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We determine the minimal Mahler measure of a primitive irre-
ducible noncyclotomic polynomial with integer coefficients and
fixed degree D, for each even degree D ≤ 54. We also com-
pute all primitive irreducible noncyclotomic polynomials with
measure less than 1.3 and degree at most 44.

1. INTRODUCTION

The Mahler measure of a polynomial P ∈ C[X ], where

P (X) = c0X
D + c1X

D−1 + · · · + cD = c0

D∏
k=1

(X − αk)

and c0 �= 0, is defined by

M(P ) := |c0|
D∏

k=1

max(1, |αk|).

For an algebraic number α, we denote by M(α) the
Mahler measure of its minimal polynomial in Z[X ]. For
P ∈ Z[X ], certainly M(P ) ≥ 1, and a well-known
theorem of Kronecker implies that M(P ) = 1 if and
only if P is a product of cyclotomic polynomials and
a power of X . In 1933, D. H. Lehmer [Lehmer 33]
asked whether there exists a positive number ε such that
if α is neither 0 nor a root of unity, then M(α) ≥
1 + ε. This is known as Lehmer’s question, and it re-
mains an open problem. This question arises in a va-
riety of mathematical contexts, including number the-
ory [Schinzel 00, Waldschmidt 00, Borwein 02], ergodic
theory [Schmidt 95, Everest and Ward 99], knot theory
[Hironaka 01, Silver and Williams 04], and the study of
Coxeter systems [McMullen 02, Hironaka 03]. See [Ghate
and Hironaka 01, Mossinghoff 07, Smyth 08] for addi-
tional references.

Lehmer’s question has been resolved in some spe-
cial cases. We say that a polynomial is reciprocal if
P (X) = XDP (1/X), and that an algebraic number is re-
ciprocal if its minimal polynomial is reciprocal. In 1951,
Breusch [Breusch 51] proved that if α is a nonrecipro-
cal algebraic number, and α �∈ {0, 1}, then M(α) >
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1.179652 . . . . In 1971, Smyth [Smyth 71] determined
the best possible lower bound in this case, showing that
M(α) ≥ θ0 := M(X3−X −1) = 1.324717 . . . , the small-
est Pisot number. Lower bounds have also been estab-
lished for M(α) when α is totally real [Schinzel 73, Höhn
and Skoruppa 93] or totally p-adic [Bombieri and Zan-
nier 01], when the splitting field of α over Q is abelian
[Amoroso and Dvornicich 00] or dihedral [Garza 08] (and
α is not a root of unity), and when the coefficients of
the minimal polynomial of α satisfy certain arithmetic
conditions [Borwein et al. 07, Dubickas and Mossinghoff
05].

In the general case, the best known explicit result is
due to Voutier, who proved in 1996 [Voutier 96] that if
α is algebraic of degree D > 2 and is not a root of unity,
then

M(α) > 1 +
1
4

(
log log D

log D

)3

.

This is an explicit version of an inequality of Dobrowolski
[Dobrowolski 79].

The smallest known Mahler measure larger than 1 was
found by Lehmer in 1933: The polynomial

�(X) = X10 + X9 − X7 − X6 − X5 − X4 − X3 + X + 1

has just one root outside the unit disk, at the real num-
ber λ0 := 1.176280 . . . (in fact, λ0 is the smallest known
Salem number), so M(�) = λ0. A number of prior com-
putations have established lower bounds on the degree
of an algebraic integer α with 1 < M(α) < λ0, if such
a number exists. Boyd [Boyd 80, Boyd 89] computed
all irreducible noncyclotomic integer polynomials P with
degree D ≤ 20 having M(P ) < 1.3, and the first au-
thor [Mossinghoff 98] used this same algorithm to extend
the computation to D ≤ 24. More recently, Flammang,
the second author, and Sac-Épée [Flammang et al. 06]
determined all irreducible noncyclotomic polynomials P

with M(P ) < θ0 and D ≤ 36, and polynomials P with
M(P ) < 1.31 and D = 38 or 40. These computations em-
ployed a new method that uses a large family of explicit
auxiliary functions to produce improved bounds on the
coefficients of polynomials with small Mahler measure.

At a conference in Bristol, UK, in April 2006, P. Bor-
wein invited the authors to extend these computations to
larger degrees on a cluster housed at the Centre for Inter-
disciplinary Research in the Mathematical and Compu-
tational Sciences (IRMACS) at Simon Fraser University,
in British Columbia. Using otherwise idle cycles on the
IRMACS workstations, over a period of four months we
searched for polynomials with small Mahler measure, ac-
cumulating nearly six years of CPU time altogether.

With these computations, we establish the following
theorem. Recall first that a polynomial P (X) is primitive
if it cannot be expressed as a polynomial in Xk, for some
k ≥ 2. It is easy to verify that M(P (Xk)) = M(P (X))
for all integers k ≥ 1, so in the following statement we
restrict to primitive polynomials.

Theorem 1.1. If a polynomial P ∈ Z[X ] satisfies 1 <

M(P ) < λ0, then deg P ≥ 56. Further, if P is an ir-
reducible noncyclotomic primitive polynomial of even de-
gree D, with 8 ≤ D ≤ 54, then M(P ) ≥ MD, where MD

is listed for each D in Table 1.

Let H(P ) denote the height of P , defined as its largest
coefficient in absolute value, so H(P ) = max{|ck| : 0 ≤
k ≤ D}. Also, let L(P ) denote its length, defined by
L(P ) =

∑D
k=0 |ck|.

The first author maintains a website [Mossinghoff 07]
that contains all known irreducible polynomials P ∈
Z[X ] with deg P ≤ 180 and M(P ) < 1.3. This in-
cludes the polynomials found with the prior exhaustive
searches, plus a large number of polynomials discovered
using several heuristic searches. These heuristic meth-
ods include testing polynomials with height 1 and a fixed
length [Mossinghoff 98, Lisonek 00], a numerical descent
technique [Rhin and Sac-Épée 03], methods for gener-
ating polynomials whose coefficients are in a particular
sense close to those of certain cyclotomic polynomials
[Mossinghoff et al. 98, Rhin and Sac-Épée 03], and check-
ing polynomials associated with certain small limit points
of Mahler measures [Boyd and Mossinghoff 05].

Of these searches, the method of testing polynomials
of a particular degree with height 1 and fixed length n

has been remarkably successful. It is well known (see, for
instance, [Mossinghoff 03]) that if M(P ) < 2, then there
exists a polynomial Q in Z[X ] with H(PQ) = 1. It is not
known whether one can always select Q with M(Q) =
1, but in practice this appears to be the case, at least
for polynomials P with fairly small degree. Further, it
seems that often one can select Q with very small degree.
(It follows from [Bombieri and Vaaler 87] that if P is
irreducible, deg P = D, and M(P ) < 2, then such a
polynomial Q exists with deg Q = O( D log D

log 2−log M(P ) ).)
Table 5, in Section 3, summarizes the search on height-

1 polynomials performed in [Mossinghoff 98]. The re-
cent article [Flammang et al. 06] verified that this search
found all polynomials with measure less than 1.3 and
degree at most 40. In addition, no heuristic search per-
formed in the last decade found any additional polyno-
mials with measure less than 1.3 and degree less than
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D MD ν Half of Coefficients

8 1.28063816 1 1 0 0 1-1

10 1.17628082 1 1 1 0-1-1-1

12 1.22778556 2 1 1 1 0-1-1-1

14 1.20002652 1 1 0 0 1-1 0 0-1

16 1.22427891 2 1 1 0-1-1 0 1 1 1

18 1.18836815 1 1 1 1 1 0 0-1-1-1-1

20 1.21282418 2 1 1 0 0 1 1 0-1-1-1-1

22 1.20501985 2 1 0 1 0 0 1-1 1 0 0 1-1

24 1.21885515 2 1 0 0 0 0 1 0-1 0 0 0 0-1

26 1.22377745 3 1 1 1 0 0-1-1-1-1 0 0 1 0 1

28 1.20795003 2 1 1 1 1 0 0 0-1-1-1-1 0 0 0 1

30 1.22561985 2 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1

32 1.23608337 4 1 1 1 1 0-1-1-2-1 0 0 1 1 0 0 0-1

34 1.22028744 3 1 0 1 0 0 1-1 1-1 0 0-1 1-1 0 0-1 1

36 1.22649330 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-1-1

38 1.22344738 3 1 1 0-1-1 0 0-1-1 0 1 1 0 0 1 1 0-1-1-1

40 1.23624956 3 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

42 1.23029547 4 1 0 1 0 0 0-1 1-1 1 0 0 1-1 1-1 1 0 0 1-1 1

44 1.23667481 4 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0-1 0 0 0 0 0 0-1

46 1.23074301 3 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0-1 0 0-1 0-1 0 0-1

48 1.23220295 4 1 1 0 0 1 1 0-1-1 0 0-1-1 0 1 1 0 0 1 1 0-1-1-1-1

50 1.24037907 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-1-1

52 1.23434837 4 1 1 0-1-1 0 0-1-1 0 1 1 0 0 1 1 0-1-1 0 0-1-1 0 1 1 1

54 1.23656692 5 1 0 1 0 0 0-1 1-1 1 0 0 1-1 1-1 0 0-1 1-1 1-1 0 0-1 1-1

TABLE 1. Smallest Mahler measures of primitive irreducible noncyclotomic polynomials by degree D. The column labeled
ν indicates the number of roots outside the unit disk.

174. It is somewhat surprising, then, that the searches
we describe here discovered three new polynomials with
Mahler measure below 1.3 and degree D ≤ 52. These
polynomials are listed in Table 4, in Section 3.

Section 2 describes the search method, and Section 3
summarizes our computations and results.

2. THE ALGORITHM

For a fixed even integer D = 2d and a fixed real number
M ∈ (1, θ0], we wish to determine the set of primitive ir-
reducible noncyclotomic polynomials P with deg P = D

and M(P ) < M . We describe the algorithm of [Flam-
mang et al. 06] for calculating this set of polynomials,
and our description here follows that paper. The set is
computed in three principal steps. First, we determine
bounds on certain symmetric functions of the roots of
a polynomial P satisfying deg P = D and M(P ) < M .
These inequalities determine bounds on the coefficients of
an admissible polynomial P , and we let E1 = E1(D, M)
denote the set of polynomials whose coefficients satisfy
these bounds. Second, we test each polynomial P ∈ E1

against some additional necessary conditions, and the
surviving polynomials form a set E2 = E2(D, M). This
step requires the great majority of the computation time.

Third, we subject each polynomial P ∈ E2 to further
tests using Graeffe root squaring, and finally we com-
pute the measures of the surviving polynomials. This
produces the set we desire, which we denote by E3 =
E3(D, M).

2.1 Notation

By Smyth’s theorem, a nonzero algebraic integer with
measure less than θ0 must be reciprocal. Let P denote
its minimal polynomial, which must have even degree 2d:

P (X) = X2d + c1X
2d−1 + · · · + c1X + 1 =

2d∏
i=1

(X − αi).

We may suppose that |αi| ≥ 1 and αd+i = 1/αi for 1 ≤
i ≤ d. We define a polynomial Q associated with the
polynomial P by the formula XdQ(X + 1/X) = P (X).
Thus, Q is a monic polynomial of degree d with integer
coefficients,

Q(X) = Xd + b1X
d−1 + · · · + bd−1X + bd,

and its roots are γi := αi +1/αi for 1 ≤ i ≤ d. For k ≥ 1,
let

γi,k := αk
i +

1
αk

i

,
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and let

sk :=
d∑

i=1

γi,k =
2d∑

i=1

αk
i .

If we suppose that 1 ≤ |αi| ≤ Ma with 0 < a ≤ 1, then
γi lies inside the ellipse

Ea :=
{

z = x + iy :
( x

A

)2

+
( y

B

)2

≤ 1
}

,

where A = Ma + M−a and B = Ma − M−a. Last, we
let E0 denote the real interval [−2, 2].

2.2 Bounds on the sk

To compute the bounds on the sk, we use a family of
auxiliary functions, each of the form

f(z) = Re(z) −
J∑

j=1

ej log |Qj(z)| ≥ m. (2–1)

Here, z is a complex number in the ellipse Ea, the ej are
positive real numbers, and each Qj belongs to a particu-
lar finite set of integer polynomials. The numbers ej are
always chosen to obtain the best auxiliary function. Such
an auxiliary function was produced by Smyth [Smyth 84]
to study the absolute trace of totally positive algebraic
integers.

Certainly,
∑d

i=1 f(γi) ≥ dm, and so

s1 ≥ dm +
J∑

j=1

ej log

∣∣∣∣∣
d∏

i=1

Qj(γi)

∣∣∣∣∣ .

We assume now that the polynomial Q does not divide
any polynomial Qj for 1 ≤ j ≤ J . It follows that∏d

i=1 Qj(γi) is a nonzero rational integer, since it is the
resultant of Q and Qj , and therefore

s1 ≥ dm.

Since the numbers −γi also lie inside the ellipse Ea, we
obtain the same lower bound for −s1 if Q(−X) satisfies
the same condition as Q. The same method is used to
obtain bounds for sk for 2 ≤ k ≤ 40.

If we replace the real numbers ej by rational numbers
in the auxiliary function (2–1), we may write

f(z) = Re(z) − t

h
log |H(z)| ,

where H ∈ Z[X ] has degree h and t is a positive real
number. We wish to find a function f whose minimum m

in Ea is as large as possible. That is, we seek a polynomial
H ∈ Z[X ] such that

sup
z∈Ea

|H(z)|t/h e−Re(z) ≤ e−m.

Now, if we suppose that t is fixed, say t = 1, it is clear
that we need an effective upper bound on the quantity

tZ,ϕ(Ea) := lim inf
h≥1

h→∞
inf

H∈Z[X]
deg H=h

sup
z∈Ea

|H(z)|t/h ϕ(z), (2–2)

where we use the weight ϕ(z) = e−Re(z). To find an
upper bound for tZ,ϕ(Ea), it suffices to obtain an explicit
polynomial H ∈ Z[X ], and then use the sequence of the
successive powers of H . It can be seen that in (2–2), if t

is fixed, we have a generalization of the classical integer
transfinite diameter.

Let K be a compact subset of C. If P ∈ C[X ], we
put |P |∞,K = supz∈K |P (z)|. Recall that the integer
transfinite diameter of K is defined by

tZ(K) = lim inf
n≥1

n→∞
min

P∈Z[X]
deg P=n

|P |1/n
∞,K .

It is known that if K = [a, b] is a real interval of length
b− a ≥ 4, then tZ(K) = (b− a)/4. However, if b− a < 4,
then tZ(K) < 1, but in this case the exact value of tZ(K)
is unknown. We also recall that a polynomial Pn with
integer coefficients and positive degree n is a Chebyshev
polynomial if its supremum norm on K is smallest among
all integer polynomials of the same degree, so

|Pn|∞,K = min{|P |∞,K : P ∈ Z[X ] and deg P = n}.

(Note that Pn need not be unique.) For more details, see
[Borwein and Erdélyi 96, Flammang et al. 97, Pritsker
05].

In order to obtain a good upper bound on tZ,ϕ(Ea)
when the parameter t in (2–2) is fixed, in general one
needs a polynomial H of rather large degree—about 108.
However, it is not possible to compute a Chebyshev poly-
nomial of such a large degree. Instead, we employ the
third author’s algorithm [Wu 03] to compute Chebyshev
polynomials, or at least polynomials whose supremum
norm is close to minimal, of degree less than 40, then use
factors of these polynomials as the Qj in the auxiliary
function (2–1). More generally, when t varies, we first
select an initial value of t (say t0 = 1). We compute a
polynomial H1 of small degree (usually at most 5), let
Q1 be an irreducible factor of H1, and select a positive
real number e1 to optimize our auxiliary function f1. We
deduce from this the value of t = t1, compute a new
polynomial H2 and irreducible factor Q2, then optimize
f2 with respect to the two factors Q1 and Q2. This pro-
cess is continued while deg(Hi) ≤ 40. We use Smyth’s
semi-infinite linear programming method [Smyth 84] to
optimize the auxiliary function at each stage.
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As in [Flammang et al. 06], we also obtain additional
bounds on the sk by incorporating values of the function
g(a) := minz∈Ea f(z). In fact, we derive seven different
sets of bounds for the sk by considering the value of the
root α1 of P of largest modulus:

• In the first six cases, we suppose that |α1| >
√

M .
Thus, α1 is necessarily real, and we may assume that
α1 > 0. The six subcases arise by selecting an inte-
ger j between 1 and 6 such that

t1(j) =
1
2

+
j − 1
12

≤ log |α1|
log M

<
1
2

+
j

12
= t2(j).

In case j, the numbers γ2, . . . , γd all lie in the el-
lipse E 1

2− (j−1)
12

, and are therefore close to the real
axis. In this case, the worst situation occurs when
P has 2d − 2 roots of modulus 1 (i.e., the corre-
sponding numbers γi,k lie in E0), one root has mod-
ulus M

1
2− (j−1)

12 , and the remaining root has modulus
1/M

1
2− (j−1)

12 .

• In the seventh case, we assume that all the roots of
P have modulus at most

√
M . In this case, the worst

situation occurs when 2d− 4 roots αi have modulus
1, two have modulus

√
M , and two have modulus

1/
√

M . Here, we may assume that the first nonzero
coefficient bi of Q with i odd satisfies bi > 0.

Note that in any case, in the worst situation we have at
least d − 2 roots of Q lying in the real interval (−2, 2).
This is a favorable situation, since our auxiliary functions
are most efficient on the real axis.

We describe a further improvement in the bounds for
s2k for 1 ≤ k ≤ 20. Since the seventh case above produces
the most important contribution to E1, we study some
relations between sk and s2k in this case. The heuris-
tic idea is that sk and s2k cannot simultaneously lie too
close to the respective bounds we computed earlier. We
consider an auxiliary function f of the following type:

f(z) = Re(z2−2)+e0 Re(z)−
∑

1≤j≤J

ej log |Qj(z)| , (2–3)

with the same conditions as before for the numbers ej

for 0 ≤ j ≤ J and for the polynomials Qj . Since γi,2 =
α2

i + 1/α2
i = (αi + 1/αi)2 − 2 = γ2

i − 2, we find that
s2 + e0s1 ≥ m. If we assume that s1 has the value σ,
then

s2 ≥ m − e0σ. (2–4)

We maximize the right-hand side of (2–4), which is linear
in the numbers ej , and obtain a lower bound for s2 de-
pending on the value of s1 = σ. When σ increases from

the lower bound of s1 computed above, say σ = −B1, the
bound for s2 decreases. We stop when this lower bound
is less than −B2, the lower bound for s2 determined ear-
lier. Since the ellipse Ea is symmetric, we may replace the
numbers γi by the numbers −γi. If we replace e0 Re(z)
by −e0 Re(z) in (2–3), we get the same lower bound for
s2 when s1 takes the value −σ. We may also replace
Re(z2 − 2) by −Re(z2 − 2) in (2–3). Then we obtain an
upper bound for s2 depending on the value of |s1|. We
obtain bounds on s2k depending on |sk| in the same way
for 2 ≤ k ≤ 20, replacing γi by ±γi,k and M by Mk.

2.3 Computing E1, E2, and E3

Using the bounds on the numbers sk for 1 ≤ k ≤ 40 de-
termined in Section 2.2, we inductively obtain bounds on
the coefficients ck for 1 ≤ k ≤ d using Newton’s formula,

skc0 + sk−1c1 + · · · + s1ck−1 + kck = 0.

These bounds on the ck determine our set of reciprocal
polynomials E1.

To calculate E2, we employ a Pascal program (in dou-
ble precision) that checks additional constraints on the
values of the sk for each polynomial in E1, and rejects
any for which a required inequality fails. This program
enumerates the polynomials in E1 in each of the seven
cases described in Section 2.2 separately, since each case
is equipped with its own bounds on the sk. It checks
that the bounds on the sk for d + 1 ≤ k ≤ 40 are satis-
fied, and verifies any additional upper and lower bounds
for each s2k, relative to the value of sk. In addition,
we perform the following test. For polynomials gener-
ated in one of the first six cases (where α1 >

√
M), we

note that the function P (x) is convex for x > t1(j), with
j as in Section 2.2. Thus, the line joining the points
(t1(j), P (t1(j))) and (t2(j), P (t2(j))) intersects the real
axis at a value t3 ≤ α1. Then all the other roots of P

lie in the disk of radius M1 = M/t3. In all cases, we use
the Schur–Cohn algorithm [Marden 66] to compute the
number of roots of P that lie outside a sequence of disks
of decreasing radius. From this we obtain a lower bound
on M(P ), and we check that this bound does not exceed
M . The surviving polynomials form the set E2, which
we save to a file for the third phase of the search.

In the third phase, we use PARI [Batut et al. 02] to
implement the modified Graeffe algorithm described in
[Flammang et al. 06], and use this to obtain a lower
bound on the measure of each polynomial in the set E2.
We reject any polynomial for which we determine that
M(P ) > M . Then we compute the Mahler measure of
each of the surviving polynomials to obtain the set E3.
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D M |E1| |E2| |E3| Jobs CPU Time

42 1.2400 29 648 652 246 2 606 3 12 0.2 day
44 1.2367 91 026 218 551 3 456 1 11 0.7 day
46 1.2308 260 567 756 447 4 170 1 11 1.8 day
48 1.2323 1 284 442 516 789 6 207 1 12 8.6 days
50 1.2420 14 890 559 906 854 16 295 2 100 99.1 days
52 1.2350 37 543 959 636 961 17 155 1 128 246.5 days
54 1.2366 265 346 561 290 684 29 685 1 757 1668.5 days

TABLE 2. Summary of search for minimal measures to degree 54.

D M |E1| |E2| |E3| Jobs CPU Time

42 1.3 1 803 973 627 644 31 318 57 85 14.8 days
44 1.3 13 329 991 800 456 53 185 77 101 125.6 days

TABLE 3. Summary of search for measures less than 1.3 to degree 44.

D Measure ν Half of Coefficients

46 1.2766661568 5 1 2 2 1-1-2-2-2-1 0 1 1 0-1-2-2-1 0 1 1 1 1 1 1

48 1.2960624293 6 1 2 2 1-1-2-2-2-1 0 1 1 0-1-2-2-1 0 1 1 1 1 1 1 1

52 1.2990402520 8 1 2 2 1 0-1-1-1-2-3-3-3-3-2-1 0 1 1 0 0 1 2 3 3 2 1 1

TABLE 4. New polynomials with Mahler measure less than 1.3.

3. RESULTS

We used this method to perform two searches for poly-
nomials with small Mahler measure. First, we searched
for polynomials with especially small measure by setting
the value of M for each fixed degree to a real number
that is slightly larger than the smallest known Mahler
measure of a primitive irreducible noncyclotomic integer
polynomial of that degree. Table 2 shows the value of M

selected in each case in these computations, which were
completed through degree 54. Second, we determined all
polynomials with measure less than 1.3 and degree 42 or
44. Table 3 summarizes these calculations.

Both tables exhibit the size of each set E1, E2, and E3

constructed by the method, the number of jobs used to
compute E2, and the total computation time to construct
E2, given the bounds on the sk. These computations were
distributed across multiple processors in a simple way.
For smaller degrees, we allowed one processor to handle
one of the cases described in Section 2.2 (although case
7 was always split over several computers). For larger
degrees, each case was split among several processors by
prescribing up to three initial coefficients (besides c0 = 1)
of the polynomials examined in a particular job.

The first set of computations verified that each of the
polynomials listed in Table 1 indeed has the minimal
Mahler measure among the primitive irreducible noncy-
clotomic polynomials of the same degree. The second
set verified that the lists of polynomials in [Mossinghoff

07] with measure less than 1.3 and degree 42 or 44 are
complete. Incidentally, it also established that the list
of known Salem numbers less than 1.3 shown in [Moss-
inghoff 07] is also complete to degree 44, extending the
result of [Flammang et al. 99], where this was verified up
to degree 40.

Our computations also uncovered three new polyno-
mials with measure less than 1.3. These polynomials are
exhibited in Table 4. It is interesting that these poly-
nomials were not discovered in prior heuristic searches,
considering that the method of searching sparse poly-
nomials with height 1 was so successful in identifying
polynomials with small Mahler measure. However, using
lattice reduction we may compute sparse height-1 multi-
ples of each of the new polynomials, and with this we see
how the prior searches missed these three examples. For
example, multiplying the new degree-46 polynomial by
the cyclotomic product Φ1Φ2

2Φ4Φ6Φ8Φ12Φ22Φ26, where
Φn denotes the nth cyclotomic polynomial, produces a
polynomial with height 1 and length 12:

X83 − X76 − X66 + X50 + X44 − X43 + X40 − X39

− X33 + X17 + X7 − 1.

However, the search of twelve-term height-1 polynomi-
als in [Mossinghoff 98] checked only up to degree 75.
We also find height-1 multiples of this polynomial with
the same measure of degree 70 and length 14 (using
Φ1Φ2Φ4Φ6Φ8Φ12Φ22), degree 53 and length 16 (using
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n D
5, 6, 7 181
8, 9 131

10, 11 101
12, 13 75
14, 15 55
16, 17 47
18, 19 43

TABLE 5. Maximum degree D checked in search of
polynomials with height 1 and length n, from [Moss-
inghoff 98].

Φ1Φ6Φ8), and degree 49 and length 18 (using Φ1Φ6). Ta-
ble 5 shows that none of these was covered by the earlier
searches of sparse polynomials. Similar phenomena oc-
cur for the other two new polynomials. In fact, the best
sparse multiple of the degree-52 polynomial we find with
height 1 and the same measure has degree 73 and length
18, achieved by multiplying by the cyclotomic product
Φ1Φ3Φ6Φ15Φ24.
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Integer Chebyshev Problem.” Math. Comp. 65:214 (1996),
661–681.

[Borwein et al. 07] P. Borwein, E. Dobrowolski, and M. J.
Mossinghoff. “Lehmer’s Problem for Polynomials with Odd
Coefficients.” Ann. of Math. (2) 166:2 (2007), 347–366.

[Boyd 80] D. W. Boyd. “Reciprocal Polynomials Having
Small Measure.” Math. Comp. 35:152 (1980), 1361–1377.

[Boyd 89] D. W. Boyd. “Reciprocal Polynomials Having
Small Measure, II.” Math. Comp. 53:187 (1989), 355–357,
S1–S5.

[Boyd and Mossinghoff 05] D. W. Boyd, M. J. Mossinghoff.
“Small Limit Points of Mahler’s Measure.” Experiment.
Math. 14:4 (2005), 403–414.

[Breusch 51] R. Breusch. “On the Distribution of the Roots
of a Polynomial with Integral Coefficients.” Proc. Amer.
Math. Soc. 2:6 (1951), 939–941.

[Dobrowolski 79] E. Dobrowolski. “On a Question of Lehmer
and the Number of Irreducible Factors of a Polynomial.”
Acta Arith. 34:4 (1979), 391–401.

[Dubickas and Mossinghoff 05] A. Dubickas and M. J. Moss-
inghoff. “Auxiliary Polynomials for Some Problems Re-
garding Mahler’s Measure.” Acta Arith. 119:1 (2005), 65–
79.

[Everest and Ward 99] G. Everest and T. Ward. Heights of
Polynomials and Entropy in Algebraic Dynamics, Univer-
sitext. London: Springer, 1999.

[Flammang et al. 97] V. Flammang, G. Rhin, and C. J.
Smyth. “The Integer Transfinite Diameter of Intervals and
Totally Real Algebraic Integers.” J. Théor. Nombres Bor-
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[Silver and Williams 04] D. S. Silver and S. G. Williams.
“Mahler Measure of Alexander Polynomials.” J. London
Math. Soc. (2) 69:3 (2004), 767–782.

[Smyth 71] C. J. Smyth. “On the Product of the Conjugates
outside the Unit Circle of an Algebraic Integer.” Bull. Lon-
don Math. Soc. 3 (1971), 169–175.

[Smyth 84] C. J. Smyth. “The Mean Values of Totally Real
Algebraic Integers.” Math. Comp. 42:166 (1984), 663–681.

[Smyth 08] C. J. Smyth. “The Mahler Measure of Algebraic
Numbers: A Survey.” In Number Theory and Polynomials,
edited by J. McKee and C. Smyth, pp. 322–349, London
Math. Society Lecture Note Series 352. Cambridge, UK:
Cambridge University Press, 2008.

[Voutier 96] P. Voutier. “An Effective Lower Bound for the
Height of Algebraic Numbers.” Acta Arith. 74:1 (1996), 81–
95.

[Waldschmidt 00] M. Waldschmidt. Diophantine Approxima-
tion on Linear Algebraic Groups, Grundlehren Math. Wiss.
326. Berlin: Springer, 2000.

[Wu 03] Q. Wu. “On the Linear Independence Measure of
Logarithms of Rational Numbers.” Math. Comp. 72:242
(2003), 901–911.

Michael J. Mossinghoff, Department of Mathematics, Davidson College, Davidson, North Carolina 28035-6996
(mimossinghoff@davidson.edu)
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