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We investigate, both numerically and mathematically, several
questions about embedded minimal surfaces of finite total cur-
vature in Euclidean space. We also describe how a theoretical
construction can be implemented numerically to produce pic-
tures of such surfaces.

1. INTRODUCTION

This paper investigates the space of complete embedded
minimal surfaces of finite total curvature (FTC) in Eu-
clidean space. For a long time, the only known examples
were the plane and the catenoid. In 1982, C. Costa dis-
covered a genus-one example with three ends [Costa 84].
D. Hoffman and W. Meeks proved that the Costa sur-
face is embedded, and they constructed, for each genus
≥ 1, a one-parameter family of embedded FTC minimal
surfaces with three ends [Hoffman and Meeks 90]. Since
then, several general methods to construct examples have
been proposed [Weber and Wolf 02, Kapouleas 97].

In [Traizet 02], the author developed a construction
that does not rely on symmetries, as do the previous
ones. The input data for this construction is a finite col-
lection of points in the complex plane (the configuration)
satisfying a set of algebraic equations (the balancing con-
dition). The output is a family of embedded FTC mini-
mal surfaces, whose geometry can be described explicitly
from the configuration. Roughly speaking, the surface
is composed of planes with small catenoidal necks be-
tween them, and the configuration gives the position of
the necks, as shown in Figure 1.

There are two aspects of this construction that can
be explored numerically. The first is the search for bal-
anced configurations. Most of the interesting examples I
have found were discovered numerically. Some of them
can be fully understood mathematically. They provide
numerical or mathematical answers to several interesting
questions about embedded FTC minimal surfaces.
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FIGURE 1. A configuration of type 3, 4, 1 and a genus-5 embedded minimal surface in the corresponding family. The
stars, the circles, and the dot represent the points at levels 1, 2, and 3, respectively. The neck sizes are c1 = 7

4
, c2 = 1,

and c3 ≈ 2.34.

The other aspect is pictures. How can we actually
compute these minimal surfaces? Theoretically, they are
constructed using the Weierstrass representation. The
Riemann surface is defined by opening nodes, an explicit
algebraic construction. Then three holomorphic 1-forms
φ1, φ2, φ3 (the Weierstrass data) are defined abstractly by
prescribing periods. The question is how these holomor-
phic 1-forms can be computed numerically. We provide a
constructive answer to this problem when all parts of the
noded Riemann surface have genus zero, and we explain
how this can be used to implement the construction in
[Traizet 02].

See http://www.lmpt.univ-tours.fr/∼traizet/minimal.
html for 3D versions of the images in this paper, which
can be freely rotated using the mouse. The webpage http:
//www.lmpt.univ-tours.fr/∼traizet/maple.html contains
Maple 9 worksheets for the computations described in
this paper.

2. BALANCED CONFIGURATIONS

A configuration is a collection of points {pk,i : 1 ≤ k ≤
M, 1 ≤ i ≤ Nk} in the complex plane, together with
some positive real numbers c1, . . . , cM . These points are
organized into layers: the points pk,1, . . . , pk,Nk

form the
kth layer. There are M layers, and Nk points in the
kth layer. We also say that the points pk,1, . . . , pk,Nk

are the points at level k. The total number of points
is N = N1 + · · · + NM . The numbers c1, . . . , cM are
called the neck sizes. The type of the configuration is
the sequence N1, . . . , NM .

Given a configuration that is balanced and nondegen-
erate (we will explain these terms shortly), the output
of [Traizet 02, Theorem 1] is a one-parameter family

of FTC minimal surfaces {Ms}0<s<ε, for ε sufficiently
small. These surfaces have genus N −M and have M +1
embedded ends, asymptotic to half-catenoids or planes.
They can be described geometrically as M + 1 horizon-
tal planes with small catenoidal necks between them; see
Figure 2.

There are M layers of necks and Nk necks in the
kth layer, whose positions are given by the points
pk,1, . . . , pk,Nk

. The necks in the kth layer have waist ra-
dius∼ sck. This geometric description holds only asymp-
totically as s→ 0.

The planes are perturbed to have logarithmic growth
at infinity; the surface has M + 1 catenoid type ends,
whose logarithmic growth is as follows: Let Qk =
Nk−1ck−1−Nkck (with the conventionN0 = NM+1 = 0).
Then the logarithmic growth of the kth end is precisely
sQk for k = 1, . . . ,M − 1, and is asymptotically sQk for
k = M,M+1 as s→ 0. (When the logarithmic growth is
zero, the end is asymptotic to a plane.) The theorem also
guarantees that if Q1 ≤ · · · ≤ QM−1 < QM < QM+1,
the surfacesMs are embedded (for s sufficiently small).
When this condition is satisfied, we say that the con-
figuration is embedded (a rather clumsy but convenient
terminology).

Let me now explain the balancing condition. Let

Fk,i =
Nk∑
j=1
j �=i

2c2k
pk,i − pk,j

−
Nk−1∑
j=1

ckck−1

pk,i − pk−1,j

−
Nk+1∑
j=1

ckck+1

pk,i − pk+1,j
,

with the convention that N0 = NM+1 = 0. Because of
the analogy with 2-dimensional electrostatic forces, we
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FIGURE 2. A genus-one Costa–Hoffman–Meeks surface, as computed from the configuration on the left.

call Fk,i the force on pk,i. The point pk,i interacts with
all other points in the same layer and with the points in
the layers directly below and above it. We require that
the points in each layer be distinct and also that they
be distinct from the points in the layers directly below
and above, so that Fk,i is defined. (We say that the
configuration is nonsingular.)

The configuration is balanced if all forces are zero:

∀k ∀i, Fk,i = 0.

These are N algebraic equations. They are not inde-
pendent because one has

∑
k,i Fk,i = 0. Moreover, a

computation shows that

∑
k,i

pk,iFk,i =
M∑

k=1

nk(nk − 1)c2k −
M−1∑
k=1

nknk+1ckck+1.

(2–1)
The right-hand side depends only on the neck sizes, and
it must be equal to zero for balanced configurations to
exist. When the neck sizes satisfy this condition, we are
left with N − 2 equations to solve. The balancing condi-
tion is also invariant by translation and complex scaling
of the points (transformations z �→ az + b). We may
normalize the positions of two points, and are left with
N − 2 parameters.

We call the configuration nondegenerate if the Jaco-
bian matrix ∂Fk,i/∂p�,j has complex rank N − 2. This is
the maximum rank it may have.

2.1 Basic Example: Costa–Hoffman–Meeks

The simplest examples have M = 2 layers of necks, with
N1 = n ≥ 2 and N2 = 1. The neck sizes are c1 = 1,
c2 = n− 1. The configuration has dihedral symmetry of
order n and is given by p1,i = ωi and p2,1 = 0, where

ω = exp(2πi/n). It is nondegenerate; for details, see
[Traizet 02, Proposition 1].

The corresponding family of embedded FTC minimal
surfaces is the Costa–Hoffman–Meeks family of genus n−
1, or rather the extreme part of this family. (I have no
proof of this claim, except by the classification in [Costa
89] in the genus-one case. All I really know is that the
surfaces have the same symmetries and topology as the
Costa–Hoffman–Meeks surfaces.)

These are also the only nondegenerate balanced con-
figurations with two layers of necks; again see [Traizet
02, Proposition 1].

2.2 Dihedral Configurations

In this section we investigate the following question:

Question 2.1. What is the least genus for an embedded
FTC minimal surface with r ≥ 2 ends?

N. Kapouleas has proven the existence of embedded
FTC minimal surfaces with any finite number of ends
[Kapouleas 97]. His examples are constructed by desin-
gularization of a finite set of coaxial catenoids and hor-
izontal planes. However, the genera of his examples are
very large by construction (in fact, it seems hard even to
estimate the genus).

D. Hoffman and W. Meeks have conjectured that the
answer to the above question is r− 2. M. Weber and M.
Wolf have constructed, for each r ≥ 4, an FTC minimal
surface with genus r−2 and r ends [Weber and Wolf 02].
However, they cannot mathematically prove that their
examples are embedded, although numerically generated
pictures seem to indicate that they are (at least for a few
values of r).
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FIGURE 3. A configuration of type 3, 3, 1 with dihedral symmetry and a genus-4 embedded minimal surface in the
corresponding family. The neck sizes are c1 = 1.35, c2 = 1, and c3 = 1.595.

Our result lies somewhere between these two: we can
prove the existence of embedded FTC minimal surfaces
with arbitrarily many ends, with an explicit formula for
the genus, but the genus is not optimal.

The easiest way to compute balanced configurations
with an arbitrary number of layers M is to retain the
symmetries of the Costa–Hoffman–Meeks configuration
and increase the number of layers (see Figure 3).

Let M ≥ 2 be the number of layers. Take N1 = · · · =
NM−1 = n and NM = 1, where n ≥ 2 is some integer.
We want the configuration to have dihedral symmetry of
order n, so we set

pk,i = akω
i, 1 ≤ k ≤M − 1, pM,1 = 0,

where ω = exp(2πi/n) and ak is such that an
k ∈ R∗.

Equation (2–1) gives

M−1∑
k=1

n(n− 1)c2k −
M−2∑
k=1

n2ckck+1 = ncM−1cM . (2–2)

This determines cM as a function of the parameters
c1, . . . , cM−1.

By symmetry, FM,1 = 0, and pk,iFk,i is the same for
all i. In fact, elementary computations give

p1,iF1,i = (n− 1)c21 − nc1c2
an
1

an
1 − an

2

, (2–3)

and for 2 ≤ k ≤M − 2,

pk,iFk,i = (n− 1)c2k − nck−1ck
an

k

an
k − an

k−1

− nckck+1
an

k

an
k − an

k+1

. (2–4)

We can fix a1 = 1, and then these equations determine re-
cursively a2, . . . , aM−1 as functions of c1, . . . , cM−1. The
equation pM−1,iFM−1,i = 0 is then automatically satis-
fied, since

∑
pk,iFk,i = 0. Alternatively, we can choose

the values of a1, . . . , aM−1, and then the equations deter-
mine the values of c1, . . . , cM−1.

For M = 2 we recover the Costa–Hoffman–Meeks con-
figurations (see Section 2.1). For M ≥ 3, these configu-
rations yield minimal surfaces with r = M + 1 ends and
genus g = (n − 1)(M − 1). In particular, if n = 2, the
genus is g = r − 2, the critical case for the Hoffman–
Meeks conjecture. Unfortunately, it is not hard to check
that when M ≥ 3 and n = 2, the configuration is never
embedded, whatever the choices of the neck sizes. I be-
lieve (this is pure speculation) that the surfaces we obtain
in this case are in the same family as the examples con-
structed in [Weber and Wolf 02] but that these examples
do not stay embedded all the way.

One question we have to answer is whether the above
configurations are nondegenerate. It turns out that if
M ≥ 3, they are not always nondegenerate, but the
following is true: for generic values of the parameters
c1, . . . , cM−1, the configuration is nondegenerate. Here
generic means outside the zero set of a nonzero polyno-
mial. Indeed, nondegeneracy can be written as a polyno-
mial equation in c1, . . . , cM−1.

To prove the statement, it suffices to prove that this
polynomial is not identically zero, so it suffices to exhibit
one set of values of the parameters such that the con-
figuration is nondegenerate, for each n and M . We give
the details of this computation in Section 4.1. It is clear
that for generic values of c1, . . . , cM−1, the configuration
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is nonsingular, which in this case means that all ak are
nonzero and ak 
= ak+1.

It remains to choose the neck sizes such that the con-
figuration is embedded. Take c1 = · · · = cM−1 = 1.
Equation (2–2) gives cM = n − M + 1. Then Q1 =
−n, Q2 = · · · = QM−1 = 0, QM = M − 1, and
QM+1 = n −M + 1. The condition QM+1 > QM gives
n > 2(M − 1), so we can take n = 2M − 1. We ob-
tain a family of embedded minimal surfaces with genus
2(M−1)2 and number of ends equal to M+1. This gives
us the following theorem:

Theorem 2.2. For each r ≥ 3, there exists an embedded
FTC minimal surface with r ends and genus 2(r − 2)2.

This estimate is by no mean optimal, since the genus
grows quadratically with r, whereas the Hoffman–Meeks
conjecture asks for linear growth. It is possible to im-
prove this estimate, but not very much. In fact, it is
possible to prove that in general, for a configuration
with M layers, if the total number of necks is less than
M(M − 1)/2, the configuration cannot be embedded,
whatever the repartition of the necks and the neck sizes.
Hence one cannot construct minimal surfaces with r ends
and genus less than (r − 1)(r − 2)/2 with this approach:
quadratic growth of the genus cannot be avoided.

2.3 Asymmetric Configurations

In this section we investigate the following question:

Question 2.3. What is the least genus for an embedded
FTC minimal surface with no symmetries?

By a symmetry, I mean an ambient isometry preserv-
ing the surface (other than the identity). In [Traizet 02],
an embedded, asymmetric example of genus 45 with five
ends was proven to exist, as well as examples of arbitrar-
ily high genus.

A numerical search gives a large number of embedded
asymmetric examples of much smaller genus. The small-
est genus I have found so far is 6 (see Figure 4). Also, this
numerical investigation has uncovered a genus-7 example
that is simple enough that it can be proven mathemati-
cally to exist (see Figure 5).

In this section, we explain how one can compute con-
figurations without the help of symmetries, a situation
quite opposite to that of Section 2.2. A proof for the
genus-7 example of Figure 5 is given in Section 4.2.

The only nondegenerate configurations with M = 2
layers are the Costa–Hoffman–Meeks configurations. The
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FIGURE 4. An asymmetric configuration of type 3, 4, 2
(embedded, genus 6). The neck sizes are c1 = 7

10
,

c2 = 1, and c3 ≈ 2.85.

simplest next case is M = 3 with N3 = 1, which already
gives many interesting examples. Let me explain how I
compute examples in this particular case. The method
generalizes to an arbitrary number of layers and necks,
but is especially successful in this case.

Note that the balancing condition is invariant by per-
mutation of the points at each level, so we should not
use pk,i as variables when computing configurations, for
otherwise, each configuration will be duplicated N1!N2!
times, so the list of configurations will be huge, and in
fact, the system will be impossible to solve. So the cor-
rect variables are the elementary symmetric functions of
the points at each level.

Consider the polynomials

Pk(z) =
Nk∏
i=1

(z − pk,i).

By translation, we may assume that p3,1 = 0, so P3 = z.
Let us write the forces in terms of P1, P2. We have

P ′
k

Pk
(z) =

∑
i

1
z − pi

if Pk(z) 
= 0,

P ′′
k

P ′
k

(pk,i) =
∑
j �=i

2
pk,i − pk,j

,

Fk,i = c2k
P ′′

k

P ′
k

− ckck−1

P ′
k−1

Pk−1
− ckck+1

P ′
k+1

Pk+1
,

evaluated at z = pk,i. From this we get that the config-
uration is balanced if the polynomial

c21zP
′′
1 P2 + c22zP

′′
2 P1 − c1c2zP ′

1P
′
2 − c2c3P1P

′
2 (2–5)

vanishes at the points p1,1, . . . , p1,N1 and p2,1, . . . , p2,N2 .
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Since these are N1 +N2 distinct points and this poly-
nomial has degree ≤ N1 + N2 − 1, it is identically zero.
Writing that all coefficients of this polynomial are zero
gives a system of N1 + N2 quadratic equations in the
coefficients of P1, P2. The leading coefficient of (2–5) is

N1(N1−1)c21+N2(N2−1)c22−N1N2c1c2−N2c2c3, (2–6)

so we recover equation (2–1). We are left with N1 +N2−
1 equations to solve. The unknowns are the N1 + N2

coefficients of P1 and P2.
This system has a special form that makes it relatively

easy to solve. First of all, the balancing condition is in-
variant by complex scaling z �→ az, so we may normalize
one coefficient of P2 to be equal to 1. We may then use
the first N1 equations to express the coefficients of P1 as
functions of the coefficients of P2, solving a linear sys-
tem of N1 equations. By substitution in the last N2 − 1
equations, we obtain a system of algebraic equations in
the N2−1 remaining coefficients of P2. This works fairly
well if N2 is small. If N1 is small, we can exchange the
roles of P1 and P2.

Once we have found a pair of polynomials P1, P2 sat-
isfying (2–5), we recover a configuration by computing
their zeros p1,1, . . . , p1,N1 and p2,1, . . . , p2,N2. We still
must check that the configuration is nonsingular, in the
sense that these points are distinct, so that the forces
are defined. In fact, (2–5) always has the trivial solution
Pk = zNk , which gives a useless configuration in which
all points are equal to 0. But we can make sure a priori
that any other solution is nonsingular as follows.

Note that the balancing condition does not make sense
for a singular configuration, but equation (2–5) still does,
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FIGURE 5. An asymmetric configuration of type
5, 4, 1. The neck sizes are c1 = 1, c2 = 1.01, and
c3 ≈ 2.98. There is a cluster of four points on the
left and a cluster of three points on the right. This
configuration is almost singular.

and may be seen as a way to make sense of a balanced
singular configuration. In fact, families of configurations
typically become singular for some particular values of
the neck sizes, although this can happen only for a finite
number of values. To understand why, assume that z0 is
a zero of Pk with multiplicity mk ≤ Nk, for k = 1, 2, 3
(if m3 = 1, then z0 = 0). Assume that m1 + m2 ≥ 2 or
m2 + m3 ≥ 2, so the configuration is singular. Also as-
sume that (m1,m2,m3) 
= (N1, N2, N3), since otherwise,
Pk = zNk for k = 1, 2, 3, and we have the trivial solution
to (2–5).

Writing Pk = λk(z−z0)mk +o((z−z0)mk) and replac-
ing in (2–5), we obtain the equation

m1(m1−1)c21+m2(m2−1)c22−m1m2c1c2−m2m3c2c3 = 0.
(2–7)

Eliminating c3 from (2–6) and (2–7), we obtain a
quadratic homogeneous equation in the unknowns c1, c2,
whose coefficients depend on (m1,m2,m3).

By inspection, we find that the coefficients of this
equation are not all zero, so normalizing by c1 = 1,
there are at most two possible values for c2. Since there
is only a finite number of possible values for the triple
(m1,m2,m3), there is only a finite number of values of
c2 for which a singular configuration (besides the trivial
solution Pk = zNk) can occur.

Figure 5 displays a configuration of type 5, 4, 1. This
configuration is almost singular, and it becomes singular
when c2 = 1. One can compute the configuration quite
explicitly by hand when c2 = 1, and conclude that it is
asymmetric. The details of this computation are given
in Section4.2. This proves the following theorem:

Theorem 2.4. There exist embedded asymmetric FTC
minimal surfaces of genus 7 with four ends.

2.4 A Minimal Surface with a Planar End of Order 2

In this section we investigate the following question :

Question 2.5. Can an embedded FTC minimal surface
have a planar end of order two?

We are talking here about the order of the extended
Gauss map at the puncture corresponding to the end.
This order is always at least 2 for a planar end. There are
examples of periodic minimal surfaces with planar ends
of order 2, such as the Riemann minimal examples. For
the previously known examples of FTC minimal surfaces
with planar ends, the order of the Gauss map at the end
was always at least 3. But this was in fact forced by the
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symmetries of these surfaces. In this section we exhibit
an example with a planar end of order 2.

We consider a configuration of type 5, 4, 1. We may
normalize c1 = 1, and we choose c2 = 5

4 . Equation (2–1)
gives c3 = 11

4 . The logarithmic growths of the ends are
Q1 = −5, Q2 = 0, Q3 = 9

4 , Q4 = 11
4 , so the end at level

2 is planar. The configuration can be computed as in
Section 2.3.

The question is, how can we determine the order of the
Gauss map at the planar end? Theoretically, we have
the following asymptotic for the Gauss map gs of Ms

in a neighborhood of the planar end (corresponding to
z =∞):

lim
s→0
−2(sgs(z)−1) =

N1∑
i=1

c1
z − p1,i

−
N2∑
i=1

c2
z − p2,i

.

The right-hand side can be expanded as

(N1c1 −N2c2)z−1 +
(
c1

N1∑
i=1

p1,i − c2
N2∑
i=1

p2,i

)
z−2

+ o(z−2).

The first term vanishes because the end is planar. The
Gauss map has order 2 if the second term is not zero.
This condition is easy to check (note that we do not need
to compute the points pk,i; the coefficients of the poly-
nomials Pk are enough).

The configuration can be computed using the methods
of Section 2.3. Unfortunately, I was not able to prove
mathematically (meaning by hand) that this configura-
tion is nondegenerate. (What I can prove is that the
configuration is nondegenerate for generic values of the
neck sizes, but here the neck sizes are fixed.)

The computation can easily be done using software like
Maple or Mathematica, however. Moreover, the compu-
tation involves only rational numbers, and so it can be
carried out using exact arithmetic. This gives a numer-
ical proof that there exist embedded FTC minimal sur-
faces with a planar end of order 2. The details of this
computation are given in Section 4.3.

3. PICTURES

The goal of this section is to explain how, given a bal-
anced configuration, one can compute numerically the
corresponding family of minimal surfaces. This is illus-
trated in Figure 6 in the case of the Costa–Hoffman–
Meeks genus-1 family (recall that this family corresponds
to a configuration of type 2, 1; see Section 2.1).

The surface is decomposed into three pieces, one for
each end. Each piece is parameterized by a multicircular
domain, by which I mean the complex plane minus one or
several circular disks. The point at infinity corresponds
to an end of the surface. (In practice, we clip the ends,
so each piece is parameterized by a big disk minus some
small disks.)

If we identify the circle marked A with the circle
marked A′, the circle marked B with the circle marked
B′, and the circle marked C with the circle marked C′,
we obtain topologically a genus-1 surface with three ends.

To see why this defines a Riemann surface, we must
specify how we identify the circles with one another. This
is in fact an instance of a standard construction called
opening nodes, which is fundamental to the construc-
tion in [Traizet 02], so let me explain this construction in
greater detail.

Consider three copies of the complex plane, labeled
C 1, C 2, C 3. Take two distinct points a−1,1, a

−
1,2 in C 1,

three distinct points a+
1,1, a

+
1,2, a

−
2,1 in C 2, and one point

a+
2,1 in C 3. Identify

a−1,1 ∼ a+
1,1, a−1,2 ∼ a+

1,2, and a−2,1 ∼ a+
2,1.

This defines a (singular) Riemann surface with three
nodes (or double points). The planes C 1, C 2, C 3 are
called the parts of the noded Riemann surface.

To open the nodes, we consider three nonzero com-
plex parameters t1,1, t1,2, and t2,1. We remove the disk
D(a−k,i, |tk,i|) in C k and the disk D(a+

k,i, |tk,i| in C k+1,
for (k, i) equal to (1, 1), (1, 2), and (2, 1). We identify
the point z in the annulus |tk,i| < |z − a−k,i| < 1 in C k

with the point z′ in the annulus |tk,i| < |z′ − a+
k,i| < 1

in C k+1 such that (z − a−k,i)(z
′ − a+

k,i) = tk,i, for (k, i)
equal to (1, 1), (1, 2), and (2, 1). This defines a Riemann
surface because the change of coordinates z �→ z′ is holo-
morphic.

Let me explain how this construction is related to Fig-
ure 6. Note that the circle with center a−1,1 in C 1 and
the circle with center a+

1,1 in C 2, both of radius
√|t1,1|,

are identified: these are the circles labeled A and A′ in
Figure 6. A similar statement holds for the other pairs of
circles. As tk,i goes to zero, the corresponding circles col-
lapse into the node. In some sense, the Riemann surface
converges to the noded Riemann surface. The argument
of tk,i may be seen as a Dehn twist parameter.

The parameters in this construction are the six points
a±k,i and the three complex numbers tk,i, for a total of
nine complex parameters. We can, however, normalize
the value of six parameters by translation and complex
scaling in each plane.
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FIGURE 6. Triangulation of the three multicircular domains generated with matlab (left) and their image in space
(right), in the case of the Costa–Hoffman–Meeks genus-1 surface. The three pieces on the right match perfectly, to give
the whole surface.
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Then we are left with three complex parameters, which
is the dimension of the space of conformal structures on
a torus with three punctures.

More generally, in the case of a configuration of type
N1, . . . , NM , we consider M + 1 copies of the complex
plane, labeled C 1, . . . , CM+1. We take Nk + Nk−1 dis-
tinct points a−k,1, . . . , a

−
k,Nk

and a+
k−1,1, . . . , a

+
k−1,Nk−1

in
C k (with the convention N0 = NM+1 = 0). We identify
a−k,i ∼ a+

k,i for each possible pair (k, i), which defines a
noded Riemann surface with N = N1 + · · ·+NM nodes.
We open the nodes as explained above, introducing one
parameter tk,i per node.

The minimal surface is parameterized by the Weier-
strass representation in the following form:

X(z) =
(

Re
∫ z

z0

φ1,Re
∫ z

z0

φ2,Re
∫ z

z0

φ3

)
,

where φ1, φ2, and φ3 are three holomorphic 1-forms
on our Riemann surface such that φ2

1 + φ2
2 + φ2

3 = 0
(the conformality equation). The period problem requires
that X(z) be well defined (independent of the integra-
tion path).

To find three holomorphic 1-forms satisfying the con-
formality equation and the period problem, we adopt the
following strategy: We construct φ1, φ2, φ3 by prescrib-
ing their periods around the necks. (These periods are
imaginary, so part of the period problem is already solved
by definition. Each imaginary part is a parameter.) Then
we adjust the parameters to solve φ2

1 + φ2
2 + φ2

3 = 0 and
the remaining part of the period problem.

This strategy was used in [Traizet 06] to construct
triply periodic minimal surfaces. We follow that con-
struction, with a few modifications due to the fact that
our minimal surfaces have ends.

This is not the strategy used to construct the family
of minimal surfaces in [Traizet 02], where we used the
classical form of the Weierstrass representation (with the
Gauss map). The construction in [Traizet 02] seems more
difficult to implement.

The main question we have to answer to implement the
construction in [Traizet 06] is, how can we compute these
holomorphic 1-forms numerically? For each of them, we
need some kind of formula in each multicircular domain.
We answer this question in Section 3.1. Each 1-form is
represented by some kind of series, whose coefficients are
determined by solving a linear system.

At this point we have a family of Riemann surfaces and
holomorphic 1-forms φ1, φ2, φ3, depending on a number
of parameters. We have a well-defined immersion on each
multicircular domain, but there is no reason that the im-

ages should fit together. For instance, in Figure 6, the
images of the circles A and A′ differ by a translation, and
so do the images of the circles B and B′. But there is no
reason that these translations should be the same (as is
the case in Figure 6). We need to adjust the parameters
so that this is the case, which is the period problem.

We also have to adjust the parameters so that φ2
1+φ

2
2+

φ2
3 = 0. Let ψ = φ2

1 + φ2
2 + φ2

3. This is a meromorphic
quadratic differential with at most double poles at the
ends. The space of such differentials has finite complex
dimension 3N − M − 1. The question is, how do we
compute numbers from a quadratic differential?

Following the construction in [Traizet 06], we simply
compute periods of ψ/dz along suitable circles in each
multicircular domain (where dz stands for the usual dz
in each multicircular domain, so it is not globally de-
fined on our Riemann surface) and check that we obtain
3N −M −1 independent equations. (Another possibility
would be to divide ψ by a global 1-form, say φ3, and com-
pute periods. It is much simpler numerically to compute
periods of ψ/dz.)

The total number of (real) equations we have to solve
is 9N−5M−3. This is a quite large number of equations:
for example, for the asymmetric example of Figure 7,
with N = 10 and M = 3, we have 72 equations to solve.
How do we solve such a large nonlinear system?

Theoretically, in [Traizet 06] we solve these equations
using the implicit function theorem. The proof of that
theorem, which is based on the contraction mapping prin-
ciple, gives a method to compute the solution numeri-
cally: Assume that we have a system of n equations in
n variables, depending on some parameter s, which we
write as fs(x) = 0. Assume that when s = 0, we are
given a solution x0, and we know that A = df0(x0) is in-
vertible. Then for s small, we can solve fs(x) = 0 by the
following iteration scheme: Define the sequence {xk}k∈N

inductively by x0 = x0 and

xk+1 = xk −A−1fs(xk). (3–1)

Then for s small, {xk}k∈N converges to a solution x of
fs(x) = 0.

We apply this scheme to solve our equations. Without
entering into too much detail, we note that at the point
x0, the underlying Riemann surface is fully noded (all
tk,i are zero: the necks collapse to double points), and
the center of the circles are given by the points of the
configuration. We can compute explicitly all equations
at this point; see [Traizet 06] for more details.

The equations boil down to the balancing condition.
Moreover, we can compute explicitly the Jacobian matrix
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FIGURE 7. A genus-7 embedded asymmetric minimal surface (top view), computed from a configuration of type 4, 5, 1.
The neck sizes are c1 = 3

2
, c2 = 1, and c3 = 17

5
.

A (derivatives of equations with respect to parameters)
at the point x0. Provided the configuration is nondegen-
erate, the Jacobian matrix is invertible. We then invert
numerically the Jacobian and apply the iteration scheme
(3–1). For small values of s it converges very quickly to a
fixed point (several digits of precision are gained at each
loop).

When we increase the value of s, the iteration no
longer converges. Here is the idea to push the param-
eter s further: start from a previously computed solution
xs, increase s by a small amount, and apply again the
above iteration scheme with x0 = xs and A equal to the
Jacobian at xs.

The basic problem is that as soon as s is not zero, the
nodes open (the tk,i are nonzero), so we cannot compute
the Jacobian matrix explicitly.

However, we can compute a good approximation of
the Jacobian by pretending that the Riemann surface is
still noded. Because the radii remain quite small (even
though the other parameters move considerably), this
gives us an approximate Jacobian that we can use in-
stead of A.

Finally, to plot the surface, we need to integrate φ1,
φ2, φ3. Because these 1-forms are represented as series,
their integrals are readily computed: no numerical inte-
gration is required.

The rest of this section is organized as follows: in
Section 3.1, we explain how we compute numerically a
holomorphic 1-form defined by prescribing periods in the

case of opening nodes. In Section 3.2, we give more
details about the construction of the family of minimal
surfaces.

3.1 Opening Nodes: A Model Case

In this section we explain how to compute holomorphic
1-forms on Riemann surfaces defined by opening nodes.
For simplicity of notation, we first consider the case that
the noded Riemann surface has only one part. Then we
explain how one can generalize the construction to other
cases.

Consider 2N distinct points a−1 , . . . , a
−
N , a

+
1 , . . . , a

+
N in

the complex plane. We assume for convenience that the
disks of radius one centered at these points are disjoint.
Identify for each i = 1, . . . , N the point a−i with the point
a+

i . This defines a noded Riemann surface Σ0 with N

nodes, which we call a1, . . . , aN .
To open the nodes, consider N complex numbers

t1, . . . , tN such that 0 < |ti| < 1. Remove the 2N disks
D(a±i , |ti|). Identify the annulus |ti| < |z − a−i | < 1
with the annulus |ti| < |z′ − a+

i | < 1 under the rule
(z − a−i )(z′ − a+

i ) = ti. This defines an open Riemann
surface Σt, where t = (t1, . . . , tN ). We compactify Σt by
adding the point at infinity, and we still denote by Σt the
compactification. The genus of Σt is N .

It is well known that the space of holomorphic 1-forms
on Σt has complex dimension N , and that a holomorphic
1-form is uniquely defined by prescribing its periods on
the circles around the points a+

1 , . . . , a
+
N . Let ω be the
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holomorphic 1-form on Σt defined by prescribing
∫

C(a+
i ,1)

ω = 2πici, i = 1, . . . , N,

where c1, . . . , cN are given complex numbers. How can
we actually compute ω?

We are aiming for a formula of the form

ω =
∑
±

N∑
i=1

∞∑
n=1

A±
i,n

(z − a±i )n
dz, (3–2)

where the complex numbers A±
i,n are such that A±

i,nt
−n
i

is bounded, so that the series converges on the domain
|z − a±i | > |ti|. (In the above formula, the sum over ±
means that we add two terms, one for + and one for −.)
It is not hard to see that ω admits such a representation,
using a Laurent series in the annuli |ti| < |z − a±i | < 1
and the fact that a holomorphic 1-form on the Riemann
sphere C ∪ {∞} must be identically zero.

The residues A±
i,1 are determined by the prescribed

periods: since the circle C(a+
i , 1) is homologous in Σt

to the circle C(a−i , 1) with the opposite orientation, we
must have

A±
i,1 = ±ci.

(Note that this implies that the sum of all A±
i,1 is zero,

so ω is holomorphic at infinity.)
We want ω to be well defined on Σt, namely invari-

ant under the identification rule used to define Σt. This
should uniquely determine all coefficients A±

i,n. Let

ϕi(z) = a−i +
ti

z − a+
i

,

so ϕi maps the annulus |ti| < |z−a+
i | < 1 to the annulus

|ti| < |z−a−i | < 1, and Σt is defined by identifying z with
ϕi(z). The fact that ω is well defined on Σt is equivalent
to ϕ∗

i ω = ω on the annulus |ti| < |(z − a+
i )| < 1, for all

i = 1, . . . , N . This is equivalent to

∀m ∈ Z,

∫
C(a+

i ,1)

(z − a+
i )mϕ∗

i ω =
∫

C(a+
i ,1)

(z − a+
i )mω.

(3–3)
By a change of variable,
∫

C(a+
i ,1)

(z − a+
i )mϕ∗

iω = −
∫

C(a−
i ,1)

(
ti

z − a−i

)m

ω.

So (3–3) may be rewritten as

∀m ≥ 1, A±
i,m+1 = − t

m
i

2πi

∫
C(a∓

i ,1)

ω

(z − a∓i )m
. (3–4)

(Notation: the sign ∓ on the right side is opposite to the
sign ± on the left side.) This is an infinite-dimensional
linear system in the unknowns A±

i,n, n ≥ 2.
Let us introduce the following notation:

ω0 =
∑
±

N∑
i=1

±ci
z − a±i

dz,

A = (A±
i,n : i ≤ N, n ≥ 2),

α(A) =
∑
±

N∑
i=1

∞∑
n=2

A±
i,n

(z − a±i )n
dz,

F±
i,m(α) = − t

m−1
i

2πi

∫
C(a∓

i ,1)

α

(z − a∓i )m−1
,

F (α) = (F±
i,m(α) : i ≤ N, m ≥ 2).

Then (3–4) may be rewritten as A = F (ω0 + α(A)).
We solve this fixed-point problem using the standard

iteration scheme: define the sequence {Ak}k∈N by induc-
tion, setting A0 = 0 and Ak+1 = F (ω0 + α(Ak)). To see
that {Ak}k∈N converges to a fixed point, we introduce
the following Banach norms:

‖A‖ =
∑
±

N∑
i=1

∞∑
n=2

|A±
i,n|,

‖α‖∞ =
∑
±

N∑
i=1

sup
z∈C(a±

i ,1)

|α(z)|.

Then straightforward estimates give

‖α(A)‖∞ ≤ ‖A‖,

‖F (α)‖ ≤
( 2N∑

i=1

|ti|
1− |ti|

)
‖α‖∞.

Hence ‖F (ω0)‖ < ∞, and provided that all ti are small
enough, A �→ F (α(A)) is a contracting linear operator.
It follows, by the standard fixed-point theorem, that the
sequence {Ak}k converges to a solution A of A = F (ω0 +
α(A)).

Let ω = ω0 +α(A). From (3–4), we have the estimate

|A±
i,m| ≤ |ti|m−1‖ω‖∞. (3–5)

Hence each series
∑

nA
±
i,n(z − a±i )−n converges for |z −

a±i | > |ti|, so ω is the desired 1-form.
What we have achieved is a constructive proof of the

existence and uniqueness of ω on Σt, provided that all ti
are small enough. The above method generalizes easily
to the case of meromorphic differentials with prescribed
principal part at the poles, provided that the poles are
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outside the disksD(a±i , 1): simply add the principal parts
to ω0.

The method also generalizes to the case of several Rie-
mann spheres connected by nodes (see Section 3.2); the
notation is just a bit more cumbersome. On the other
hand, it is essential to the above argument that all the
parts of the noded Riemann surface have genus zero so
that we can represent ω as a series.

There are several reasons why a constructive proof is
interesting. First of all, this allows us to compute ω nu-
merically, which is our interest in this paper. The esti-
mate (3–5) says that the coefficients A±

i,n decay rapidly
with n, provided that all ti remain small. So it is legiti-
mate to truncate the series to some finite order. Typically
for the examples we will consider, |ti| is of order 0.01, and
we truncate the series to the order n = 10.

The method is also interesting from the theoretical
point of view because it generalizes to the case of in-
finitely many Riemann spheres connected by nodes. In
this case, by opening the nodes we obtain noncompact
Riemann surfaces of infinite genus. The standard “ab-
stract algebraic geometry” machinery does not seem to
apply to this setup. It might be useful to construct, for
instance, aperiodic minimal surfaces of infinite topology.

The integral in (3–4) can be explicitly computed using
the following formula:

Resb
1

(z − a)n(z − b)m
=
(
n+m− 2
m− 1

)
(−1)m−1

(b− a)n+m−1
.

3.2 Computing the Family of Minimal Surfaces

In this section, we give more details on how we compute
numerically the family of minimal surfaces correspond-
ing to a given configuration. As was already stated, we
follow very closely the construction in [Traizet 06], with
a few modifications due to the fact that our surfaces have
catenoidal ends. In particular, the notation and normal-
izations are as in that paper. Giving all the details of the
construction would essentially amount to a proof of the
main theorem in [Traizet 02], which is not our purpose
here, so we will be quite allusive.

Given a configuration of type N1, . . . , NM , a family
of Riemann surfaces is constructed by opening nodes, as
explained at the beginning of Section 3. The parame-
ters in this construction are the points a±k,i and the com-
plex numbers tk,i used to open the nodes. We compact-
ify the Riemann surface by adding the points at infinity
∞1, . . . ,∞M+1. Let Σt be the resulting compact Rie-
mann surface.

Next we define three meromorphic 1-forms φ1, φ2, φ3

on Σt, with poles at∞1, . . . ,∞M+1, by prescribing peri-
ods on the circles C(a+

k,i, 1) as explained in Section 3.1.
The principal parts at the poles are forced by the fact
that we want horizontal catenoidal (or planar) ends: φ1

and φ2 need double poles, with no residue, and φ3 needs
a simple pole (or no pole in the planar case).

As explained in Section 3.1, we represent φν as

φν,k = λν,kdz +
Nk∑
i=1

∞∑
n=1

A−
ν,k,i,n

(z − a−k,i)n
dz (3–6)

+
Nk−1∑
i=1

∞∑
n=1

A+
ν,k−1,i,n

(z − a+
k−1,i)n

dz.

Here φν,k denotes φν in C k. The first term takes care of
the double pole at ∞k. We require that

λ1,k = 1, λ2,k = (−1)k+1i, λ3,k = 0.

The residues are determined by the period conditions

A±
ν,k,i,1 = ±cν,k,i,

where cν,k,i are prescribed real numbers.
As explained in Section 3.1, the coefficients Aν,k,i,n for

n ≥ 2 may be computed by solving a linear system by
iteration. Adapted to the case at hand, this gives the
following recipe:

A±
ν,k,i,m+1 ← −δm,1λν,ktk,i + (−tk,i)m

∞∑
n=1

(
n+m− 2
m− 1

)

×
[ Nk∑

j=1
j �=i

A∓
ν,k,j,n

(a∓k,i − a∓k,j)n+m−1

+
Nk∓1∑
j=1

A±
ν,k∓1,j,n

(a∓k,i − a±k∓1,j)n+m−1

]

(δi,j denotes the Kronecker symbol). Namely, we com-
pute the right-hand side for all ν, k, i, and for all m ≥ 1;
we replace all Aν,k,i,m+1 by the values we have found; and
we iterate this process until each Aν,k,i,m+1 is equal to
the right-hand side to the desired order of accuracy. As
was already stated, we also truncate the series to some
reasonable order, depending on how small the parameters
tk,i are.
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The meromorphic 1-forms can be explicitly integrated:

Xν,k(z) = Re
∫
φν,k

= Re(λν,kz)

+
Nk∑
i=1

(
Aν,k,i,1 log |z − a−k,i|

+ Re
∞∑

n=2

A−
ν,k,i,n

(1− n)(z − a−k,i)n−1

)

+
Nk−1∑
i=1

(
Aν,k−1,i,1 log |z − a+

k−1,i|

+ Re
∞∑

n=2

A+
ν,k−1,i,n

(1− n)(z − a+
k−1,i)n−1

)
.

The period problem can be written thus: Xν,k(a−k,i +√
tk,i)−Xν,k+1(a+

k,i +
√
tk,i) is independent of i.

Let ψ = φ2
1 +φ2

2 +φ2
3. Following [Traizet 06], we solve

the following equations:∫
C(a−

k,i,1)

(z − a−k,i)
ψ

dz
= 0, (3–7)

1 ≤ k ≤M, 1 ≤ i ≤ Nk,∫
C(a+

k,i,1)

ψ

dz
= 0, (3–8)

1 ≤ k ≤M, 2 ≤ i ≤ Nk,∫
C(a−

k,i,1)

ψ

dz
= 0, (3–9)

1 ≤ k ≤M, 1 + 2δk,1 ≤ i ≤ Nk,

Im
( 2∑

i=1

a−1,i

∫
C(a−

1,i,1)

ψ

dz

)
= 0. (3–10)

Provided that the period problem is solved (all periods of
φ1, φ2, and φ3 are pure imaginary), ψ also automatically
satisfies the following relationship:

M+1∑
k=1

(−1)k

⎡
⎣Nk∑

i=1

∫
C(a−

k,i,1)

z
ψ

dz
+

Nk−1∑
i=1

∫
C(a+

k−1,i,1)

z
ψ

dz

⎤
⎦

∈ iR. (3–11)

This mysterious relation is a consequence of Riemann’s
bilinear relation. For completeness, we give a proof of
this relationship in Section 4.4.

By the same argument as in [Traizet 06], one can prove
that if t is small enough, these 6N−2M−2 real equations
are linearly independent, so solving this system guaran-
tees that ψ = 0. For completeness, we provide a proof of
this statement in Section 4.5.

Of course, this gives no guarantee that the equations
are independent for a given t > 0, so after solving the
equations, we check that ψ indeed vanishes by expanding
the series representing it.

4. PROOFS AND COMPUTATIONS

4.1 Dihedral Configurations Are Nondegenerate

In this section we prove that the dihedral configurations
of Section 2.2 are nondegenerate for generic values of the
parameters c1, . . . , cM−1. As explained in this section, it
suffices to find one set of values of the parameters such
that the configuration is nondegenerate. We take ak =
t2

k

for 1 ≤ k ≤ M − 1. We shall prove that for t > 0
small enough, the configuration is nondegenerate.

The idea is the following: Scale the configuration so
that the points at level k are the nth roots of unity. Then
the points at level < k go to infinity and the points
at level > k go to 0 when t → 0, and in the limit
we get a Costa–Hoffman–Meeks configuration. So for
small t, the configuration may be seen as several overlap-
ping Costa–Hoffman–Meeks configurations. Nondegener-
acy thus boils down to the fact that the Costa–Hoffman–
Meeks configuration is nondegenerate.

We may normalize c1 = 1. Then c2, . . . , cM−1 are
determined inductively by (2–3), (2–4), and CM is deter-
mined by (2–2). Their limits as t→ 0 are

lim ck =
(
n− 1
n

)k−1

for 1 ≤ k ≤M − 1 and

lim cM =
(n− 1)M−1

nM−2
.

Tedious computations give the following limits for the
partial derivatives of the forces:

lim
(
t2

k+1 ∂Fk,i

∂pk,i

)

= lim c2k

(n− 1
ω2i

− 2
∑
j �=i

1
(ωi − ωj)2

)
,

lim
(
t2

k+1 ∂Fk,i

∂pk,j

)
= lim c2k

2
(ωi − ωj)2

if j 
= i,

lim
(
t2

k+1 ∂Fk,i

∂pk−1,i

)
= 0,

lim
(
t2

k+1 ∂Fk,i

∂pk+1,i

)
= −ckck+1

ω2i
,
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lim
(
t(4−n)2k−1 ∑

i

ωi ∂Fk,i

∂pk,j

)
= lim ckck−1

n2

ωj

with the convention c0 = 0,

lim
(
t(4−n)2k−1 ∑

i

ωi ∂Fk,i

∂pk−1,j

)
= 0,

lim
(
t(4−n)2k−1 ∑

i

ωi ∂Fk,i

∂pk+1,j

)
= −δ2,n

n2ckck+1

ωj
.

Let A be the n× n complex matrix defined by

Ai,i =
n− 1
ω2i

− 2
∑
j �=i

1
(ωi − ωj)2

,

Ai,j =
2

(ωi − ωj)2
if j 
= i.

This is the Jacobian matrix of the Costa–Hoffman–Meeks
configuration, with the last row and column removed.
Since the Costa–Hoffman–Meeks configuration is nonde-
generate, A has rank n− 1, and any minor of size n− 1
of A is invertible. Let B be the n× n matrix defined by
Bi,j = Ai,j for i < n and Bn,j = ω−j . Then B has rank
n. Indeed, the operation Cn ←

∑
ωjCj on the columns

of B gives the column Cn = (0, . . . , 0, n).
Returning to the dihedral configuration, put the vari-

ables in lexicographic order:

p1,1, . . . , p1,n, . . . , pM−1,1, . . . , pM−1,n, pM,1.

From the Jacobian matrix remove the first line, the first
column, the last line, and the last column. Let Lk,i de-
note the row corresponding to Fk,i. Perform the following
row operations:

Lk,1 ← t(4−n)2k−1

n2ckck−1

∑
i

ωiLk,i for k ≥ 2,

Lk,i ← t2
k+1

c2k
Lk,i for k ≥ 2, i ≥ 2.

By the above formulas, one obtains a matrix that con-
verges as t → 0 to a matrix that has upper triangular
block form, with M square blocks on the diagonal. The
first block has size n− 1 and is an invertible minor of A.
The other M − 1 blocks are equal to B, so are invert-
ible. Hence this limit matrix is invertible. It follows that
the dihedral configuration is nondegenerate for t small
enough.

4.2 An Asymmetric Configuration of Type 5, 4, 1

In this section we give a proof that there exists a fam-
ily of embedded asymmetric configurations of type 5, 4, 1.

Namely, we take N1 = 5, N2 = 4, N3 = 1. We may nor-
malize c1 = 1, and c3 is determined as a function of the
free parameter c2 by (2–6). By a straightforward com-
putation, the configuration is embedded, provided that
1 < c2 <

5−√
5

2 ≈ 1.381.
We first study the case c2 = 1. Equation (2–6) gives

c3 = 3. Write

P1 = z5 +
4∑

i=0

aiz
i, P2 = z4 +

3∑
i=0

biz
i.

We assume that a0 
= 0, since the case a0 = 0 gives
only very symmetric configurations. We also assume that
b3 
= 0, and take b3 = 2 by scaling. Equation (2–5) with
z = 0 gives b1 = 0. Expanding equation (2–5), we obtain

4(1− a4)z7 − 6(a3 + a4 − b2)z6 − 6(a2 + 2a3)z5

− 2(2a1 + 7a2 − 10b0 + 2a3b2)z4

− 6(2a1 + a2b2 − 2a4b0)z3 − 6(a0 + a1b2 − a3b0)z2

− (4a0b2 − 2a2b0)z = 0.

Let Ei be the coefficient of zi in this equation. Write x =
b2. Equations E7 = 0 to E2 = 0 in this order determine
all coefficients as functions of x by the solution of only
linear equations. We obtain, in the given order,

a4 = 1, a3 = x− 1, a2 = 2− 2x,

a0 =
1
4
(−4x3 + 2x2 + 9x− 7), a1 =

1
4
(6x2 − 13x+ 7),

b0 =
1
4
(2x2 − 9x+ 7).

Substituting these values into E1 gives the equation

P (x) := 4x4 − 4x3 + 2x2 − 9x+ 7 = 0,

which factors as

(x− 1)(4x3 + 2x− 7) = 0.

This polynomial has four simple roots, two of which are
complex. Let x0 be one of them. Using the Euclidean
algorithm, we find that

D := gcd(P1, P2)

= z3 + (−x0 + 2)z2 + (x2
0 − x0)z +

1
4
(
4x2

0 + 2x0 − 7
)
,

and P1, P2 factor as

P1 = (z2 + (x0 − 1)z − x0 + 1)D, P2 = (z + x0)D.

In particular, P1 and P2 share three roots, so the config-
uration is singular.
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Let us prove that the configuration is asymmetric if
x0 is not real. Let ϕ : C → C be a symmetry of the
configuration (other than the identity), so ϕ fixes the set
of roots of Pk, for each k = 1, 2, 3. Then ϕ(0) = 0, and
ϕ fixes the sum of the roots of P1, which is equal to 1.
Hence ϕ(z) = z. This implies that the coefficients of P1

are real, and hence x0 is real, a contradiction. So the
configuration is asymmetric.

For arbitrary values of c2, we can solve the equations
in the same way, except that the computations cannot
be explicitly done by hand, so we content ourself with
the form of the solutions. In the following, the notation
�(·) means a linear function of its arguments whose coef-
ficients are rational functions of c2.

We normalize b3 = 1 and write b2 = x as before. Then
(2–5) has the form

�(a4, 1)z7 + �(a3, a4, x)z6 + �(a2, a3, a4x)z5

+ �(a1, a2, a3x, b0)z4 + �(a0, a1, a2x, a4b0)z3

+ �(a0, a1x, a3b0)z2 + �(a0x, a2b0)z = 0.

Let again Ei be the coefficient of zi in this equation.
Solving the equations E7 = 0, E6 = 0, and E5 = 0 gives
a4 = p0(x), a3 = p1(x), a2 = p1(x), where the notation
pr(x) denotes a polynomial of degree at most r in the
variable x whose coefficients are rational functions of c2.

Equations E4 = 0, E3 = 0, and E2 = 0 then give
a linear system in the unknowns a0, a1, and b0. The
determinant Δ of this system has the form Δ = p1(x).
Cramer’s formula gives

a0 =
p3(x)

Δ
, a1 =

p3(x)
Δ

, b0 =
p3(x)

Δ
.

Multiplying E1 by Δ and replacing the above values gives
an equation of the form P (x) = 0, where P is a polyno-
mial of degree at most 4 whose coefficients are rational
functions of c2.

When c2 = 1, we have seen that that no division by
zero occurs in this computation, and P has four simple
roots. Therefore, this remains true for generic values of
c2 (that is, except for a finite number of values). Also,
for c2 = 1, P has two complex roots. This remains true
by continuity for c2 close to 1.

We have seen in Section 2.3 that for generic values of
c2, the configuration is nonsingular. Let us now prove
that it is nondegenerate, provided that it is nonsingular
and x0 is a simple root of P .

Fix the values of c1, c2, and c3. Let pk,i(t) be a de-
formation of the configuration with pk,i(0) = pk,i, where
t is a real parameter. Assume that Fk,i(t) = o(t). We

must prove that up to complex scaling and translation,
pk,i(t) = pk,i(0) + o(t).

Normalize translation by p3,1(t) = 0, and define as
before the polynomials Pk,t =

∏
(z − pk,i(t)). Equation

(2–5) gives that

c21zP
′′
1,tP2,t + c22zP1,tP

′′
2,t − c1c2zP ′

1,tP
′
2,t − c2c3P1,tP

′
2,t

= o(t)

at the points p1,1(t), . . . , p1,N1(t), p2,1(t), . . . , p2,N2(t). By
linear algebra, the coefficients of the above polynomial
are all o(t).

If we call a0(t), . . . , a4(t) and b0(t), . . . , b3(t) the coeffi-
cients of P1,t and P2,t, normalize scaling by b3(t) = 2, and
write b2(t) = xt, we obtain, by the above computation,
the equation P (xt) = o(t), where P is the same polyno-
mial. (Recall that the coefficients of P depend only on
c2, which is fixed, so P does not depend on t.) Since x0

is a simple root of P , this implies that xt = x0 + o(t).
Then we have ai(t) = ai(0)+o(t) and bi(t) = bi(0)+o(t).
Hence pk,i(t) = pk,i(0)+o(t), so the configuration is non-
degenerate.

We conclude that if c2 > 1 is close enough to 1, the
configuration is nonsingular, nondegenerate, asymmetric,
and embedded.

4.3 An Example with a Planar End of Order 2

In this section, we give a computational proof that there
exist embedded FTC minimal surfaces with a planar end
of order 2. We continue with the example of type 5, 4, 1
of the previous section and take the value c2 = 5

4 , which
gives a planar end at level 2. Here are the results:

a4 =
5
24
, a3 = −105

256
+

15
16
x, a2 =

3465
2048

− 4595
1152

x,

a0 = − 1
9437184

× 1
16x+ 9

(− 493537968x

+ 121415679 + 768946176x3

+ 162269440x2
)
,

a1 =
1

1966080

× 1
16x+ 9

(
6967296x3 − 8351343 + 29794864x

− 26814720x2
)
,

b0 = −49313
18432

x+
63
256

x2 +
71379
65536

,
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and

P (x) = −1524209068800x2− 285169111920x

+ 2183134638080x3 + 180302283315

+ 1490178539520x4.

The discriminant of P is

13726206707075694323622118372721756638658183426

6359030391280500736000000,

which is nonzero, so P has four simple roots. Each of
them gives a nondegenerate configuration.

To prove that each configuration is nonsingular, we
use the argument described at the end of Section 2.3.
The only values of (m1,m2,m3) that satisfy (2–7), with
m1 + m2 ≥ 2 or m2 +m3 ≥ 2, are (1, 4, 1) and (5, 4, 1).
Both of them give P2 = z4, which is not the case because
b3 = 2. So the configurations are nonsingular.

Finally, we have

c1
∑

i

p1,i − c2
∑

i

p2,i = −c1a4 + c2b3 =
55
24

= 0,

so the Gauss map has order 2 at the planar end.

4.4 Proof of Equation (3.11)

By the residue theorem, we have

Nk∑
i=1

∫
C(a−

k,i,1)

z
ψ

dz
+

Nk−1∑
i=1

∫
C(a+

k−1,i,1)

z
ψ

dz

= −2πiRes∞k

(
z
ψ

dz

)
. (4–1)

Let g be the genus of Σ and A1, . . . , Ag, B1, . . . , Bg a
canonical homology basis of Σ. We apply Riemann’s bi-
linear relation [Griffiths and Harris 78, p. 241] to the pair
of meromorphic 1-forms (φ1, φ2) (these are meromorphic
differentials of the second kind):

g∑
i=1

∫
Ai

φ1

∫
Bi

φ2 −
∫

Ai

φ2

∫
Bi

φ1

= 2πi
M+1∑
k=1

Res∞k

(
φ2

∫
φ1

)
. (4–2)

By assumption, the period problem is solved, so all pe-
riods of φ1 and φ2 are imaginary. Hence the left side is
real.

To compute the residues at ∞k, we write, in a neigh-
borhood of ∞k,

φ1 = dz + μ1,k
dz

z2
+ o

(
dz

z2

)
,

∫
φ1 = z − μ1,k

z
+ o

(
1
z

)
,

φ2 = (−1)k+1idz + μ2,k
dz

z2
+ o

(
dz

z2

)
,

φ3 = Qk
dz

z
+ o

(
dz

z

)
,

where μ1,k, μ2,k are some complex numbers and Qk is
real. This gives

Res∞k

(
z
ψ

dz

)
= −2μ1,k + 2(−1)kiμ2,k −Q2

k,

Res∞k

(
φ2

∫
φ1

)
= (−1)k+1iμ1,k − μ2,k.

Since Qk is real,

Im Res∞k

(
z
ψ

dz

)
= 2(−1)k+1ReRes∞k

(
φ2

∫
φ1

)
.

(4–3)
Equations (4–1), (4–2), and (4–3) prove (3–11).

4.5 Proof That the Equations Are Independent

Let ψ be any meromorphic quadratic differential on Σ
with at most double poles at ∞1, . . . ,∞M+1. In this
section we prove that equations (3–7) to (3–11) imply
that ψ = 0, provided that t is small enough. The idea
is to prove that this is true if t = 0, and conclude by
continuity.

When t = 0, Σt is a noded Riemann surface. In
this case, the notion of holomorphic quadratic differ-
ential must be replaced by that of a regular quadratic
differential. A regular quadratic differential ψ is holo-
morphic outside the nodes (with at most double poles
at∞1, . . . ,∞M+1) and has at most double poles at each
side a−k,i and a+

k,i of each node, with the same residue.
(The residue of a q-differential at a pole p is the coef-
ficient of ζ−q in the expansion of ψ in terms of a local
coordinate ζ such that ζ(p) = 0. This is independent of
the choice of the local coordinate.) The space of regular
quadratic differentials on Σt depends holomorphically on
t, including at t = 0.

Let ψ be a regular quadratic differential on Σ0 sat-
isfying equations (3–7) to (3–11). Since ψ has at most
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double poles at ∞1, . . . ,∞M+1, ψ/dz is holomorphic at
∞1, . . . ,∞k. Equation (3–7) implies that ψ/dz has at
most simple poles at all a+

k,i, a
−
k,i.

Equations (3–8) and (3–9) imply that the only possible
poles of ψ/dz are at a−1,1, a

−
1,2, and a+

k,1 for k = 1, . . . ,M .
Since ψ/dz has at most one simple pole in each C k ∪
{∞k}, k ≥ 2, we conclude that ψ = 0 in each C k, k ≥ 2.

Equations (3–10) and (3–11) imply that

a−1,1Resa−
1,1

ψ

dz
+ a−1,2Resa−

1,2

ψ

dz
= 0.

The residue theorem in C 1 gives

Resa−
1,1

ψ

dz
+ Resa−

1,2

ψ

dz
= 0.

These two equations imply that ψ/dz has no residue in
C 1, so ψ = 0.
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