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Let F be a real quadratic field with narrow class number one,
and f a Hilbert newform of weight 2 and level n with ratio-
nal Fourier coefficients, where n is an integral ideal of F . By the
Eichler–Shimura construction, which is still a conjecture in many
cases when [F : Q] > 1, there exists an elliptic curve Ef over F

attached to f . In this paper, we develop an algorithm that com-
putes the (candidate) elliptic curve Ef under the assumption that
the Eichler–Shimura conjecture is true. We give several illustra-
tive examples that explain among other things how to compute
modular elliptic curves with everywhere good reduction. Over
real quadratic fields, such curves do not admit any parameteriza-
tion by Shimura curves, and so the Eichler–Shimura construction
is still conjectural in this case.

1. INTRODUCTION

Let F be a totally real number field of degree n, OF

its ring of integers, and n ⊆ OF an integral ideal.
Let f be a Hilbert newform of weight 2 and level n.
The differential form attached to f is given by ωf =
(2πi)nf(z1, . . . , zn) dz1 · · · dzn, and for each prime p, we
let ap(f) be the Fourier coefficient of f at p. Let E

be an elliptic curve defined over F . The trace of the
Frobenius endomorphism acting on E at the prime p is
denoted by ap(E). We recall that for p � n, ap(E) =
N(p)+1−#Ẽ(Fp), where Fp = OF /p is the residue field
at p and Ẽ the reduction of E modulo p; and N(p) is the
norm of p. The L-series of f is given by

L(f, s) :=
∑

m⊆OF

am(f)
N(m)s

,

c© A K Peters, Ltd.
1058-6458/2008 $ 0.50 per page

Experimental Mathematics 17:4, page 427



428 Experimental Mathematics, Vol. 17 (2008), No. 4

where am(f) is the Fourier coefficient of f at the integral
ideal m; and the L-series of the curve E is given by

L(E, s) :=
∏

p|cond(E)

(
1 − ap(E)

N(p)s

)−1

×
∏

p�cond(E)

(
1 − ap(E)

N(p)s
+

1
N(p)2s−1

)−1

.

This is an analytic function that converges for �(s) > 3
2 ,

and we have the following conjecture.

Conjecture 1.1. Let f be a Hilbert eigenform with integer
Fourier coefficients. Then there exists an elliptic curve
Ef such that L(Ef , s) = L(f, s).

This conjecture is known for F = Q as the Eichler–
Shimura construction, and its proof uses the arithmetic
theory of the modular curve X0(n) and its Jacobian
Jac(X0(n)). In fact, using the theory of modular sym-
bols, one can make this construction very explicit. This is
used in a very systematic way by Cremona [Cremona 97]
in order to build his database of (modular) elliptic curves
over the rationals. Unfortunately, when [F : Q] > 1,
the theory of modular Jacobians does not generalize
very well, because Hilbert–Blumenthal modular varieties
prove not to be good substitutes for modular curves, since
they do not provide any uniformization for elliptic curves.
As an alternative, the theory of Shimura curves has been
exploited to prove many cases of the conjecture. This
approach, however, needs to assume in this case that the
form f satisfies certain restrictive conditions imposed by
the use of the Jacquet–Langlands correspondence. Fur-
thermore, it is very hard to use this method in practice
to effectively compute the curve Ef . (Examples of such
results can be found in [Zhang 01] and references therein.)

Although Hilbert–Blumenthal varieties are not good
substitutes for modular curves, they provide the most
natural approach to Conjecture 1.1. Indeed, the Eichler–
Shimura construction can be phrased in the language of
cohomology or motives, which is better suited for work-
ing in higher dimensions. This was observed by Oda in
the early 1980s. In [Oda 82], he formulated a cohomolog-
ical version of Conjecture 1.1 when F is a real quadratic
field. He later generalized this to totally real fields of ar-
bitrary degree in [Oda 83]. From now on, we will restrict
ourselves to the case that F is a real quadratic field and
recall the reformulation of Conjecture 1.1 by Oda. In or-
der to do so, we need to introduce some notation. Let
X0(n)/Q be a compact arithmetic Hilbert modular sur-
face of level n. (We recall that such compactifications

exist thanks to [Dimitrov 04].) Let H2
cusps(X0(n), Q)

be the middle-degree cuspidal cohomology of the sur-
face X0(n). The space H2

cusps(X0(n), Q) comes equipped
with a Hecke action provided by algebraic correspon-
dences. Let H2

cusps(X0(n), Q)f be the isotypic compo-
nent that corresponds to f . This has a Hodge structure
of type {(2, 0), (1, 1), (0, 2)}. Then Oda’s conjecture can
be stated as follows.

Conjecture 1.2. (Oda.) Let f be a Hilbert newform of
weight 2 and level n with integer Fourier coefficients.
There exists an elliptic curve Ef defined over F with good
reduction outside n, and an isomorphism of Hodge struc-
tures

φ : H2
cusps(X0(n), Q)f

∼= H1(Ef , Q) ⊗ H1(Ēf , Q),

where Ēf is the Galois conjugate of Ef .

In [Oda 82], Oda was able to construct the elliptic
curve Ef as a complex curve. However, he was able to
prove that Ef is defined over F only when the newform
f is a base-change lift from Q. In this paper, we pro-
pose an algorithm that explicitly constructs an integral
model for the curve Ef assuming that we know its dis-
criminant. Not only does this provide some numerical
evidence for Conjecture 1.1, but we think that it is the
first algorithm that gives a way to systematically con-
struct modular elliptic curves over real quadratic fields.
Our algorithm may be of special interest when the new-
form f corresponds to an elliptic curve Ef with every-
where good reduction. In that case, the approach via
Shimura curves is not applicable. However, our algo-
rithm will still produce the curve Ef . We illustrate this
with several examples, including the curve y2−xy−ωy =
x3+(2+2ω)x2+(162+3ω)x+71+34ω, where ω = 1+

√
509

2 ,
constructed by Pinch [Pinch 82]. This curve is not a Q-
curve and so cannot be obtained by the method in [Cre-
mona 92].

The paper is organized as follows. In Section 2, we
present the strategy of our algorithm. In Sections 3 and
4, we explain how to compute the periods of the curve Ef .
In Section 5, we present the algorithm, which is followed
by several illustrative examples. As a final application of
our algorithm, we explain in Section 6 how to construct
modular elliptic curves with everywhere good reduction.

2. THE STRATEGY OF THE ALGORITHM

For simplicity, we will assume throughout this paper that
F has narrow class number one. We let v1 and v2 be
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the two archimedean places, and we assume that there
is a fundamental unit ε ∈ F such that ε1 = v1(ε) > 0
and ε2 = v2(ε) < 0. We denote the discriminant of F

by D. We intend to combine the analytic construction
of Oda in [Oda 82] and the Weierstrass uniformization
theorem in order to find an equation for Ef over F . (See
[Cremona 97, Chapter 1] or [Silverman 86, Chapter 5] for
background material on elliptic curves.)

Before we do so, we need to refine Oda’s conjecture.
To this end, let ωf = (2πi)2

√
D

−1
f(z1, z2) dz1dz2 be the

normalized differential form attached to f . Also, let ωE

be the Néron differential form of E, and ΛE the Néron
lattice attached to ωE. We let Ω+

E (respectively Ω+
Ē

) be
the real period of E (respectively Ē), and Ω−

E (respec-
tively Ω−

Ē
) the imaginary period of E (respectively Ē).

We then define the period lattices Λ±
E = Ω±

Ē
ΛE . Let H

be the Poincaré upper half-plane. We recall that the two
involutions

H2 → H2,

(z1, z2)
η1�→ (ε2z̄1, ε1z2),

(z1, z2)
η2�→ (ε1z1, ε2z̄2),

descend to the modular surface X0(n) and give the Hodge
type decomposition

H2
cusps(X0(n), Q)f

= H2
cusps(X0(n), Q)++

f ⊕ H2
cusps(X0(n), Q)−+

f

⊕ H2
cusps(X0(n), Q)+−

f ⊕ H2
cusps(X0(n), Q)−−

f .

Now let Λf ⊂ H2
cusps(X0(n), Q)f be an integral Hodge

structure. This is a lattice in H2
cusps(X0(n), R)f . By

Poincaré duality, we have an isomorphism of complex
spaces H2

cusps(X0(n), R)f
∼= C2 by which we identify Λf

with its image

Λf = ZΩ++
f ⊕ ZΩ−+

f ⊕ ZΩ+−
f ⊕ ZΩ−−

f ,

where Ω++
f and Ω−−

f are positive real numbers and Ω−+
f

and Ω+−
f are purely imaginary with positive imaginary

parts.
Concretely put, the Oda conjecture asserts that there

are nonzero rational numbers css′ ∈ Q such that

css′Ωss′
f = Ωs

EΩs′
Ē , for alls, s′ ∈ {−, +}.

This phenomenon illustrates the fact that the periods of
the form f are actually mixtures of the periods of Ef

and its Galois conjugate Ēf . Unfortunately, there is no
known method to separate them, since we do not know
the curve a priori. So we must find a way to overcome

this problem. The first step in that direction is provided
by the following lemma.

Lemma 2.1. Assume Conjecture 1.2, and let Λ+
f (respec-

tively Λ−
f ) be the lattice given by Λ+

f = 〈Ω++
f , Ω−+

f 〉 or
〈2Ω++

f , Ω++
f + Ω−+

f 〉 (respectively Λ−
f = 〈Ω+−

f , Ω−−
f 〉 or

〈2Ω+−
f , Ω+−

f + Ω−−
f 〉) depending on whether the real lo-

cus of Ef has one or two connected components. Then
the complex curves C/Λ+

f and C/Λ−
f are isomorphic

and belong to the same isogeny class as the complex
curve Ef (C).

Proof: The fact that C/Λ+
f and C/Λ−

f are isomorphic
complex curves depends only on the modular form f . In-
deed, this is a consequence of the Riemann–Hodge rela-
tions (see [Oda 82, Theorem 4.4]). The rest of the lemma
follows by observing that the lattice Λ+

f is homothetic to
a lattice contained in ΛE .

From Lemma 2.1, it is now easy to compute the j-
invariant of the curve Ef . The j-invariant of Ef as a
modular function is given by j(τ), where

τ =
Ω−+

f

Ω++
f

or τ =
1
2

(
1 +

Ω−+
f

Ω++
f

)
,

depending on whether the real locus of Ef has one or
two connected components. We can assume without loss
of generality that the curve E = Ef is given by a global
minimal Weierstrass equation, with j(τ) = j(E) = c3

4
ΔE

.
Since we assume that we know the discriminant ΔE , we
can obtain c4 if we know j(τ) to sufficient precision. Then
we can compute c6 from the relation c3

4 − c2
6 = 1728ΔE

and reconstruct our minimal Weierstrass equation for E

from its invariants c4 and c6, using Kraus and Laska’s
algorithm.

3. COMPUTING THE PERIOD LATTICE:
THE ODA APPROACH

In this section, we recall some results about the pe-
riods constructed by Oda in [Oda 82, Section 16.2].
His construction uses certain explicit 2-cycles that are
reminiscent of the classical modular symbols. Let χ :
(OF /c)× → C× be a primitive quadratic character of
conductor c = (ν) that is prime to n, where ν � 0. Also,
let V ⊆ O×

F

+
be a subgroup of finite index such that

V ⊆ 1 + c. We extend the character χ to nonunits in the
obvious way. The twisted L-series of f by χ is given by

L(f, χ, s) :=
∑

m⊆OF

χ(m)am(f)
N(m)s

,
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where am(f) is the Fourier coefficient of f at the ideal m.
For the trivial character 1, we have L(f,1, s) = L(f, s).

Proposition 3.1. (Oda.) Let Λf be a period lattice in the
isotypic component of f and let

Ωss′
f,χ,V = −4π2disc(F )1/2[O×+

F : V ]G(χ)L(f, χ, 1),

where G(χ) is the Gauss sum of the character χ, and
χ(ε̄) = s, χ(ε) = s′ with s, s′ ∈ {±1}. Then Ωss′

f,χ,V is a
rational multiple of Ωss′

f when χ(−1) = ss′.

Remark 3.2. We note that Proposition 3.1 is slightly dif-
ferent from [Oda 82, Theorem 16.3] because of the fact
that the differential form we use is normalized.

By making use of Proposition 3.1, it is possible to
compute the period lattice Λf up to (rational) homoth-
ety. But in analogy with the classical setting, one expects
a stronger statement to be true. The following conjecture
can be found in [Bertolini et al. 04].

Conjecture 3.3. Let χ : (OF /c)× → C× be a primitive
quadratic character of conductor c = (ν) that is prime to
n, where ν � 0. Let

Ωss′
f,χ = −4π2disc(F )1/2G(χ)L(f, χ, 1),

where G(χ) is the Gauss sum of the character χ, and
χ(ε̄) = s and χ(ε) = s′. Assume that Conjecture 1.2 is
true. Then Ωss′

f,χ is an integer multiple of Ωs
EΩs′

Ē
when

χ(−1) = ss′.

We need to find a way to efficiently compute the pe-
riods we have just described. This amounts to finding
an effective way to compute good approximations of the
special values L(f, χ, 1). In the rest of this section, we
explain how this can be done. (The method is closely re-
lated to the one used in [Cremona 97, Propositions 2.11.1
and 2.11.2].)

Let WN be the Atkin–Lehner involution given by

WN : z = (z1, z2) �→
(
− 1

Nz1
,− 1

Nz2

)
,

where N is a totally positive generator of n, and let

f(z1, z2) =
∑

μ∈O+
F

c((μ)) exp
[
2πiTr

(
εμz√

D

)]

=
∑

μ∈O+
F /O×

F

+

c((μ))

×
∑

u∈ O×
F

+

exp
[
2πiTr

(
εμuz√

D

)]

be the Fourier expansion of f . Then fχ = f ⊗ χ ∈
S2(nc2), and its Fourier expansion is given by

fχ(z1, z2) =
∑

μ∈O+
F

c((μ))χ(μ) exp
[
2πiTr

(
εμz√

D

)]

=
∑

μ∈O+
F /O×

F

+

c((μ))χ(μ)

×
∑

u∈O×
F

+

exp
[
2πiTr

(
εμuz√

D

)]
.

The following lemma gives an optimized way of comput-
ing the special value L(f, 1), which in turn tells us how
to efficiently compute L(f, χ, 1) for a given character χ.

Lemma 3.4. Let f ∈ S2(n) be an eigenform, with WNf =
f ‖WN = εNf (εN = ±1). If εN = 1, then L(f, 1) = 0;
otherwise,

L(f, 1) = − D

2π2

∑
μ∈O+

F

c((μ))
N(μ)

[
1 − exp

(
− 2πμε√

DN

)]

× exp
[

2π√
D

(
μ̄ε̄√
N

− μ√
N

)]
.

Proof: By definition,

L(f, 1) =
∫ ∫

O×
F

+\R
2
+

f(iy1, iy2)dy1dy2

=
∫ ε2τ0

τ0

∫ i∞

0

f(z1, z2) dz1dz2,

with τ0 arbitrarily chosen on the imaginary axis. But
choosing τ0 = i/ε

√
N and making the change of variable

z �→ WN (z), we get

L(f, 1) =
∫ ε2τ0

τ0

∫ i∞

0

f ‖WN (z1, z2) dz1dz2

= (f‖WN , 1) = εNL(f, 1).

This gives the first part of the lemma.
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To get the second part, keeping the same choice of τ0

as before, we choose C on the imaginary axis and split
the integral as

L(f, 1) =
∫ ε2τ0

τ0

∫ C

0

f(z1, z2)dz1dz2

+
∫ ε2τ0

τ0

∫ i∞

C

f(z1, z2) dz1dz2.

Again choosing C = i/
√

N and making the change of
variable z 	→ WN (z) in the first integral of the sum, we
get that

L(f, 1) = (1 + εN )
∫ ε2τ0

τ0

∫ i∞

C

f(z1, z2) dz1dz2.

We then complete the proof by integrating the series term
by term. The splitting of the integral gives an optimal
convergence rate because the choices of τ0 and C preserve
the convergence rate under Atkin–Lehner involution and
also ensure that both integrals have the same convergence
rate.

Remark 3.5. Let χ be a quadratic character of conductor
c. Then by Atkin–Lehner, we know that fχ ∈ S2(nc2)
and WNν2fχ = εNχ(−N)fχ. Therefore, by Lemma 3.4,
when εNχ(−N) = 1,

L(f, χ, 1) = − D

2π2

∑
μ∈O+

F

c((μ))
N(μ)

χ(μ)

×
[
1 − exp

(
− 2πμε

ν
√

DN

)]

× exp
[

2π√
D

(
μ̄ε̄

ν̄
√

N
− μ

ν
√

N

)]
.

Using the fact that every totally positive unit is of the
form ε2k, k ∈ Z, this series can be rearranged as

L(f, χ, 1) = − D

2π2

∑
μ∈O+

F /O+
F

×

c((μ))
N(μ)

χ(μ)

×
(∑

k∈Z

[
1 − exp

(
−2πμε2k+1

ν
√

DN

)]

× exp
[

2π√
D

(
μ̄ε̄2k+1

ν̄
√

N
− με2k

ν
√

N

)])
.

4. COMPUTING THE PERIOD LATTICE:
THE DARMON APPROACH

The Oda cycles provide a very efficient way to compute a
period lattice Λf associated to the modular form f . Un-
fortunately, in a way that is reminiscent of the classical

setting, this method gives only the components Ω++
f and

Ω−−
f , or Ω−+

f and Ω+−
f , depending on whether εN = 1 or

εN = −1, when the level n is a square. In order to circum-
vent this problem, we present a second approach, which
is based on a construction of Darmon [Darmon 04, Chap-
ter 8]. His construction is a more down-to-earth reformu-
lation of the Oda conjecture in the language of group co-
homology. Although the primary goal of [Darmon 04] was
to construct generalizations of so-called Stark–Heegner
points to elliptic curves over real quadratic fields, we will
see that their results actually give a way to compute the
period lattices Λ+

f and Λ−
f . We recall this construction

along the lines of [Darmon and Logan 03].
First, we define the differential forms

ω±
f := −4π2

√
D

−1{
f(z1, z2)dz1dz2

± f(−ε1z̄1,−ε2z2)d(ε1z̄1)d(ε2z2)
}
.

The differential forms ω±
f are Γ-invariant, where Γ =

Γ0(n), and so we have∫ γτ2

γτ1

∫ γτ4

γτ3

ω±
f =

∫ τ2

τ1

∫ τ4

τ3

ω±
f , for all γ ∈ Γ.

Let Z[Γ] be the group ring of Γ and IΓ its augmentation
ideal. We tensor the exact sequence

0 → IΓ → Z[Γ] → Z → 0

with IΓ and take the module of coinvariants. This gives
the exact sequence

0 → KΓ → (IΓ ⊗ IΓ)Γ
r→ (Z[Γ] ⊗ IΓ)Γ → Γab → 0,

where KΓ is the kernel of the natural homomorphism r

and we use the canonical identification of IΓ/I2
Γ with the

abelianization Γab of Γ.
We choose τ1, τ2 ∈ H and put

I±τ1,τ2
((γ1 − γ′

1) ⊗ (γ2 − γ′
2)) :=

∫ γ′
1τ1

γ1τ1

∫ γ′
2τ2

γ2τ2

ω±
f ,

for all γi, γ
′
i ∈ Γ, and extend it linearly to (IΓ ⊗ IΓ)Γ.

This is possible because of the Γ-invariance of the forms
ω±

f . The maps I±τ1,τ2
: (IΓ ⊗ IΓ)Γ → C are group

homomorphisms whose restrictions to KΓ do not de-
pend on the choices of τ1 and τ2, and so the subgroups
Λ±

f := I±τ1,τ2
(KΓ) depend only on the form f . The follow-

ing conjecture is a combination of Conjectures 1.1. and
2.1 in [Darmon and Logan 03], and it is easy to see that
it is a reformulation of Conjecture 1.2.

Conjecture 4.1. [Darmon and Logan 03] Let f be a Hilbert
newform with integer Fourier coefficients. The subgroup



432 Experimental Mathematics, Vol. 17 (2008), No. 4

Λ+
f (respectively Λ−

f ) is a lattice in C that is commensu-
rable with the lattice Λ+

E (respectively Λ−
E).

Let eΓ be the exponent of Γab, which is finite by [Dar-
mon and Logan 03], and let Λ̃±

f = e−1
Γ Λ±

f . The construc-
tion of Stark–Heegner points relies on the semidefinite
integral

H3 → C/Λ̃±
f ,

(τ, x, y) 	→
∫ τ ∫ y

x

ω±
f ,

which enjoys the following crucial properties:

(i)
∫ τ ∫ x2

x1
ω±

f +
∫ τ ∫ x3

x2
ω±

f =
∫ τ ∫ x3

x1
ω±

f .

(ii)
∫ τ2

∫ x2

x1
ω±

f − ∫ τ1
∫ x2

x1
ω±

f =
∫ τ2

τ1

∫ x2

x1
ω±

f ∈ C/Λ±
f .

For more details on the construction of this semidefinite
integral, we refer to [Darmon 04, Chapter 8], [Bertolini
et al. 04], and [Darmon and Logan 03].

Let K/F be a quadratic extension that is complex at
v1 and real at v2, and let OK be the ring of integers of K.
An optimal embedding of K into M2(F ) is an F -algebra
homomorphism Ψ : K → M2(F ) such that Ψ(OK) =
Ψ(K) ∩ M2(OF ). By making use of the Dirichlet units
theorem, it can be shown that O×

K is a free rank-one
abelian group modulo O×

F . Also, it can be shown that the
group Ψ(O×

K)∩Γ has a unique fixed point τ ∈ v1(K)∩H.
Let γτ be a generator of that group. Choose x ∈ H

and put

J±
τ :=

∫ τ ∫ γτ x

x

ω±
f .

It is shown in [Darmon 04] that J±
τ depends only on the

orbit Γτ and not on the choice of x ∈ H in the definition.
Let t denote the cardinality of the torsion of E(K) and
let

η± : C/Λ±
E → E(C)

be the Weierstrass uniformization attached to the lattice
Λ±

E . We choose nonzero integers c± such that c±Λ±
f ⊆

Λ±
E and set

P±
τ := t · η±(c± · J±

τ ).

Let H be the ring class field of K, and H+ ⊇ H the
narrow ring class field. The Galois group Gal(H+/H)
has cardinality at most 2, and we let σ be its generator.
We recall Conjecture 2.3 from [Darmon 04].

Conjecture 4.2. [Darmon 04] The point P+
τ (respectively

P−
τ ) in E(C) is a global point in E(H) (respectively in

E(H+)), and we have

σ · P+
τ = P+

τ and σ · P−
τ = −P−

τ .

It is very hard to compute the period lattices Λ±
f di-

rectly from their definition, since this requires a good
understanding of the cohomology group H2(Γ, Z). For-
tunately, by making use of Conjecture 4.2 we can circum-
vent that problem. Indeed, Conjecture 4.2 suggests that
when H+ = H , the point P−

τ is trivial, meaning that
cJ−

τ is a period in Λ−
f for some c ∈ Q. Thus, in favorable

circumstances, we can use the following proposition in
order to compute the period lattice Λ−

f .

Proposition 4.3. Let K be a quadratic extension of F that
is complex at v1 and real at v2. Let Ψ : K → M2(F ) be
an optimal embedding. Let u be a generator of the rank-
one free group O×

K/(O×
F ) and let τ be the unique fixed

point of v1(Ψ(K×)) in H. We assume that H+ = H and
that

γτ := Ψ(u) =
(

a b
c d

)

is such that a ∈ O×
F . Then

J−
τ =

∫ − 1
τ

c
a− 1

τ

∫ ∞

0

ω−
f orJ−

τ =
∫ τ

c
a− 1

τ

∫ ∞

0

ω−
f ,

depending on whether εN = 1 or −1. Assuming Conjec-
ture 4.2, the period J−

τ belongs to αΛ−
f for some α ∈ Q×.

Proof: Since H+ = H , Conjecture 4.2 implies that P−
τ

is a torsion point in E(H), which means that J−
τ ∈ αΛ−

f

for some α ∈ Q×. Now assume that εN = −1. Then the
quantity J−

τ is given by

J−
τ =

∫ τ ∫ γτ∞

∞
ω−

f =
∫ τ ∫ 0

∞
ω−

f +
∫ τ ∫ ā

c̄

0

ω−
f

=
∫ τ ∫ 0

∞
ω−

f −
∫ − 1

τ
∫ − c̄

ā

∞
ω−

f

=
∫ τ ∫ 0

∞
ω−

f −
∫ c

a− 1
τ
∫ 0

∞
ω−

f =
∫ τ

c
a− 1

τ

∫ 0

∞
ω−

f .

A similar argument gives the second identity when εN =
1, and this completes the proof of the proposition.

Remark 4.4. The aim of Conjecture 4.2 is to provide a
way to construct infinite-order rational points on elliptic
curves over real quadratic fields. Ironically, it is in its
least interesting form that the conjecture has proven the
most useful to us. Indeed, we use Conjecture 4.2 to com-
pute lattice points in Λ−

f that correspond to the trivial
point on E(H).
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5. ALGORITHM AND EXAMPLES

Given a Hilbert eigenform f with integer Fourier coeffi-
cients, we need to find an elliptic curve E that shares the
same L-series. When F = Q, much information about
the curve E can be obtained from the theory of modu-
lar symbols. (For example, we can determine the type
of the period lattice of E and the sign of the functional
equation.) In order to compensate for this lack of infor-
mation, we will assume that we know the discriminant
of E. In practice, this is not a very strong restriction,
since the level of the modular form f and the discrim-
inant ΔE have the same set of prime divisors. Indeed,
by incrementing the exponents of the prime divisors of
cond(E) in a convenient way, we will eventually reach the
discriminant ΔE , and the algorithm will terminate.

Algorithm 5.1.

Step 1. Try several quadratic characters in order to de-
termine the mixed periods Ωs

EΩs′
Ē

, s, s′ ∈ {−, +}, of
the curve E and its Galois conjugate Ē. We need
to try characters χ whose conductors are as small as
possible, since the size of the conductor of χ directly
affects the speed of convergence of the series that
determines L(f, χ, 1). When n is a square, we use
Darmon’s approach (see Section 4).

Step 2. Knowing the signs of v1(ΔE) and v2(ΔE), com-
pute the types of the period lattices ΛE and ΛĒ and
the pair (τ, τ ′) ∈ H2 that determine E and Ē.

Step 3. Compute the pair of j-invariants (j(τ), j(τ ′))
and approximations to c4 and its conjugate c̄4. With
enough precision (see Remark 6.4), one should be
able to recognize c4−c̄4 and (c4+c̄4)/

√
D as integers.

If c4 corresponds to an elliptic curve, the equation
c3
4 − c2

6 = 1728ΔE should have a solution c6 ∈ OF .

Step 4. For each pair (c4, c6), find a minimal Weier-
strass equation for E. As a check, one can verify
that the traces of the Frobenius ap(E) agree with the
Fourier coefficients of f up to a convenient bound.

Remark 5.2. In Step 1 of the algorithm, we sometimes use
a trick of Cremona [Cremona 97, Section 2.11]. Namely,
if χ1 and χ2 are two quadratic characters such that

Ωss′
f,χi

= ciΩs
EΩs′

Ē , ci ∈ Z,

then we can determine the ratio c1
c2

if we compute it
to enough precision. By trying several characters, we

can determine the primes that divide, say, c1, and then
proceed as in [Cremona 97]. Alternatively, we can fix a
range, and then try all the integers in that range as the
possible multiples we are looking for. In practice, all the
ranges we tried turned out to be very small.

We now give three examples, the first two of which are
reconstructions from [Dembélé 05].

Example 5.3. Let n = (5+2ω) be one of the primes above
31 in Q(

√
5), where ω = 1+

√
5

2 . In [Dembélé 05], we found
that there is a normalized eigenform with rational Fourier
coefficients of weight 2 and level n. We want to find an
elliptic curve Ef/F of conductor n. Let c1 = (3) be the
unique prime above 3, and χ1 : (OF /c1)

× → C× the
unique quadratic character such that χ1(ω) = χ1(ω̄) =
−1. Next, we let c2 = (4−ω) be one of the primes above
11, and χ2 : (OF /c2)

× → C× the quadratic character
given by χ2(ω̄) = −1 = χ2(−1). Finally, let c3 = (4),
and let χ3 : (OF /c3)

× → C× be the unique quadratic
character such that χ3(ω) = −1 and χ3(ω̄) = 1.

By Conjecture 3.3, Ω−−
f,χ1

(respectively Ω−+
f,χ2

and
Ω+−

f,χ3
) is an integral multiple of Ω−−

f (respectively Ω−+
f

and Ω+−
f ). Using all the ideals a of norm up to 300, we

get

Ω−−
f,χ1

≈ 7.5428296723118802111310427460,

Ω−+
f,χ2

≈ 20.24163256057813404243094417i,

Ω+−
f,χ3

≈ 19.19485671379861563730661553i.

Letting

Ω−−
f = Ω−−

f,χ1
,

Ω−+
f = Ω−+

f,χ2
,

Ω+−
f =

Ω+−
f,χ3

2
≈ 9.5974283568993078186533077658i,

the Riemann–Hodge relations give

Ω++
f ≈ 25.75527047096714165922221002737.

For ΔE = ω3(5 + 2ω), we see that v1(ΔE) > 0 and
v2(ΔE) < 0, which tell us the types of the period lattices
of E and its Galois conjugate. Letting

τ = 1.272390969151725829207221612644712687i,

τ ′ = 0.5000000000000000000000000000

+ 1.34177977231017506430258050599013i,

we get the j-invariants

j(τ) ≈ 3777.98500237062147734170399476212499969124,

j(τ ′) ≈ −3883.40711179860670278426457091150886121120.
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From this, we obtain

c4 + c̄4

2
≈ 33.0062454618927078773801146693,

c4 − c̄4

2
√

5
≈ 8.00078626724441377191059137715,

which indicates that c4 = 25 + 8ω (up to two-digit pre-
cision). We solve the discriminant relation for c6. The
only acceptable solution is c6 = −125 − 88ω.

By applying the Kraus–Laska algorithm to the curve
with invariants c4 and c6, we obtain the minimal integral
model

Ef : y2 + xy + ωy = x3 − (1 + ω)x2.

Its j-invariant is

j(E) =
−54753 + 106208ω

31
.

Example 5.4. Let n = (7) be the unique prime above 7 in
Q(

√
5). There is a unique normalized eigenform of weight

2 and level n with rational Fourier coefficients. We want
to find a modular elliptic curve Ef that corresponds to f .
If such a curve exists, it should be isogenous to its Galois
conjugate, since they would share the same eigenform.
Using the characters of the previous example and the
same set of ideals, we compute the periods

Ω−−
f,χ1

≈ 15.4025022988906031866355163263049,

Ω−+
f,χ2

≈ 20.0640424670485092443756057304405i,

Ω+−
f,χ3

≈ 20.0597768949371583380829878547368i.

Although we do not have enough precision, the values
of Ω−+

f,χ2
and Ω+−

f,χ3
suggest that E and Ē are isomorphic.

Letting ΔE = −7ω̄6 and

Ω−−
f = Ω−−

f,χ1
, Ω−+

f = Ω−+
f,χ2

, Ω+−
f = Ω+−

f,χ3
,

the Riemann–Hodge relations give

Ω++
f = −Ω−+

f Ω+−
f

Ω−−
f

≈ 26.13083300942127369020605631317278664.

Then letting

τ = 0.50000000000000000000000

+ 0.651185648463821521543025019i,

τ ′ = 0.50000000000000000000000

+ 0.651324118565256213192808888i,

we get the approximate j-invariants

j(τ) ≈ 586.27333323579091250594341988173849743756738141,

j(τ ′) ≈ 585.16245084722668792737834819131243143882485,

and the approximate values

c4 + c̄4

2
≈ −24.00220036102817748005777424316605240000,

c4 − c̄4

2
√

5
≈ 7.9992250613001254610458610579035703176250.

Then we determine that c4 = −32 + 16ω and c6 =
−280+160ω. The Kraus–Laska algorithm gives the min-
imal model E : y2 + y = x3 + ωx2 + x. It has j-invariant
j(E) = 163

7 . This is the j-invariant of the curve E′ listed
as 175A1 in Cremona’s tables. So, as suggested by the
period lattices, the curve E is indeed a quadratic twist.

Example 5.5. Let F = Q(
√

2), ω =
√

2, ε = 1 + ω,
and n = (5 + 2ω). This is a prime above 17, the
smallest norm for which there is a Hilbert modular form
of weight 2 with rational Fourier coefficients and such
that the corresponding curve is not a Q-curve. Using
a similar argument as in Example 5.3, we find the in-
variants ΔE = ε4(5 + 2ω), c4 = 68 + 24ω, and c6 =
288 + 344ω. They correspond to the minimal model
E : y2+ωxy+(1+ω)y = x3+(1−ω)x2−(1+2ω)x−(1+ω).

Remark 5.6. In principle, it is possible to use a short-
cut to Steps 3 and 4. Indeed, we can instead find j(E)
from approximations to its real embeddings and use the
algorithm in [Cremona and Lingham 08] in order to de-
termine E from j(E) and the prime divisors of cond(E).
However, this approach requires a considerable number
of Fourier coefficients and becomes quickly impracticable
even in the case that j(E) is an algebraic integer. For
instance, in the simplest case of Example 5.3, this means
using all the ideals of norm up to 10000 instead of up to
300 as we did.

6. APPLICATION: MODULAR ELLIPTIC CURVES
WITH EVERYWHERE GOOD REDUCTION

In this section, we discuss several examples that illustrate
how one can use our algorithm to compute modular el-
liptic curves with everywhere good reduction over real
quadratic fields of narrow class number one, provided
one can compute enough Fourier coefficients of the cor-
responding forms. Although all examples we discuss are
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reconstructions, they clearly demonstrate that the algo-
rithm works in principle. Each of them is interesting in
its own way, since it explains how one can make the algo-
rithm more efficient with some little variations depending
on the situation at hand. To our knowledge, this is the
first algorithm of its kind that proposes a systematic way
of finding modular elliptic curves with everywhere good
reduction over real quadratic fields in which one does not
assume the curve to be a Q-curve. We think that with
reasonable computing capability, one should be able to
implement it and create a database of such curves, and
we hope to do so in the near future.

Example 6.1. Let F = Q(
√

29), ω = 1+
√

29
2 , and ε = 2 +

ω, and consider the elliptic curve E : y2 +xy + ε2x = x3.
This is an elliptic curve with everywhere good reduc-
tion that was found by Tate and has been investigated in
[Serre 72]. The curve E is isogenous to its Galois conju-
gate. We want to explain how this curve could have been
computed from the corresponding modular form f .

Let c1 = (3 + ω) be one of the primes above 5 and
let c2 = (12 + 5ω) be the unique prime above 29, and
let χ1 (respectively χ2) be the unique quadratic charac-
ter of conductor c1 (respectively c2) given by χ1(ω) =
−1 = χ1(ω̄), respectively χ2(ε) = −1 = χ2(ε̄)). Then by
Conjecture 3.3, Ω++

f,χ1
(respectively Ω−−

f,χ2
) is an integer

multiple of Ω+
EΩ+

Ē
(respectively Ω−

EΩ−
Ē

). Using all ideals
of norm up to 3000, we compute

Ω++
f,χ1

≈ 18.4047729449690593230209569437087470405583250,

Ω−−
f,χ2

≈ 145.7874953053353522804613478721693008625189704.

To compute the periods Ω−+
f and Ω+−

f , we will use
Conjecture 4.2. Let us consider the quadratic extension
K = F (β) = F (

√−1 + ω). This is an extension that has
been investigated in [Darmon 04]. It has narrow class
number one and a relative discriminant of norm −7. The
group of units is generated by

−1, 2 + ω, εK :=
β2 − β − 1

2
.

Since the norm of εK is not a square, we replace it by its
square

ε2
K = (−β3 − β2 + β + 4)/2.

In [Darmon 04], it is shown that the embedding Ψ :
K → M2(F ) that sends β to the matrix

(
ω −4
2 −ω

)
is an

optimal embedding. The associated fixed point is

τ ≈ −1.09629120178362600781267762288

+ 0.89338994895387814851284586494600i,

and we have

γτ = Ψ(ε2
K) =

( −1 −2ω − 2
1 + ω 5 + ω

)
.

From this, we get the period

J−
τ =

∫ − 1
τ

c
a− 1

τ

∫ ∞

0

ω−
f

≈ 3.8609046800288503749272137643680538728932i.

By Conjecture 4.2, J−
τ is a rational multiple of Ω−

EΩ+
Ē

with denominator bounded by the torsion of E(H). We
now have a finite set of possibilities to try, and see which
one gives us an elliptic curve E with everywhere good
reduction. Letting

Ω++
f = Ω++

f,χ1
,

Ω−−
f =

Ω−−
f,χ2

4

≈ 11.58271404008655112478164129310416161867972524,

Ω−+
f = 3J−

τ

≈ 36.4468738263338380701153369680423252156297426i,

the Riemann–Hodge relations give

Ω+−
f =

Ω++
f Ω−−

f

Ω−+
f

≈ 57.91358009928020937338006258979610061133193424i.

Letting

τ = 0.500000000000000000000000

+ 0.314666040019056129827812167971421i,

τ ′ = 0.500000000000000000000000

+ 1.573330469015942787905615202387094i,

we get

j(τ ) ≈ 18.927148537157605478892686505143975711

+ 5.7531634291693758484628202729673781084784990E

− 149i,

j(τ ′) ≈ −18909.9603232803393296978762603585016912

+ 3.40844028251224287831993055372639798524527021E

− 147i.
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The approximate values

j(τ ) + j(τ ′)
2

≈ −9445.51658737159086210949178692667885,

j(τ ) − j(τ ′)

2
√

29
≈ 1757.5030801972551809343934374672918876,

suggest that the j-invariant is the algebraic integer
j(E) = −11203 + 3515ω. It is then easy to solve for
the invariants c4 and c6 knowing that ΔE is a unit.
In fact, without loss of generality, we can assume that
ΔE ∈ O×

F /(O×
F )12. Then, for ΔE = −ε10, we get

c4 = −263 − 120ω and c6 = −63541 − 28980ω. From
the Kraus–Laska algorithm, we get the minimal model
E : y2 + xy + (1 + ω)y = x3 + (5 + 2ω)x + 72 + 33ω.

Example 6.2. Let F = Q(
√

37), ω = 1+
√

37
2 , and ε =

5 + 2ω, and consider the elliptic curve E : y2 + y =
x3 + 2x2 − (19 + 8ω)x + (28 + 11ω). This elliptic curve
is a Q-curve that has everywhere good reduction. Using
the unique quadratic character χ1 : (OF /(4))× → C×

given by χ1(ε) = −1 = χ1(ε̄) and all ideals of norm up
to 5000, we get

Ω−−
f,χ1

≈ 40.8967164998574082552292321685652645468633

671446271.

From [Darmon 04], we know that

∫ i∞

0

∫ iε

iε−1
ω+

f = −2�2
F Ω++

f

≈ −5.4356127176615640089899872297752

5336010607204858210,

where �F = 2
5 . To compute the period Ω−+

f , we use the
quadratic extension K = F (β) = F (

√
ω − 3) in [Darmon

04, Table 37.1]. This gives

J−
τ ≈ 5.27137134740499202551815570143616819076263

467803850i.

For the choices

Ω−−
f =

Ω−−
f,χ1

4

≈ 10.22418835274925401000235971951991015757063,

Ω−+
f =

5J−
τ

2

≈ 13.17842836851248006379538925358782149017354i,

the Riemann–Hodge relations give

Ω+−
f ≈ 13.178432274869420724815196602866094138792091

78530i.

The values of Ω−+
f and Ω+−

f suggest that the curve E

and its Galois conjugate have the same j-invariant, and
so j(E) ∈ Z. Letting

τ =
Ω−+

f

Ω++
f

≈ 0.77582736242809738798439577276944777299414217i,

we obtain

j(τ) ≈ 4096.005494314602868984195985714736549576

3358866118539269.

This suggests the rational integer j(E) = 4096, which is
confirmed by computing the j-invariant to higher preci-
sion.

Now we can solve for c4 and c6 as in the previous
example. For ΔE = ε6, we get c4 = 384ω + 976 and
c6 = −14112ω − 35864. From this, we get the minimal
model E : y2 + y = x3 − x2 − (20 + 8ω)x + 48 + 19ω.

Example 6.3. Let F = Q(
√

509), ω = 1+
√

509
2 , and

ε = 442 + 41ω, and consider the elliptic curve E :
y2 − xy−ωy = x3 + (2 + 2ω)x2 + (162 + 3ω)x+ 71 + 34ω
constructed in [Pinch 82]. It is known to have every-
where good reduction and not to be isogenous to its Ga-
lois conjugate. This latter fact was proven by Socrates
and Whitehouse [Socrates and Whitehouse 05], who also
established Conjecture 1.1 in this case using a result of
Faltings and Serre. We want to explain how the compu-
tations in their paper could have been used to produce
the curve E. Using all the ideals of norm up to 50000,
we compute∫ i∞

0

∫ iε

iε−1
ω+

f = −2�2
FΩ++

f

≈ −26.687829718661897885703284905688

15717581329705382730,

where �F = 1.
For the computations of the periods Ω−+

f and Ω+−
f , we

use the following optimal embedding. Let K = F (β) =
F (

√
10 − ω). This is a quadratic extension of F with one

complex place above v1 and one real place above v2. The
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relative discriminant of K/F has norm −37, and an in-
tegral basis is given by 1, β, β2, β3. The group of units is
generated by −1, ε, εK := β3−21β+1. We obtain an op-
timal embedding by sending β to

(−13ω−137 166ω+1806
−ω−11 13ω+139

)
.

We replace εK by its square, which gets sent to

γτ := Ψ(ε2
K) =

(−67ω − 716 332ω + 3612
−2ω − 22 −15ω − 164

)
.

The class number and narrow class number are equal,
h = h+ = 10, so by Conjecture 4.2, the periods J−

τ

up to rational multiples belong to Λ−
f . Although the

quadratic field F is not Euclidean, we were able to obtain
the continued fraction

γτ∞ =
−67ω − 716
−2ω − 22

=
83 + 21ω

10
= [3ω+18,−18ω+212].

Using both the forms fE and fĒ that correspond to E

and Ē respectively, we get

J−
E,τ ≈ 61.70079138445727061529703480328731375115768i,

J−
Ē,τ

≈ 36.98436172349311690274277223179602239559728i.

Letting

Ω−+
f =

J−
E,τ

10
, Ω+−

f = J−
Ē,τ

,

we see that the curve E is given by one of the pairs
(τ, τ ′) ∈ H2, where

τ ≈ 0.46238897680999509129648i

or

τ ≈ 0.50000000000000000000

+ 0.23119448840499754564824082213i;

and

τ ′ ≈ 2.77162752560813905168849256982296i

or

τ ′ ≈ 0.500000000000000000000

+ 1.38581376280406952584424628i.

For

τ = 0.46238897680999509129648i,

τ ′ = 0.500000000000000000000

+ 1.38581376280406952584424628i,

we get the j-invariants

j(τ) ≈ 797678.4966527060934982194441977726380067402453

j(τ ′) ≈ −5335.017831804563974175732331416422245253413742.

By letting ΔE = ε, we get

c4 + c̄4

2
≈ 452.711050645653766920618752468514,

c4 − c̄4

2
√

509
≈ 19.98657578270916698381220138644297.

We then try all the closest integers or half-integers to
these two values that give an algebraic integer. For c4 =
433 + 40ω, we get c6 = −12977− 1204ω. We recover the
minimal model E : y2+xy+y = x3−(1+ω)x2+33x+37
using Kraus–Laska’s algorithm.

Remark 6.4. There is a precision analysis in [Darmon and
Logan 03] that should carry over to our algorithm, al-
though we haven’t done so carefully. However, we would
like to point out that the quantities we seek to identify are
elements of OF whose coordinates are rational integers
or half-integers, and thus are much easier to recognize
than those in [Darmon and Logan 03]. Therefore, our
computations require less precision than theirs.

But in either case, the precision of the computations is
hugely influenced by the size of the fundamental unit in
OF . This explains the fact that despite using all the ide-
als of norm up to 50000 in Example 6.3, we were able to
obtain only one-digit precision. In contrast, the previous
examples required relatively fewer ideals.

Remark 6.5. The recent algorithm developed by Cremona
and Lingham [Cremona and Lingham 08] can be used to
find all the elliptic curves with everywhere good reduc-
tion over F . However, the merit of our approach is that
by using a precise formulation of the conjectural Eichler–
Shimura construction over F , we can recover those curves
that are modular from their corresponding eigenforms.
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