L(f, 5D, 1) = L(f ′, D, 1),

for 5D a fundamental discriminant. By applying the
same procedure to the modular form f ′ we can compute
the central values for these twists. So, we actually need
eight different modular forms of weight 3

2 to compute all
the twisted central values.

4.1 Imaginary Quadratic Twists

Let D < 0 be a fundamental discriminant. If the sign of
the functional equation for L(f, D, s) is +1, the type of
D has to be either (−, +) or (−,−).

For the first case, we look at the generalized theta
series

Θ1(Qi) :=
1
4

∑
(x,y,z)∈Z3

ω
(i)
3 (x, y, z) ω

(i)
5 (x, y, z) qQi(x,y,z);

we obtain the modular form

g1 = 2Θ1(Q1) − 2Θ1(Q3)

= q4 − 2q16 − q19 − q31 − 2q64 + 3q76 + 4q79 − q91 + · · · .

The formula

L(f, D, 1) = k1
|c1(D)|2√|D| , D < 0 of type (−, +),

is satisfied (see Table 7), where c1(D) is the |D|th Fourier
coefficient of g1 and

k1 =
1
6
· (f, f)
L(f, 1)

= 2L(f,−4, 1)

≈ 4.669532748718719327951206761.

In the second case, we need to choose an auxiliary
prime l ≡ 1 (mod 4) such that

(
l
3

)
= +1,

(
l
5

)
= −1, and

L(f, l, 1) �= 0, for example l = 13, and define

Θ13(Qi)

:=
1
4

∑
(x,y,z)∈Z3

ω
(i)
13 (x, y, z)ω(i)

3 (x, y, z)ω(i)
5 (x, y, z)

× qQi(x,y,z)/13.

We obtain the modular form

g13 = 2Θ13(Q1) − 2Θ13(Q3)

= 3q7 + 3q28 + 3q43 + 3q52 − 3q67 − 6q88 + · · · ,

and the formula

L(f, D, 1) = k13
|c13(D)|2√|D| , D < 0 of type (−,−),

is satisfied (see Table 8), where c13(D) is the |D|th
Fourier coefficient of g13 and

k13 =
1
6
· (f, f)
L(f, 13, 1)

√
13

≈ 1.556510916239573109317068920.
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D c1(D) L(f, D, 1)

−4 1 2.334766
−19 −1 1.071264
−31 −1 0.838673
−79 4 8.405816
−91 −1 0.489500

−136 2 1.601637
−139 −2 1.584258
−151 5 9.500030
−184 2 1.376970
−199 −5 8.275360

TABLE 7. Coefficients of g1, and imaginary twists of 75A.

D c13(D) L(f, D, 1)

−7 3 5.294752
−43 3 2.136291
−52 3 1.942643
−67 −3 1.711423
−88 −6 5.973286

−103 −6 5.521233
−127 −6 4.972248
−148 0 0.000000
−163 3 1.097238
−187 0 0.000000

TABLE 8. Coefficients of g13, and imaginary twists of 75A.

4.2 Real Quadratic Twists

Let D > 0 be a fundamental discriminant. The only pos-
sibilities for which the sign of the functional equation for
L(f, D, s) is +1 are the discriminants D of types (+, +),
(0, +), (+,−), and (0,−).

For the first two cases we can use the generalized theta
series

Θ−19(Qi)

:=
1
2

∑
(x,y,z)∈Z3

ω
(i)
19 (x, y, z) ω

(i)
5 (x, y, z) qQi(x,y,z)/19.

Thus we obtain a modular form of weight 3
2 , namely

g−19 = q + q4 + q9 − q21 − 2q24 − q36 − 4q49 − q61 + · · · ,

and the formula is

L(f, D, 1) = � k−19
|c−19(D)|2√|D| ,

D > 0 of type (+, +) or (0, +), � = 1 or 2 respectively,
c−19(D) the Dth Fourier coefficient of g−19, and

k−19 =
1
6
· (f, f)
L(f,−19, 1)

√
19

= L(f, 1)

≈ 1.402539940216221119844494086;

D c−19(D) L(f, D, 1)

1 1 1.402540
21 −1 0.612119
24 −2 2.290338
61 −1 0.179577
69 2 1.350768
76 1 0.160882

109 −1 0.134339
124 5 3.148795
129 5 6.174338
136 −6 4.329605
141 2 0.944921
156 −1 0.224586
181 3 0.938250
184 −2 0.413586

TABLE 9. Coefficients of g−19, and real twists of 75A.

D c−7(D) L(f, D, 1)

12 3 2.429270
13 3 1.166984
28 −3 0.795165
33 −6 5.859621
37 0 0.000000
57 −3 1.114626
73 6 1.969859
88 −6 1.794135
93 −3 0.872620
97 9 3.844972

133 −3 0.364847
157 3 0.335805
168 6 2.596999
172 3 0.320828
177 −6 2.530113
193 9 2.725840

TABLE 10. Coefficients of g−7, and real twists of 75A.

see Table 9.
In the other two cases we can use the generalized theta

series

Θ−7(Qi)

:=
1
2

∑
(x,y,z)∈Z3

ω
(i)
7 (x, y, z) ω

(i)
5 (x, y, z) qQi(x,y,z)/7.

We obtain a modular form of weight 3
2 ,

g−7 = 3q12 + 3q13 − 3q28 − 6q33 + 6q48 − 9q52 − 3q57

+ 6q73 + · · · ,

satisfying the formula

L(f, D, 1) = � k−7
|c−7(D)|2√|D| ,
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D > 0 of type (+,−) or (0,−), � = 1 or 2 respectively,
c−7(D) the Dth Fourier coefficient of g−7, and

k−7 =
1
6
· (f, f)
L(f,−7, 1)

√
7

≈ 0.4675133134054070399481646950;

see Table 10.

5. COMPUTATION

Using the methods of the previous section, we computed
the coefficients up to 108 for all the theta series of weight
3
2 corresponding to elliptic curves 27A and 15A. The
computations of the theta series for the elliptic curve 75A

are currently underway, and will be published online at
http://www.ma.utexas.edu/cnt/. All the computations
were done on a cluster of 2.2-GHz AMD Opteron proces-
sors funded by an NSF SCREMS grant and run by the
Department of Mathematics of the University of Texas
at Austin.1

The computation for 27A is quite fast. Indeed, the
form g1 is a combination of classical theta series, and was
computed in about 4 cpu hours using the standard qfrep

function of PARI/GP.2 The form g7, on the other hand,
requires the use of weight functions, and computing it
took about 40 cpu hours using a custom qfrepmod func-
tion written in C for this purpose, together with a col-
lection of GP scripts to compute weight functions. The
strategy is to use the fast qfrepmod function to compute
theta series with congruences where the weight functions
are constant, and combine them in a GP script.

The computation for 15A is much longer. Indeed,
the higher conductor of the weight functions requires too
many congruence theta series except in the case l = 1.
We actually divide the computation of the coefficients
of the gi by the congruence class of its index modulo
60. In particular, we avoid the need to reserve memory
for coefficients that are trivially 0 (namely, only half the
indices are actual discriminants, and of those, half cor-
respond to quadratic twists with minus sign in the func-
tional equation). Moreover, each computation requires
only a fraction of the space to keep all the coefficients
in main memory while counting vectors. It also lends it-
self to a trivial way to parallelize the computation in 30
independent processes.

The computation used 30 cores in the above-
mentioned cluster, with a wall time of 26.5 days (this

1See http://www.ma.utexas.edu/cluster/.
2See http://pari.math.u-bordeaux.fr/.

was the time for the two longest-running processes, cor-
responding to discriminants congruent to 2 and 8 modulo
60). The accumulated running times were as follows:

g1 0.30 days
g17 110.19 days
g−19 106.88 days
g−23 131.80 days
total 349.17 days

We believe that the running times for all but g1 are af-
fected by the number of congruences, the combination of
which is done by a GP script. Thus, we expect that the
times for the last three computations can be improved
considerably with a careful rewriting in C of this code.

Note also that the modular form we are calling here g17

can also be computed as a difference of two classical theta
series by working with the quaternion algebra ramified
at 3 and ∞, and this will be much quicker in all cases.
Thus, the totality of imaginary quadratic twists could be
quickly computed.

6. RANDOM MATRIX THEORY

The purpose of this section is to check some of the various
conjectures of [Conrey et al. 02] and [Conrey et al. 06].
We start by stating the conjectures; we checked each of
them numerically with the computation discussed in the
previous section.

An important comment should be made: in [Conrey et
al. 02] and [Conrey et al. 06], the conjectures are stated
and checked, in case of nonprime level, only for a frac-
tion of all quadratic twists, namely those that can be
computed without weight functions using the methods of
[Gross 87] and [Böcherer and Schulze-Pillot 90]. In the
case of the real quadratic twists they have been checked
using the methods in [Pacetti and Tornaŕıa 07a, Pacetti
and Tornaŕıa 07b]. In both cases this has been based
on a massive computation of classical theta series that
was done in [Conrey et al. 06], using ternary quadratic
forms data that was computed by the second author with
aid from the first author [Tornaŕıa 04], first published in
December 2003, and in its final form in January 2004.

In this paper we have shown how to compute, in a
few examples, enough weight- 3

2 modular forms so that
one can compute the central values for all the quadratic
twists. Hence we state the conjectures for all the
quadratic twists for which the sign of the functional equa-
tion is +, and give numerical evidence for the conjectures
for all such twists. The task remains of doing a massive



Pacetti and Tornaría: Computing Central Values of Twisted L-Series: The Case of Composite Levels 467

computation like the one done in [Tornaŕıa 04] and [Con-
rey et al. 06] to check these conjectures for a very large
set of quadratic twists in all the possible sign and residue
class combinations, for a large number of different elliptic
curves.

In order to state the conjectures, fix an elliptic curve
E defined over Q. We let S(X) be the set of fundamental
discriminants, of absolute value up to X , such that the
corresponding quadratic twist of E has positive sign in
the functional equation.

We will refine the conjectures of [Conrey et al. 02],
sorting the discriminants by congruence classes in addi-
tion to sign: for M a positive integer and a an integer,
we let

S(X ; a, M) := {d ∈ S(X) : d ≡ a (mod M), ad > 0}.

Among those, we consider the subset Sp(X ; a, M) of
prime discriminants, i.e.,

Sp(X ; a, M) = {d ∈ S(X ; a, M) : d is prime}.

We are interested in the subsets

S0(X ; a, M) = {d ∈ S(X ; a, M) : L(E, d, 1) = 0}

and

S0
p(X ; a, M) = {d ∈ Sp(X ; a, M) : L(E, d, 1) = 0}

of discriminants with twisted central value vanishing (for
nontrivial reasons, and to order at least 2, since the sign
of the functional equation is +).

Conjecture 6.1. There are constants cp
E(a, M) ≥ 0 such

that

#S0
p(X ; a, M)

#Sp(X ; a, M)
∼ cp

E(a, M) · X−1/4 (log X)3/8.

We remark that the constant cp
E(a, M) could be 0, as

noted by [Delaunay 07]. In contrast, we believe that the
constants cE(a, M) in the next conjecture should always
be positive.

Conjecture 6.2. There are constants cE(a, M) ≥ 0 such
that

#S0(X ; a, M)
#S(X ; a, M)

∼ cE(a, M) · X−1/4 (log X)11/8.

a #S0(X; a, 12) #S(X; a, 12) cE(X; a, 12)

1 295819 7599045 0.07087151
4 145496 3799561 0.06971437

−7 226182 7599088 0.05418776
−4 110886 3799541 0.05313127

TABLE 11. Numerics for 27A, all discriminants, with
X = 108.

a #S0
p(X; a, 12) #Sp(X; a, 12) cp

E(X; a, 12)

1 23700 1440021 0.55193748

−7 18233 1440496 0.42447923

TABLE 12. Numerics for 27A, prime discriminants,
with X = 108.

In Table 11 we give the experimental numerics for

cE(X ; a, M) :=
#S0(X ; a, M)
#S(X ; a, M)

· X1/4 (log X)−11/8

for the elliptic curve 27A, with M = 12 and X = 108.
Only the values of a that lead to discriminants in S(X)
are displayed. In Table 12 we show the corresponding
numerics for prime discriminants, where

cp
E(X ; a, M) :=

#S0(X ; a, M)
#S(X ; a, M)

· X1/4 (log X)−3/8.

In Tables 13 and 14 we investigate the dependence on a

of the constants cE(a, M), for the elliptic curve 15A and
M = 60. An interesting phenomenon can be observed
in these tables: the constants cE(a, M) seem to depend
only on the square class of a mod M .

Conjecture 6.3. Let a and b be integers in the same square
class modulo M , i.e., ab > 0 and there is an integer x

a #S0(X; a, 60) #S(X; a, 60) cE(X; a, 60)

1 103871 1583103 0.11945101
49 103201 1583109 0.11868006

4 56689 791596 0.13037667
16 57272 791596 0.13171749

9 53190 1055442 0.09174878
21 53325 1055430 0.09198269

24 45765 527715 0.15788421
36 46085 527707 0.15899059

17 62882 1583163 0.07231117
53 63276 1583149 0.07276489

8 56117 791553 0.12906816
32 55560 791565 0.12778513

5 70561 1266445 0.10143389

20 46229 633300 0.13289532

TABLE 13. Numerics for real quadratic twists of 15A,
with X = 108.
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a #S0(X; a, 60) #S(X; a, 60) cE(X; a, 60)

−19 75626 1583138 0.08696751
−31 75333 1583128 0.08663111

−4 62536 791570 0.14382867
−16 62999 791558 0.14489573

−23 67381 1583166 0.07748465
−47 67794 1583158 0.07795997

−8 61142 791545 0.14062700
−32 60724 791565 0.13966207

−3 64191 1055419 0.11072710
−27 64178 1055408 0.11070583

−12 41844 527727 0.14435391
−48 41589 527728 0.14347394

−35 72803 1266486 0.10465345

−20 53586 633266 0.15405289

−15 50383 844328 0.10863694

−60 42661 422192 0.18396098

TABLE 14. Numerics for imaginary quadratic twists of
15A, with X = 108.

0.5534

0.42247
1e+05 1e+08

FIGURE 1. Value of cp
E(X; +1, 1) for 27A.

relatively prime to M such that a ≡ bx2 (mod M). Then
cE(a, M) = cE(b, M).

The case of Conjectures 6.1 and 6.2 stated in [Conrey
et al. 02] corresponds to the case M = 1, with a = ±1,
and moreover restricted to partial subsets of discrimi-
nants. In Figures 1 and 2 we show the numerics for
the elliptic curve 27A in the case of prime discriminants

0.42453

0.35122
1e+05 1e+08

FIGURE 2. Value of cp
E(X;−1, 1) for 27A.

0.070488

0.06566
1e+05 1e+08

FIGURE 3. Value of cE(X; +1, 1) for 27A.

0.053852

0.047872
1e+05 1e+08

FIGURE 4. Value of cE(X;−1, 1) for 27A.

(Conjecture 6.1), and in Figures 3 and 4 we show the nu-
merics in the case of all discriminants (Conjecture 6.2).

For the elliptic curve 15A we have the corresponding
Figure 5 for the case of prime discriminants, Figures 6
and 7 for the case of all discriminants. By [Delaunay 07],
we know that the constant cp

E(−1, 1) is 0; thus we show
only positive prime discriminants for this curve. On the
other hand, the graphs of cE(X ;±1, 1) for this curve seem
to be too smooth, as if they had logarithmic growth, for
example. We do not have an explanation for this.

We recall another conjecture from [Conrey et al. 02]:
let q be a prime and consider the ratios

R±
q (X) =

#
{

d ∈ S0(X ;±1, 1) :
(

d
q

)
= +1

}
#

{
d ∈ S0(X ;±1, 1) :

(
d
q

)
= −1

} .

0.59044

0.48199
1e+05 1e+08

FIGURE 5. Value of cp
E(X; +1, 1) for 15A.
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0.10925

0.081438
1e+05 1e+08

FIGURE 6. Value of cE(X; +1, 1) for 15A.

0.11095

0.079695
1e+05 1e+08

FIGURE 7. Value of cE(X;−1, 1) for 15A.

Let

Rq :=

√
q + 1 − aq

q + 1 + aq
,

where aq = q + 1 − #E(Fq).

Conjecture 6.4. Suppose E has good reduction modulo q.
Then

lim
X→∞

R±
q (X) = Rq.

As noted in [Conrey et al. 02], the conjectural value
Rq of the limit is the square root of the ratio of #E(Fq)
to #Eχ(Fq), where χ is a quadratic character such that
χ(q) = −1.

In Figures 8 and 9 we plot, for the elliptic curve 27A

and for each prime number q = 2, . . . , 3571, the values
R+

q (108) − Rq and R−
q (108) − Rq, respectively.

In Figures 10 and 11 we do the same for the elliptic
curve 15A. It can be seen on the graphs that these values
are close to 0 (the expected limit as X goes to infinity).

In Figures 12 and 13 we plot the distribution of
nonzero central values of the twisted L-series of the el-
liptic curve 27A by positive and negative fundamental
discriminants, respectively. The same graphs for the el-
liptic curve 15A appear in Figures 14 and 15.

The central limit conjecture (see [Conrey et al. 06,
Conjecture 3.3]) states that the distribution of nonzero

0.045918

-0.028209
2 3571

FIGURE 8. The values R+
q (108) − Rq for the elliptic

curve 27A and 2 ≤ q ≤ 3571 prime.

0.043458

-0.032361
2 3571

FIGURE 9. The values R−
q (108) − Rq for the elliptic

curve 27A and 2 ≤ q ≤ 3571 prime.

central values of the twisted L-series (scaled in a reason-
able way) behaves like a standard Gaussian; concretely,
for any pair of real numbers α < β, the percentage of
discriminants d ∈ S(X ;±1, 1) with

α <
log(L(E, d, 1)) + 1

2 log log |d|√
log log |d| < β

tends to
1√
2π

∫ β

α

exp
(−t2

2

)
dt

as X tends to infinity. In Figure 16 we plot the value
distribution of the twisted L-series of the elliptic curves

0.038837

-0.032455
2 3571

FIGURE 10. The values R+
q (108) − Rq for the elliptic

curve E15A and 2 ≤ q ≤ 3571 prime.
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0.03163

-0.040342
2 3571

FIGURE 11. The values R−
q (108) − Rq for the elliptic

curve E15A and 2 ≤ q ≤ 3571 prime.

7135.5

18.17
0.01 5

FIGURE 12. Value distribution of L(27A, d, 1) for 0 <
d < 108.

7959.3

16.84
0.01 5

FIGURE 13. Value distribution of L(27A, d, 1) for 0 >
d > −108.

27A and 15A by positive and negative fundamental dis-
criminants compared to the standard Gaussian.
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[Pacetti and Tornaŕıa 07b] A. Pacetti and G. Tornaŕıa. “Ex-
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