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We prove, using interval analysis methods, that the L2, L4, and
L8 spectral radii of the traction double layer potential opera-
tor associated with the Lamé system on an infinite sector in
R

2 are within 2.5×10−3 , 10−2, and 10−2, respectively, from a
certain conjectured value that depends explicitly on the aper-
ture of the sector and the Lamé moduli of the system. We also
indicate how to extend these results to Lp for entire intervals
of p, p ≥ 2.

1. INTRODUCTION

Estimates of the spectral radius of bounded linear oper-
ators associated with boundary value problems{

Lu = 0 in Ω,
Bu = f on ∂Ω,

(1–1)

where L is an elliptic operator and B the boundary con-
ditions, are important in establishing convergence of iter-
ative solution methods. More specifically, solving (1–1)
often means to invert I+K, where K is a singular integral
operator associated with the system, and in order to es-
tablish convergence of the Neumann series of this inverse,
ρ(K, Lp) < 1 must be satisfied, where ρ(K, Lp) denotes
the spectral radius of the operator K on Lp. See, for ex-
ample, [Dahlberg et al. 88, Kupradze 65, Lewis 90, Mitrea
04] for more details in the case of elastostatics.

Elasticity is the theory of mechanics of solid bodies
that deform elastically under external influences; elasto-
statics treats equilibrium states in elasticity. For the ba-
sic notions of elasticity, see, for example [Landau and Lif-
schitz 86, Marsden and Hughes 94]. The traction problem
of elastostatics is to describe equilibrium states of surface
interactions. This problem is modeled by equation (1–2)
below. We define an infinite sector of aperture θ, that is,
the interior of the unbounded region determined by θ.

Definition 1.1. Ωθ := {(x, y) ∈ R2 : ∃r > 0, φ ∈
(0, θ) s.t. x = r cosφ, y = r sinφ}.
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Consider the system of elastostatics on an infinite sec-
tor such as Ωθ ⊆ R2,{

μΔ�u + (λ + μ)∇div �u = �0 in Ωθ,

∂�u
∂Nµ

= �f ∈ Lp(∂Ωθ),
(1–2)

where the Lamé moduli μ, λ satisfy μ > 0 and λ+μ ≥ 0,
and

∂�u

∂Nμ
= μ(∇�u + (∇�u)t) · N + λ(div �u)N

denotes the traction conormal derivative. Let K be the
so-called traction double layer potential operator, which
is a singular integral operator naturally associated with
this system.

In [Mitrea 04], it is proved that the spectral radius of
the Lamé system, that is, the spectral radius of K, on an
infinite sector is less than one if p is large. Mitrea and
Tucker extend this in [Mitrea and Tucker 07] to p ≥ 2 by
proving that the spectral radius for p = 2 is described,
within a small error, by an explicit formula and then esti-
mating this formula. Their estimate is done by combining
analytic methods and validated numerics.

The explicit formula is interesting in itself, and since
the analytic part of the proof of the estimate is done for
all 1 < p < ∞ with a much better estimate than for
the computer-assisted part, it is desirable to improve the
computer-assisted part of the proof. In this paper we
construct a different algorithm for this part of the proof,
which improves the estimate for p = 2 and also extends
it to other values of p.

2. PROBLEM

The problem at hand is to find an enclosure of the spec-
trum of K, which is described implicitly by relation
(2–2) in Theorem 2.2, and explicitly by the four curves
Σ1, Σ2, Σ3, Σ4 in the same theorem. We will describe an
algorithm that encloses the spectrum in later sections.
In order to formulate our main theorem and the conjec-
tured spectral radius we need to introduce the following
expressions for α ∈ [0, π], κ ∈ [0, 1], and x ∈ (0, 1). Let

S(α, x, κ)

:=
∣∣∣{sin2 (αx) + κ2 cos2 (αx)

− (κ cos (πx) − (1 − κ)x sin α sin (αx)
)2}1/2

+ (1 − κ)x sin α cos (αx)
∣∣∣ · 1

sin (πx)
.

Our main result is a rigorous estimate of the spec-
tral radius ρ(K, Lp(∂Ωθ)) of K in terms of S. Note that

blackboard boldface letters denote interval enclosures of
the corresponding variables and functions; for instance,
A is an enclosure of A, A ∈ A.

Theorem 2.1. Let Ωθ ⊂ R2 be an infinite sector of
aperture θ ∈ (0, 2π) and let K be the traction double
layer potential operator associated with (1–2), and set
κ := μ/(2μ+λ) ∈ [ 1

40 , 9
10

]
. Then for θ ∈ [ π

200 , 2π − π
200

]
,

we have

S(|π − θ|, p, κ) ≤ ρ (K; Lp(∂Ωθ)) ≤ S(|π − θ|, p, κ) + ε,

for the following values of p and ε:

p 2 4 8 [2, 4] [4, 8]
ε 0.0025 0.01 0.01 0.1 0.2

The lower bound is known analytically, as in [Mitrea
and Tucker 07], and the upper bound is proved using
rigorous numerics, to be introduced in Section 4. It is
conjectured in [Mitrea and Tucker 07] that Theorem 2.1
actually holds with ε = 0 and 1 < p < ∞.

Note that the algorithm seems to work for any specific
p ∈ [2, 8] with ε = 0.01, although running the program
for all values of the parameter makes it excessively slow.
In fact, Theorem 2.1 is harder to verify for larger p due
to the denominator D in (2–4), so if one constructs an
algorithm that works for some p∗, then such an algorithm
should also work for any p, 2 ≤ p ≤ p∗.

The spectrum is described explicitly using auxiliary
functions. Therefore, let

Aκ := (1 − κ)z sin θ, B := sin((π − θ)z), (2–1)

C := cos((π − θ)z), D := sin(πz), E := cos(πz),

where θ, κ ∈ R and z ∈ C.
The spectrum of the operator K is described by the

following theorem [Mitrea 04]. A typical spectrum is il-
lustrated in Figure 1.

Theorem 2.2. Let Ωθ ⊂ R2 be an infinite sector of
aperture θ ∈ (0, 2π) and let K be the traction double
layer potential operator associated with the system (1–2)
with Lamé moduli λ, μ satisfying the conditions in (1–2).
Then for every 1 < p < ∞, we have

σ (K; Lp(∂Ωθ))

=
{

w ∈ C : (wD ± AκC)2 = Qκ,∓ (2–2)

for some z ∈ 1
p

+ iR
}
∪ {κ,−κ} ,
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FIGURE 1. A typical spectrum, here with κ = 0.2,
θ = 1, x = 0.5.

where κ = μ
2μ+λ and Aκ, B, C, D are as in (2–1). Also

Qκ,± := B2 + κ2C2 − (κE ± AκB)2. (2–3)

In particular, the spectrum is described by four curves:

σ (K; Lp(∂Ωθ)) =
4⋃

i=1

Σi(θ, p, κ).

Above [−∞,∞] � y �→ Σi(θ, p, κ)(y) ∈ C is a parametric
closed curve in the complex plane, given by

Σ1(θ, p, κ)(y) :=

√
Qκ,− − AκC

D
, (2–4)

Σ2(θ, p, κ)(y) :=
−√Qκ,− − AκC

D
,

Σ3(θ, p, κ)(y) :=

√
Qκ,+ + AκC

D
,

Σ4(θ, p, κ)(y) :=
−√Qκ,+ + AκC

D
,

where Aκ, B, C, D, E are evaluated at z = 1
p + iy, y ∈ R.

Note that the problem has symmetries, both in the
parameter region, that is, (κ, θ, x, y)-space, and in the
spectrum. Therefore, we need to consider only y ≥ 0
in the parameter region and �(z) ≥ 0 in the spectrum.
Furthermore, it is proved in [Mitrea and Tucker 07] that
Theorem 2.1 holds with ε = 10−6 in the region |y| ≥ 104

for all 1 < p < ∞. Thus, Theorem 2.1 needs to be proved
only for the compact region

(θ, κ, x, y) ∈
([ π

200
, π
]
,

[
1
40

,
9
10

]
,

[
1
8
,
1
2

]
, [0, 10000]

)
,

which corresponds to 2 ≤ p ≤ 8.

3. STRATEGY

The approach in [Mitrea and Tucker 07] used in ear-
lier algorithms to solve this problem was to enclose the
four curves (2–4) in Theorem 2.2 that explicitly describe
the spectrum. There are several problems with enclosing
these curves directly, primarily the square root, and for
p �= 2 the denominator D. The problem with the square
root is that it is not Lipschitz continuous at the origin,
which increases the width of the enclosures; that is, it in-
creases the effect of earlier errors when it is implemented
using interval arithmetic, to be introduced below.

Thus, avoiding this formulation is likely to improve
the run time of a computer-assisted proof and thereby
allow for better estimates, that is, smaller ε in Theo-
rem 2.1. The denominator D has absolute value less
than 1 for p �= 2 and y small, which in interval anal-
ysis, like the square root, increases the effect of earlier
errors. This drastically increases the complexity of the
computer-assisted proof, especially since we believe that
the spectral radius is attained for y = 0.

Instead, we want to use the description of the spec-
trum given by (2–2) and try to enclose this set by im-
plicitly solving for ω. Interval analysis provides us with
the possibility to exclude sets that are not in the spec-
trum. This is done by first enclosing the ranges of the
functions appearing in (2–1) and (2–3), that is, Aκ, C,
D, and Qκ,±, and then partitioning a suitable compact
subset of the complex plane that is known to contain the
spectrum.

For each box W in this partition (WD±Aκ)2∩Qκ,± is
calculated, and if this intersection is empty, then it has
been proved rigorously that the box W does not inter-
sect the spectrum of the traction double layer potential
operator K.

In order to implement this on a computer we must be
able to find the suitable compact search region described
above. This is possible because the curves describing the
spectrum are connected and we know that some part of
each curve lies inside the circle with radius S. Thus, if we
can prove that there exists a circle with radius S + ε that
does not intersect the spectrum, then the spectral radius
must be smaller than this radius. The algorithms that we
use to construct such a circle, and to verify that it does
not intersect the spectrum, are described in Section 5.

4. METHODS

The proof is computer-assisted and is based on interval
analysis. Interval analysis yields rigorous results for con-
tinuous problems, taking both discretization and round-
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ing errors into account. For a thorough introduction
to interval analysis we refer to [Alefeld and Herzberger
83, Moore 66, Moore 79, Neumaier 90, Petković and
Petković 98].

Let R denote the set of closed intervals. For any el-
ement A ∈ R, we adopt the notation A = [A, A], where
A, A ∈ R. Arithmetic operations and function evalua-
tions for a large class of functions can be extended to
the interval setting. In particular, functions f : C → C

acting in the complex plane can be extended, although
finding good-quality enclosures of the elementary func-
tions is much more complicated than in the real-valued
setting.1

One of the main reasons for passing to interval arith-
metic is that this approach provides a simple way of en-
closing the range of a function. If F is an interval exten-
sion of f , then

Range(f, A) ⊆ F (A).

Another key feature of interval arithmetic is that interval
extensions of functions are inclusion monotonic, that is,
if A ⊆ B, then f(A) ⊆ f(B).

5. IMPLEMENTATION

The objective is to prove that Theorem 2.1 holds with ε

as small as possible and the set of parameters P as wide
as possible. Of course, the conjecture is that Theorem
2.1 should hold for all positive ε and P = (1,∞). In
[Mitrea and Tucker 07], the authors show that Theorem
2.1 holds for the thin interval P = p = 2 and ε = 0.01.
The algorithm proposed here enables us to improve this
result, although anything but a thin P turns out to be
very hard computationally. We work on the global pa-
rameter domain

(θ, κ, x, y) ∈
([ π

200
, π
]
,

[
1
40

,
9
10

]
,

[
1
8
,
1
2

]
, [0, 10000]

)
,

which corresponds to P = [2, 8]. The actual computa-
tions using ε = 0.01, however, were made only for thin
intervals, with p fixed as 2, 4, or 8. With the full param-
eter region p ∈ [2, 8], only ε = 0.2 was achieved, although
when we restricted attention to P = [2, 4], ε = 0.1 was
possible. Describing the algorithms, we concentrate on
the case in which P is a thin interval; adaptation to the
general case is straightforward.

1We thank Markus Neher and Ingo Eble for developing
CoStLy—Complex interval Standard functions Library—and for
their valuable assistance with interfacing it to the CXSC library
[CXSC 05].
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FIGURE 2. Piece of the spectrum and the four circles
with radii S, S + ε, S, S, respectively at κ = 0.2, θ = 1,
x = 0.5, ε=0.01.

The aim of the algorithm is to prove that

ρ < S + ε,

and since S ≤ S always holds due to the properties of
interval arithmetic, Theorem 2.1 is proved. The main
problem with this approach is that in order for a circle
with radius S + ε to have empty intersection with the
spectrum, we must have width(S) < η, where η < ε, and
preferably S should be as narrow as possible; see Figure 2.

Experiments reveal that the computational time in-
creases dramatically with decreasing η. The results pre-
sented here were achieved using η = 0.8× ε, which turns
out to be a good compromise. Since S does not depend on
y, the enclosure S of S is achieved by adaptively splitting
in the κ and θ directions of the parameter region. This
algorithm is presented as Algorithm 5.1, whose output
is shown in Figure 3, which also illustrates the increased
complexity in reducing ε.

Algorithm 5.1.

paramList += initialDomain;

// Add one box to the search list.

while ( !IsEmpty(paramList) ) {

param = Pop(searchList);

// The current parameter box.

R = spectralRadius(param);

// Compute the conjectured spectral radius.

ETA = 0.8*EPS;

// Set the value of ETA

if ( diam(S) < ETA)

// Save those parameter boxes that yield...

SThinList += p;

// ...thin enclosures of S

else
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FIGURE 3. The initial partition of the (θ, κ)-plane
with x = 1

2
. The figures on the top and bottom cor-

respond to ε = 0.1 and ε = 0.05, respectively

splitAndStore(param, paramList);

// Divide the parameter space

}

Algorithm 5.1 yields the division of κ and θ in the
parameter region needed in order to reduce the width
of the enclosure of S. A box from this splitting is used
together with a small piece of Y as input for the main
algorithm. For this parameter region, a coarse covering
of the semicircle with radius S + ε is constructed. In
fact, it is covered by only one box having side lengths
2× (S + ε + δ) and (S + ε + δ). Here δ = 10−14 is a small
number that is added to ensure that the semicircle of
interest is inside the cover. Each box in the cover is split
into four, and those that either are within the required
accuracy or have empty intersection with the spectrum
are removed. This is repeated a few times or until we
arrive at a cover of maximum size (= 50).

Having refined the box sizes in the spectral plane, we
turn our attention to the parameter space and split adap-

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0
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1

FIGURE 4. Partition of the cover of the circle S + ε at
Y = [0, 10−3], x = 1

2
, and ε = 0.01.

tively, trying to minimize the width of the enclosure of
AC in Theorem 2.2. That is, we try to minimize the
width of all the entities that occur in the implicit de-
scription of the spectrum. The entire process is repeated
until the cover is empty. Algorithm 5.2 is repeated until
Theorem 2.1 has been verified for all y ∈ Y and for all the
boxes from the partition constructed by Algorithm 5.1.

There is a good reason to use only one box for the ini-
tial covering: it is computationally much faster to adap-
tively split only that part of the cover that was not re-
moved by an earlier step and check the conditions for
removal there than to make a very fine covering of the
circle and thereafter check the removal conditions only
once.

The splitting of Y was done manually, with small steps
for small y and larger for large y. More specifically, the
first interval was taken as Y = [0, 10−3] and the last one
as Y = [10, 10000]. A partition of the cover is illustrated
in Figure 4.

Algorithm 5.2.

makeBox(paramList, SThinList, x, y);

//Make a list of param’s for a y piece

while(!IsEmpty(paramList) {

//Verify Thm 2.1 for this parameter set.

paramBox=Pop(paramList);

spectralVerify(paramBox);

}

spectralVerify(paramBox) {

S=spectralRadius(paramBox);

//Calc the conj spectral radius

circleList+=coverCircle(\inf(S)+EPS+DELTA));

//Initate the cover

parcelList+=Parcel(paramBox, circleList);

//Param’s and cover together
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while(!IsEmpty(parcelList)) {

checkParcel=Pop(parcelList);

i=0;

do {

checkParcel.splitAndStoreCoverList();

//Split the cover

checkParcel.conjecture(EPS);

//Remove if conj. is EPS true

i++;

}

while(i<10 && checkParcel.coverSize() < 50 );

if(checkParcel.coverSize() !=0 )

//Adapt split the param space

parcelList+=checkParcel.splitParam();

}

}

conjecture(EPS) {

//Remove boxes that are either

while( !IsEmpty(coverList) ) {

//inside of the allowed circle

w=Pop(coverList);

//or do not intersect the spectrum

if( (Sup(abs(w)) >=

Inf(spectralRadius(checkParcel)) + EPS)

&& spectralHit(w) )

returnList+=w;

}

coverList=returnList;

}

spectralHit(w) {

lhsPos = sqr(w*D + AC);

//Calculate left side of (2-2)

if ( Intersect(lhsPos, Qneg) )

//if intersection is nonempty

return true;

//there is spectrum in box

lhsNeg = sqr(w*D - AC);

//Same for negative left

if ( Intersect(lhsNeg, Qpos) )

return true;

return false;

}

The complete source files to the program can be found
as supplementary material at the authors’ website. 2

6. RESULTS

The algorithms described above were implemented using
C++ with the CXSC toolbox [CXSC 05, Hammer et al.
95]. The program was executed on two dual 3.2-GHz
Intel Xeon processors, with a total of 3072 MB RAM.

2http://www.math.uu.se/∼johnson.

P ε Run Time #Boxes from Alg. 5.1
2 0.01 3 h 90587
2 0.0025 70 h 31 min 1449293
4 0.01 29 h 14 min 587439
8 0.01 228 h 12min 3486342
[2, 4] 0.1 16 h 16 min 399129
[2, 8] 0.2 16 h 58 min 656358

TABLE 1. Values of p and ε where Theorem 2.1 holds.

Elastic Material κ Elastic Material κ
Glass 1/3 Copper 0.2426
Steel 0.3106 Aluminum 0.2407
Iron 0.3059 Lead 0.0467
Nickel 0.2833 Rubber 0.0283
Bronze 0.2754

TABLE 2. The constant κ for some common materials.

The run times increased dramatically with increased p

and decreased ε. The reason for this is the huge increase
of the initial partition of (κ, θ)-space required in order to
get width (S) < η. For a comparison, see Figure 3. The
computations prove Theorem 2.1 with

(θ, κ, x, y) ∈
([ π

200
, π
]
,

[
1
40

,
9
10

]
, P, [0, 10000]

)
,

for the values of ε and ranges of P in Table 1.
The first result is stated for comparison with the

method used in [Mitrea and Tucker 07], which took 16
hours, using five processors for the same result. This in-
dicates that the method used here is an improvement. It
is not only faster, but also more robust, in the sense that
it allows us to extend the results to other Lp-spaces. The
run time increases dramatically with increased p, and al-
though Theorem 2.1 has been proved only for p = 2, 4,
and 8, the algorithm can handle any p ∈ [2, 8].

The limits of the considered κ domain
[

1
40 , 9

10

]
are

imposed by the program. It does not work for a larger
domain. For κ small, one can see from Figure 3 that
smaller and smaller boxes are needed as κ decreases. This
is, however, from an engineering perspective not a serious
limitation, as one can see from the range of materials in
Table 2 [Ciarlet 88, p. 129].
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