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In this article we report on extensive calculations concerning
the Gorenstein defect for Hecke algebras of spaces of modular
forms of prime weight p at maximal ideals of residue character-
istic p such that the attached mod-p Galois representation is
unramified at p and the Frobenius at p acts by scalars. The
results lead us to ask the question whether the Gorenstein
defect and the multiplicity of the attached Galois representa-
tion are always equal to 2. We review the literature on the
failure of the Gorenstein property and multiplicity one, dis-
cuss in some detail a very important practical improvement of
the modular-symbols algorithm over finite fields, and include
precise statements on the relationship between the Gorenstein
defect and the multiplicity of Galois representations.

1. INTRODUCTION

In Wiles’s proof of Fermat’s last theorem [Wiles 95], an
essential step was to show that certain Hecke algebras are
Gorenstein rings. Moreover, the Gorenstein property of
Hecke algebras is equivalent to the fact that Galois repre-
sentations appear on certain Jacobians of modular curves
precisely with multiplicity one. This article is concerned
with the Gorenstein property and with the multiplicity-
one question. We report previous work and exhibit many
new examples in which multiplicity one and the Goren-
stein property fail. We compute the multiplicity in these
cases. Moreover, we ask the question, suggested by our
computations, whether it is always equal to two if it fails.

We have first to introduce some notation. For in-
tegers N ≥ 1 and k ≥ 2 and a Dirichlet character
χ : (Z/NZ)× → C× we let Sk(Γ1(N)) be the C-vector
space of holomorphic cusp forms on Γ1(N) of weight k,
and Sk(N,χ) the subspace on which the diamond opera-
tors act through the character χ. We now introduce some
extra notation for Hecke algebras over specified rings.

Notation. 1.1. (Notation for Hecke algebras.) When-
ever S ⊆ R are rings and M is an R-module on which
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the Hecke and diamond operators act, we let TS(M) be
the S-subalgebra inside the R-endomorphism ring of M
generated by the Hecke and the diamond operators. If
φ : S → S′ is a ring homomorphism, we let Tφ(M) :=
TS(M)⊗S S

′, or with φ understood, TS→S′(M).

We will mostly be dealing with the Hecke algebras
TZ(Sk(Γ1(N))) and TZ[χ](Sk(N,χ)), their completions
TZ→Zp

(Sk(Γ1(N))) and TO→Ô(Sk(N,χ)), as well as their
reductions TZ→Fp

(Sk(Γ1(N))) and TO→F(Sk(N,χ)).
Here, p is a prime and O = Z[χ] is the smallest sub-
ring of C containing all values of χ, Ô is the completion
at a prime above p, and O � F is the reduction modulo
that prime. In Section 3, the reductions of the Hecke al-
gebras are identified with Hecke algebras of mod-p mod-
ular forms, which are closely related to Hecke algebras of
Katz modular forms over finite fields (see Section 2).

We choose a holomorphic cuspidal Hecke eigenform
as the starting point of our discussion and treatment.
So let f ∈ Sk(N,χ) ⊆ Sk(Γ1(N)) be an eigenform for
all Hecke and diamond operators. It (more precisely,
its Galois conjugacy class) corresponds to minimal ide-
als, both denoted by pf , in each of the two Hecke alge-
bras TZ(Sk(Γ1(N))) and TZ[χ](Sk(N,χ)). We also choose
maximal ideals m = mf containing pf of residue charac-
teristic p again in each of the two. Note that the residue
fields are the same in both cases.

By work of Shimura and Deligne, one can associate
to f (more precisely, to m) a continuous odd semisimple
Galois representation

ρf = ρmf
= ρm : Gal(Q/Q)→ GL2(TZ(Sk(N,χ))/m)

unramified outside Np satisfying Tr(ρm(Frobl)) ≡ Tl

mod m and Det(ρm(Frobl)) ≡ lk−1χ(l) mod m for all
primes l � Np. In the case of weight k = 2 and level N ,
the representation ρm can be naturally realized on the
p-torsion points of the Jacobian of the modular curve
X1(N)Q. The algebra TZ→Fp

(S2(Γ1(N))) acts naturally
on J1(N)Q(Q)[p], and we can form the Galois module
J1(N)Q(Q)[m] = J1(N)Q(Q)[p][m̃] with m̃ the maximal
ideal of TZ→Fp

(S2(Γ1(N))), which is the image of m un-
der the natural projection. Supposing that ρm is abso-
lutely irreducible, the main result of [Boston et al. 91]
shows that the Galois representation J1(N)Q(Q)[m] is
isomorphic to a direct sum of r copies of ρm for some
integer r ≥ 1, which one calls the multiplicity of ρm on
J1(N)Q(Q)[m] (cf. [Ribet and Stein 01]). We shall for
short speak only about the multiplicity of ρm. One says
that ρm is a multiplicity-one representation or satisfies
multiplicity one if r = 1. See [Mazur 77] for a similar

definition for J0(N) and Proposition 2.6 for a compari-
son.

The notion of multiplicity can be naturally extended
to Galois representations attached to eigenforms f of
weights 3 ≤ k ≤ p + 1 for p � N . This is accomplished
by a result of Serre’s that implies the existence of a max-
imal ideal m2 ⊂ TZ(S2(Γ1(Np))) such that ρmf

∼= ρm2

(see Proposition 2.3). One hence obtains the notion of
multiplicity (on J1(Np)) for the representation ρmf

by
defining it as the multiplicity of ρm2 . Moreover, in al-
lowing twists by the cyclotomic character, it is even pos-
sible to treat arbitrary weights. The following theorem
summarizes results on when the multiplicity in the above
sense is known to be one.

Theorem 1.2. (Mazur, Edixhoven, Tilouine, Gross,
Buzzard.) Let ρm be a representation associated with
a modular cuspidal eigenform f ∈ Sk(N,χ) and let p be
the residue characteristic of m. Suppose that ρm is abso-
lutely irreducible and that p does not divide N . If

1. 2 ≤ k ≤ p− 1 or

2. k = p and ρm is ramified at p or

3. k = p and ρm is unramified at p and ρm(Frobp) is not
scalar,

then the multiplicity of ρm is one.

This theorem is composed of [Mazur 77, Lemma 15.1],
[Tilouine 87, Proposition 5.6], [Edixhoven 92, Theorem
9.2], as well as [Gross 90, Proposition 12.10] and [Buzzard
01, Theorem 6.1]. The following theorem by the second
author tells us when the multiplicity is not one.

Theorem 1.3. [Wiese 07a, Corollary 4.5] Let ρm be as
in the previous theorem. Suppose k = p and that ρm is
unramified at p. If p = 2, assume also that a Katz cusp
form over F2 of weight 1 on Γ1(N) exists that gives rise
to ρm.

If ρm(Frobp) is a scalar matrix, then the multiplicity
of ρm is greater than 1.

In Section 2 we explain how the Galois representation
J1(Np)Q(Q)[m] is related to the different Hecke algebras
evoked above and see in many cases of interest a precise
relationship between the geometrically defined term mul-
tiplicity and the Gorenstein defect of these algebras. The
latter can be computed explicitly, which is the subject of
the present article. We now give the relevant definitions.
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Definition 1.4. (The Gorenstein property.) Let A be
a local Noetherian ring with maximal ideal m. Suppose
first that the Krull dimension of A is zero, i.e., that A is
Artinian. We then define the Gorenstein defect of A to
be the minimum number of A-module generators of the
annihilator of m (i.e., A[m]) minus 1; equivalently, this is
the A/m-dimension of the annihilator of m minus 1. We
say that A is Gorenstein if its Gorenstein defect is 0, and
non-Gorenstein otherwise.

If the Krull dimension of A is positive, we inductively
call A Gorenstein if there exists x ∈ m not a zero divi-
sor such that A/(x) is a Gorenstein ring of smaller Krull
dimension (see [Eisenbud 95, p. 532]; note that our defi-
nition implies that A is Cohen–Macaulay).

A (not necessarily local) Noetherian ring is said to be
Gorenstein if all of its localizations at its maximal ideals
are Gorenstein.

We will, for example, be interested in the Gorenstein
property of TZ(Sk(Γ1(N)))m. Choosing x = p in the
definition with p the residue characteristic of m, we see
that this is equivalent to the Gorenstein defect of the
finite-dimensional Fp-algebra TZ→Fp

(Sk(Γ1(N)))m being
zero. Whenever we refer to the Gorenstein defect of
the former algebra (over Z), we mean that of the latter.
Our computations will concern the Gorenstein defect of
TO→F(Sk(Γ1(N), χ))m. See Section 2 for a comparison
with the one not involving a character. It is important
to remark that the Gorenstein defect of a local Artin al-
gebra over a field does not change after passing to a field
extension and taking any of the conjugate local factors.

We illustrate the definition by an example. The al-
gebra k[x, y, z]/(x2, y2, z2, xy, xz, yz) for a field k is Ar-
tinian and local with maximal ideal m := (x, y, z) and the
annihilator of m is m itself, so the Gorenstein defect is
3−1 = 2. We note that this particular case does occur in
nature; a localization TZ→F2(S2(Γ0(431)))m at one maxi-
mal ideal is isomorphic to this, with k = F2 (see [Emerton
02, the discussion just before Lemma 6.6]). This example
can also be verified with the algorithm presented in this
paper.

We now state a translation of Theorem 1.2 in terms of
Gorenstein defects, which is immediate from the propo-
sitions in Section 2.

Theorem 1.5. Assume the setup of Theorem 1.2 and that
one of the three conditions of that theorem is satisfied.
We use notation as in the discussion of multiplicities
above.

If k = 2, then TZ(S2(Γ1(N)))m is a Gorenstein ring.

If k ≥ 3, then TZ(S2(Γ1(Np)))m2 is, too. Supposing
in addition that m is ordinary (i.e., Tp 
∈ m), then also
TZ(Sk(Γ1(N)))m is Gorenstein. If, moreover, p ≥ 5 or
ρm is not induced from Q(

√−1) (if p = 2) or Q(
√−3)

(if p = 3), then TO→F(Sk(N,χ))m is Gorenstein as well.

We now turn our attention to computing the Goren-
stein defect and the multiplicity in the case in which it
is known not to be one.

Corollary 1.6. Let ρm be a representation associated
with a cuspidal eigenform f ∈ Sp(N,χ) with p the
residue characteristic of m. Assume that ρm is abso-
lutely irreducible, unramified at p such that ρm(Frobp)
is a scalar matrix. Let r be the multiplicity of ρm and
d the Gorenstein defect of any of TO→F(Sk(N,χ))m,
TZ→Fp

(Sk(Γ1(N)))m, TZ→Fp
(S2(Γ1(Np)))m2 .

Then the relation d = 2r − 2 holds.

Proof: The equality of the Gorenstein defects and the
relation with the multiplicity are proved in Section 2,
where we note that m is ordinary, since ap(f)2 = χ(p) 
= 0
(e.g., by [Gross 90, p. 487]).

1.1 Previous Results on the Failure of Multiplicity
One or the Gorenstein Property

Prior to the present work and the article [Wiese 07a],
there have been some investigations into when Hecke
algebras fail to be Gorenstein. In [Kilford 02], the
first author showed, using Magma [Bosma et al. 1997],
that none of the three Hecke algebras TZ(S2(431, χtriv)),
TZ(S2(503, χtriv)), and TZ(S2(2089, χtriv)) is Gorenstein
by explicit computation of the localization of the Hecke
algebra at a suitable maximal ideal above 2, and in [Ri-
bet and Stein 01], it is shown in a similar fashion that
TZ(S2(2071, χtriv)) is not Gorenstein. These examples
were discovered by considering elliptic curves E/Q such
that in the ring of integers of Q(E[2]) the prime ideal
(2) splits completely, and then doing computations with
Magma.

There are also some results in the literature on the
failure of multiplicity one within the torsion of certain
Jacobians. In [Agashe et al. 06, Proposition 5.1], the
following theorem is proved:

Theorem 1.7. (Agashe, Ribet, Stein.) Suppose that E
is an optimal elliptic curve over Q of conductor N , with
congruence number rE and modular degree mE, and that
p is a prime such that p | rE but p � mE. Let m be the
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annihilator in TZ(S2(N,χtriv)) of E[p]. Then multiplicity
one fails for m.

The authors give a table of examples; for instance,
TZ(S2(54, χtriv)) does not satisfy multiplicity one at some
maximal ideal above 3. It is not clear whether this phe-
nomenon occurs infinitely often.

The first examples of the failure of multiplicity one
were given in [Mazur and Ribet 92], where it is proved
in Theorem 2 that the mod-p multiplicity of a suitable
representation ρm of level prime to N in the torsion of the
Jacobian J0(p3N) is greater than 1. The explicit example
given there is of a representation of level 11 having mod-
11 multiplicity greater than one in J0(113)[11].

In [Ribet 90], it is shown that the mod-p multiplicity
of a certain representation in the Jacobian of the Shimura
curve derived from the rational quaternion algebra of dis-
criminant 11·193 is 2; this result inspired the calculations
in [Kilford 02].

Let us finally mention that for p = 2, the Galois rep-
resentations ρ with image equal to the dihedral group
D3 come from an elliptic curve over Q. We observe that
D3 = GL2(F2). Any S3-extension K of the rationals can
be obtained as the splitting field of an irreducible integral
polynomial f = X3+aX+b. The 2-torsion of the elliptic
curve E : Y 2 = f consists precisely of the three roots of
f and the point at infinity. So the field generated over Q

by the 2-torsion of E is K.

1.2 New Results

Using the modular-symbols algorithm over finite fields
with an improved stop criterion (see Section 3), we per-
formed computations in Magma concerning the Goren-
stein defect of Hecke algebras of cuspidal modular forms
of prime weights p at maximal ideals of residue charac-
teristic p in the case of Theorem 1.3. All of our 384
examples have Gorenstein defect equal to 2, and hence
their multiplicity is 2.

We formulate part of our computational findings as a
theorem.

Theorem 1.8. For every prime p < 100 there exists
a prime N 
= p and a Dirichlet character χ such that
the Hecke algebra TZ[χ]→F(Sp(N,χ)) has Gorenstein de-
fect 2 at some maximal ideal m of residue characteristic
p. The corresponding Galois representation ρm appears
with multiplicity two on the m-torsion of the Jacobian
J1(Np)Q(Q) if p is odd, and of the Jacobian J1(N)Q(Q)
if p = 2.

Our computational results are discussed in more detail
in Section 4.

1.3 A Question

Question 1.9. Let p be a prime. Let f be a normalized
cuspidal modular eigenform of weight p, prime level N 
=
p for some Dirichlet character χ. Let ρf : GQ → GL2(Fp)
be the modular Galois representation attached to f . We
assume that ρf is irreducible and unramified at p and
that ρf (Frobp) is a scalar matrix.

Write TF for TZ[χ]→F(Sp(N,χ)). Recall that this nota-
tion stands for the tensor product over Z[χ] of a residue
field F/Fp of Z[χ] by the Z[χ]-algebra generated inside
the endomorphism algebra of Sp(N,χ) by the Hecke op-
erators and by the diamond operators. Let m be the
maximal ideal of TF corresponding to f .

Is the Gorenstein defect of the Hecke algebra TF local-
ized at m, denoted by Tm, always equal to 2?

Equivalently, is the multiplicity of the Galois repre-
sentation attached to f always equal to 2?

This question was also raised by both Kevin Buzzard
and James Parson in communications to the authors.

2. RELATION BETWEEN MULTIPLICITY
AND GORENSTEIN DEFECT

In this section we collect results, some of which are
well known, on the multiplicity of Galois representations,
the Gorenstein defect, and relations between the two.
Whereas the mod-p modular-symbols algorithm natu-
rally computes mod-p modular forms (see Section 3),
this rather geometrical section uses (mostly in the ref-
erences) the theory of Katz modular forms over finite
fields (see, e.g., [Edixhoven 97]). If N ≥ 5 and k ≥ 2,
the Hecke algebra TZ→Fp

(Sk(Γ1(N))) is both the Hecke
algebra of mod-p cusp forms of weight k on Γ1(N) and
the Hecke algebra of the corresponding Katz cusp forms
over Fp. However, in the presence of a Dirichlet charac-
ter, TZ[χ]→F(Sk(N,χ)) has an interpretation only as the
Hecke algebra of the corresponding mod-p cusp forms,
and there may be differences with the respective Hecke
algebra for Katz forms (see Carayol’s lemma, which is
[Edixhoven 97, Proposition 1.10 ]).

We start with the well-known result in weight 2 (see,
e.g., [Mazur 77, Lemma 15.1] or [Tilouine 97]) that mul-
tiplicity one implies that the corresponding local Hecke
factor is a Gorenstein ring.
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Proposition 2.1. Let m be a maximal ideal of T :=
TZ(S2(Γ1(N))) of residue characteristic p, which may di-
vide N . Denote by m̃ the image of m in TFp

:= T⊗Z Fp =
TZ→Fp

(S2(Γ1(N))). Suppose that the Galois representa-
tion ρm is irreducible and satisfies multiplicity one (see
Section 1).

Then as TFp,m̃-modules one has

J1(N)Q(Q)[p]m̃ ∼= TFp,m̃ ⊕ TFp,m̃,

and the localizations Tm and TFp,m̃ are Gorenstein rings.
Similar results hold if one replaces Γ1(N) and J1(N) by
Γ0(N) and J0(N).

Proof: For the proof we have to pass to TZp
= TZ ⊗Z

Zp. We also denote by m the maximal ideal in TZp
that

corresponds to m. Let V be the m-part of the p-Tate
module of J1(N)Q. Multiplicity one implies that V/mV is
a 2-dimensional T/m = TZp

/m = TFp,m̃/m̃-vector space,
since

V/mV ∼= (V/pV )/m̃ ∼= (J1(N)Q(Q)[p])/m̃
∼= (J1(N)Q(Q)[p])∨/m̃ ∼= (J1(N)Q(Q)[m])∨,

where the self-duality comes from the modified Weil pair-
ing that respects the Hecke action (see, e.g., [Tilouine 87,
Lemme 4.1] or [Gross 90, p. 485]). Nakayama’s lemma
hence implies that V is a TZp,m-module of rank 2. Since
one knows that V ⊗Zp

Qp is a Tm⊗Qp-module of rank 2,
it follows that V is a free TZp,m-module of rank 2, whence
J1(N)Q(Q)[p]m̃ is a free TFp,m̃-module of rank 2. Taking
the m̃-kernel gives J1(N)Q(Q)[m] = (TFp,m̃[m̃])2, whence
the Gorenstein defect is zero. In the Γ0-situation, the
same proof holds.

In the so-called ordinary case, we have the follow-
ing precise relationship between the multiplicity and the
Gorenstein defect, which was suggested to us by Kevin
Buzzard. A proof can be found in [Wiese 07a, Corollaries
2.3 and 4.2].

Proposition 2.2. Suppose p � N and let M = N or
M = Np. Let m be a maximal ideal of TZ(S2(Γ1(M))) of
residue characteristic p and assume that m is ordinary,
i.e., that the pth Hecke operator Tp is not in m. Assume
also that ρm is irreducible. Denote by m̃ the image of m

in TFp
:= TZ→Fp

(S2(Γ1(M))). Then the following state-
ments hold:

(a) There is the exact sequence

0→ TFp,m̃ → J1(M)(Q)[p]m̃ → T∨
Fp,m̃ → 0

of TFp,m̃-modules, where the dual is the Fp-linear
dual.

(b) If d is the Gorenstein defect of TFp,m̃ and r is the
multiplicity of ρm, then the relation

d = 2r − 2

holds.

We now establish a relation between mod-p Hecke al-
gebras of weights 3 ≤ k ≤ p+ 1 for levels N not divisible
by p and Hecke algebras of weight 2 and level Np. It is
needed in order to compare the Hecke algebras in higher
weight to those acting on the p-torsion of Jacobians and
thus to make a link to the multiplicity of the attached
Galois representations.

Proposition 2.3. Let N ≥ 5, p � N , and 3 ≤ k ≤ p + 1.
Let m be a maximal ideal of the mod-p Hecke algebra
TZ→Fp

(Sk(Γ1(N)). Then there exists a maximal ideal m2

of TZ→Fp
(S2(Γ1(Np)) and a natural surjection

TZ→Fp
(S2(Γ1(Np))m2 � TZ→Fp

(Sk(Γ1(N))m.

If m is ordinary, i.e., Tp 
∈ m, this surjection is an iso-
morphism.

Proof: From [Wiese 07b, Sections 5 and 6], whose nota-
tion we adopt for this proof, one obtains without diffi-
culty the commutative diagram of Hecke algebras shown
in Figure 1.

The claimed surjection can be read off. The ideal m2

can be explicitly defined as the preimage of m (before
localization). Then it necessarily holds that 〈a〉p − ak−2

is in m2 for all a ∈ (Z/pZ)×. In the ordinary situation,
Proposition 2.2 shows that the upper-left horizontal ar-
row is in fact an isomorphism. That also the upper-right
horizontal arrow is an isomorphism is explained in [Wiese
07b]. The result follows.

As pointed out by one of the referees, the result in
the ordinary case was first obtained in [Hida 81]. In the
next proposition we compare Hecke algebras for spaces of
modular forms on Γ1(N) to those of the same level and
weight, but with a Dirichlet character.

Proposition 2.4. Let N ≥ 5, k ≥ 2, and let
χ : (Z/NZ)× → C× be a Dirichlet character. Let
f ∈ Sk(N,χ) ⊂ Sk(Γ1(N)) be a normalized Hecke
eigenform. Let further mχ be the maximal ideal in
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TZ→Fp
(S2(Γ1(Np))m2

�� �� TFp
(J1(Np)Q(Q)[p])m2

�� ��

����

TFp
(H1(Γ1(N), Vk−2(Fp)))m

TZp→Fp
(L)m2

�� �� TFp
(L)m2

�� �� TZ→Fp
(Sk(Γ1(N))m.

����

FIGURE 1. Commutative diagram for the proof of Proposition 2.3.

Tχ
F

:= TZ[χ]→F(Sk(N,χ)), and m the one in
TZ→Fp

(Sk(Γ1(N))) of residue characteristic p for p � N

belonging to f . If k = 2, suppose additionally that ρm is
irreducible. If p = 2, suppose that ρm is not induced from
Q(
√−1), and if p = 3, suppose that ρm is not induced

from Q(
√−3).

Then the Gorenstein defects of TZ[χ]→F(Sk(N,χ))mχ

and TZ→Fp
(Sk(Γ1(N)))m are equal.

Proof: Write ∆ := (Z/NZ)× and let ∆p be its p-Sylow
subgroup. Let χ : ∆→ F× be the reduction of χ obtained
by composing χ with Z[χ] → F. Since the Gorenstein
defect is invariant under base extension, it is no loss to
work with TF := TZ→F(Sk(Γ1(N))). We still write m

for the maximal ideal in TF belonging to f . Note that
〈δ〉 − χ(δ) ∈ m for all δ ∈ ∆.

We let ∆ act on TF via the diamond operators, and we
let Fχ be a copy of F with ∆-action through the inverse
of χ. We have

(TF,m ⊗F Fχ)∆ = (TF,m ⊗F Fχ)/(1− δ|δ ∈ ∆) ∼= Tχ
F,mχ

,

which one obtains by considering the duals, identifying
Katz cusp forms with mod-p ones on Γ1(N), and apply-
ing Carayol’s lemma [Edixhoven 97, Proposition 1.10].
For the case k = 2, we should point the reader to the
correction at the end of the introduction to [Edixhoven
06]. However, the statement still holds after localiza-
tion at maximal ideals corresponding to irreducible rep-
resentations. Moreover, the equality (TF,m ⊗F Fχ)∆ =
TF,m[〈δ〉 − χ(δ)|δ ∈ ∆] holds by definition.

Now [Wiese 07b, Lemma 7.3] tells us that the local-
ization at m of the F-vector space of Katz cusp forms of
weight k on Γ1(N) over F is a free F[∆p]-module. Note
that the standing hypothesis k ≤ p + 1 of [Wiese 07b,
Section 7] is not used in the proof of that lemma and
see also [Wiese 07b, Remark 7.5]. From an elementary
calculation one now obtains that N∆ =

∑
δ∈∆ δ induces

an isomorphism

(TFm ⊗F Fχ)∆
N∆−−→ (TFm ⊗F Fχ)∆.

We now take the mχ-kernel on both sides and obtain

Tχ
F,mχ

[mχ] ∼= (TF,m ⊗F Fχ)∆[mχ] ∼= (TF,m ⊗F Fχ)∆[m]
∼= (TF,m ⊗F Fχ)∆[m] = TF,m[m].

This proves that the two Gorenstein defects are indeed
equal.

The Gorenstein defect that we calculate on the com-
puter is the number d of the following corollary, which
relates it to the multiplicity of a Galois representation.

Corollary 2.5. Let p be a prime, N ≥ 5 an integer such
that p � N , k an integer satisfying 2 ≤ k ≤ p, and
χ : (Z/NZ)× → C× a character. Let f ∈ Sk(N,χ) be
a normalized Hecke eigenform. Let further m denote the
maximal ideal in TZ[χ]→F(Sk(N,χ)) belonging to f . Sup-
pose that m is ordinary and that ρm is irreducible and not
induced from Q(

√−1) (if p = 2) and not induced from
Q(
√−3) (if p = 3). We define d to be the Gorenstein

defect of TZ[χ]→F(Sk(N,χ))m and r to be the multiplicity
of ρm.

Then the equality d = 2r − 2 holds.

We include the following proposition because it estab-
lishes equality of the two different notions of multiplic-
ities of Galois representations in the case of the trivial
character.

Proposition 2.6. Let N ≥ 1 and p � N and
f ∈ S2(Γ0(N)) ⊆ S2(Γ1(N)) be a normalized
Hecke eigenform belonging to maximal ideals m0 ⊆
TZ→Fp

(S2(Γ0(N))) and m1 ⊆ TZ→Fp
(S2(Γ1(N))) of

residue characteristic p. Suppose that ρm0
∼= ρm1 is irre-

ducible.
Then the multiplicity of ρm1 on J1(N)Q(Q)[p] is equal

to the multiplicity of ρm0 on J0(N)Q(Q)[p]. Thus, if p >
2, this multiplicity is equal to one by Theorem 1.2.

Proof: Let ∆ := (Z/NZ)×. We first remark that one has
the isomorphism

J0(N)Q(Q)[p]m0
∼= (

(J1(N)Q(Q)[p])∆
)
m0
,
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which one can, for example, obtain by comparing with
the parabolic cohomology with Fp-coefficients of the
modular curves Y0(N) and Y1(N). Taking the m0-kernel
yields

J0(N)Q(Q)[m0] ∼= J1(N)Q(Q)[m1],

since m1 contains 〈δ〉 − 1 for all δ ∈ ∆.

3. MODULAR SYMBOLS AND HECKE ALGEBRAS

The aim of this section is to present the algorithm that
we use for the computations of local factors of Hecke alge-
bras of mod-p modular forms. It is based on mod-p mod-
ular symbols, which have been implemented in Magma

[Bosma et al. 1997] by William Stein.
The bulk of this section deals with proving the main

advance, namely a stop criterion (Corollary 3.8), which
in practice greatly speeds up the computations in com-
parison with “standard” implementations, since it allows
us to work with many fewer Hecke operators than indi-
cated by the theoretical Sturm bound (Proposition 3.10).
We shall list results proving that the stop criterion is at-
tained in many cases. However, the stop criterion does
not depend on them, in the sense that it being attained is
equivalent to a proof that the algebra it outputs is equal
to a direct factor of a Hecke algebra of mod-p modular
forms.

Whereas for Section 2 the notion of Katz modular
forms seems the right one, the present section works
entirely with mod-p modular forms, the definition of
which is also recalled. This is very natural, since all re-
sults in this section are based on a comparison with the
characteristic-zero theory.

3.1 Mod-p Modular Forms and Modular Symbols

3.1.1 Mod-p Modular Forms. Let us for the time be-
ing fix integers N ≥ 1 and k ≥ 2, as well as a character
χ : (Z/NZ)× → C× such that χ(−1) = (−1)k. Let
Mk(N,χ) be the space of holomorphic modular forms
for Γ1(N), Dirichlet character χ, and weight k. It decom-
poses as a direct sum (orthogonal direct sum with respect
to the Petersson inner product) of its cuspidal subspace
Sk(N,χ) and its Eisenstein subspace Eisk(N,χ). As be-
fore, we let O = Z[χ]. Moreover, we let P be a maximal
ideal of O above p with residue field F, and Ô the com-
pletion of O at P. Furthermore, let K = Qp(χ) be the
field of fractions of Ô, and let χ̄ be χ followed by the
natural projection O � F.

Denote by Mk(N,χ ; O) the sub-O-module generated
by those modular forms whose (standard) q-expansion

has coefficients in O. It follows from the q-expansion
principle that

Mk(N,χ ; O) ∼= HomO
(
TO(Mk(N,χ)),O)

and hence that Mk(N,χ ; O)⊗O C ∼= Mk(N,χ). We put

Mk(N, χ̄ ; F) := Mk(N,χ ; O)⊗O F

∼= HomO
(
TO(Mk(N,χ)),F

)

and call the elements of this space mod-p modular forms.
The Hecke algebra TO(Mk(N,χ)) acts naturally, and it
follows that TO→F(Mk(N,χ)) ∼= TF(Mk(N,χ ; F)). Sim-
ilar statements hold for the cuspidal and the Eisenstein
subspaces, and we use similar notation.

We call a maximal ideal m of TO→F(Mk(N,χ ; O)
(respectively, the corresponding maximal ideal of
TO→Ô(Mk(N,χ ; O))) non-Eisenstein if

Sk(N, χ̄ ; F)m
∼= Mk(N, χ̄ ; F)m.

Otherwise, we call m Eisenstein.
We now include a short discussion of minimal and

maximal primes, in view of Proposition 3.5. Write TÔ
for TO→Ô(Sk(N,χ)). Let m be a maximal ideal of TÔ.
It corresponds to a Gal(Fp/F)-conjugacy class of nor-
malized eigenforms in Sk(N, χ̄ ; F). This means that for
each n ∈ N, the minimal polynomial of Tn acting on
Sk(N, χ̄ ; F)m is equal to a power of the minimal polyno-
mial of the coefficient an of each member of the conjugacy
class. Similarly, a minimal prime p of TO→Ô(Sk(N,χ))
corresponds to a Gal(Qp/K)-conjugacy class of normal-
ized eigenforms in Sk(N,χ ; O)⊗O K.

Suppose that m contains minimal primes pi for i =
1, . . . , r. Then the normalized eigenforms corresponding
to the pi are congruent to one another modulo a prime
above p. Conversely, every congruence arises in this way.
Thus, a maximal ideal m of TÔ is Eisenstein if and only
if it contains a minimal prime corresponding to a conju-
gacy class of Eisenstein series. Since it is the reduction
of a reducible representation, the mod-p Galois represen-
tation corresponding to an Eisenstein prime is reducible.
It should be possible to show the converse, too.

3.1.2 Modular Symbols. We now recall the modular-
symbols formalism and prove two useful results on base
change and torsion. The main references for the defini-
tions are [Stein 07] and [Wiese 08].

Let R be a ring, Γ ≤ SL2(Z) a subgroup, and V a
left R[Γ]-module. Recall that P1(Q) = Q ∪ {∞} is the
set of cusps of SL2(Z), which carries a natural SL2(Z)-
action via fractional linear transformations. We define
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the R-modules

MR := R[{α, β} | α, β ∈ P1(Q)]

/〈{α, α}{α, β}+ {β, γ}+ {γ, α}
| α, β, γ ∈ P1(Q)〉

and BR := R[P1(Q)]. They are connected via the bound-
ary map δ :MR → BR, which is given by {α, β} �→ β−α.
Both are equipped with the natural left Γ-actions. Also
let MR(V ) := MR ⊗R V and BR(V ) := BR ⊗R V with
the left diagonal Γ-action. We call the Γ-coinvariants

MR(Γ, V ) :=MR(V )Γ
=MR(V )/〈(x− gx)|g ∈ Γ, x ∈MR(V )〉

the space of (Γ, V )-modular symbols. Furthermore, the
space of (Γ, V )-boundary symbols is defined as the Γ-
coinvariants

BR(Γ, V ) := BR(V )Γ
= BR(V )/〈(x− gx)|g ∈ Γ, x ∈ BR(V )〉.

The boundary map δ induces the boundary map
MR(Γ, V ) → BR(Γ, V ). Its kernel is denoted by
CMR(Γ, V ) and is called the space of cuspidal (Γ, V )-
modular symbols.

Let now N ≥ 1 and k ≥ 2 be integers and χ :
(Z/NZ)× → R× a character, i.e., a group homomor-
phism, such that χ(−1) = (−1)k in R. Write Vk−2(R) for
the homogeneous polynomials of degree k − 2 over R in
two variables, equipped with the natural Γ0(N)-action.
Denote by V χ

k−2(R) the tensor product Vk−2(R) ⊗R Rχ

for the diagonal Γ0(N)-action that on Rχ comes from the
isomorphism Γ0(N)/Γ1(N) ∼= (Z/NZ)× given by sending(

a b
c d

)
to d followed by χ−1.

We use the notation Mk(N,χ ; R) for
M(Γ0(N), V χ

k−2(R)), as well as similarly for the
boundary and the cuspidal spaces. The natural action of
the matrix η =

(−1 0
0 1

)
gives an involution on all of these

spaces. We will denote by the superscript + the subspace
invariant under this involution, and by the superscript −

the anti-invariant one. On all modules discussed so far,
one has Hecke operators Tn for all n ∈ N and diamond
operators. For a definition, see [Stein 07].

Lemma 3.1. Let R, Γ, and V be as above and let R→ S

be a ring homomorphism. Then

M(Γ, V )⊗R S ∼=M(Γ, V ⊗R S).

Proof: This follows immediately from the fact that ten-
soring and taking coinvariants are both right exact.

Proposition 3.2. Let R be a local integral domain of char-
acteristic zero with principal maximal ideal m = (π) and
residue field F of characteristic p. Also let N ≥ 1, k ≥ 2,
be integers and χ : (Z/NZ)× → R× a character such that
χ(−1) = (−1)k. Suppose (i) that p ≥ 5 or (ii) that p = 2
and N is divisible by a prime that is 3 modulo 4 or by 4
or (iii) that p = 3 and N is divisible by a prime that is 2
modulo 3 or by 9. Then the following statements hold:

(a) If k ≥ 3, then Mk(N,χ ; R)[π] =
(
V χ

k−2(F)
)Γ0(N).

(b) If k = 2 or if 3 ≤ k ≤ p + 2 and p � N , then
Mk(N,χ ; R)[π] = 0.

Proof: The conditions ensure that the group Γ0(N) does
not have any stabilizer of order 2p for its action on the
upper half-plane. Hence, by [Wiese 08, Theorem 6.1],
the modular-symbols space Mk(N,χ ; R) is isomorphic
to H1(Γ0(N), V χ

k−2(R)). The arguments are now pre-
cisely those of the beginning of the proof of [Wiese 07b,
Proposition 2.6].

3.1.3 Hecke Algebras of Modular Symbols and the
Eichler–Shimura Isomorphism. From Lemma 3.1 one
deduces a natural surjection

TO→F(Mk(N,χ ; O)) � TF(Mk(N, χ̄ ; F)). (3–1)

In the same way, one also obtains

TO(Mk(N,χ ; O)) � TO(Mk(N,χ ; O)/torsion)
∼= TO(Mk(N,χ ; C)), (3–2)

where one uses for the isomorphism that the Hecke op-
erators are already defined over O. Similar statements
hold for the cuspidal subspace.

We call a maximal prime m of TO→Ô(Mk(N,χ ; O))
(respectively the corresponding prime of
TO→F(Mk(N,χ ; O))) nontorsion if

Mk(N,χ ; Ô)m
∼= (Mk(N,χ ; Ô)/torsion)m.

This is equivalent to the height of m being 1. Proposition
3.2 tells us some cases in which all primes are nontorsion.

Theorem 3.3. (Eichler–Shimura.) There are isomor-
phisms respecting the Hecke operators

(a) Mk(N,χ)⊕ Sk(N,χ)∨ ∼=Mk(N,χ ; C),

(b) Sk(N,χ)⊕ Sk(N,χ)∨ ∼= CMk(N,χ ; C),

(c) Sk(N,χ) ∼= CMk(N,χ ; C)+.
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Proof: Parts (a) and (b) are [Diamond and Im 95, The-
orem 12.2.2], together with the comparison of [Wiese 08,
Theorem 6.1]. We use that the space of antiholomor-
phic cusp forms is dual to the space of holomorphic cusp
forms. Part (c) is a direct consequence of (b).

Corollary 3.4. There are isomorphisms

TO(Sk(N,χ)) ∼= TO(CMk(N,χ ; C))
∼= TO(CMk(N,χ ; C)+),

given by sending Tn to Tn for all positive n.

3.2 The Stop Criterion

Although it is impossible to determine a priori the dimen-
sion of the local factor of the Hecke algebra associated
with a given modular form mod p, Corollary 3.8 implies
that the computation of Hecke operators can be stopped
when the algebra generated has reached a certain dimen-
sion that is computed along the way. This criterion has
turned out to be extremely useful and has made possible
some of our computations that would not have been fea-
sible using the Hecke bound naively. See Section 4 for a
short discussion of this issue.

3.2.1 Some Commutative Algebra. We collect some
useful statements from commutative algebra, which will
be applied to Hecke algebras in the sequel.

Proposition 3.5. Let R be an integral domain of charac-
teristic zero that is a finitely generated Z-module. Write
R̂ for the completion of R at a maximal ideal of R and
denote by F the residue field and by K the fraction field of
R̂. Let furthermore A be a commutative R-algebra that
is finitely generated as an R-module. For any ring ho-
momorphism R → S write AS for A ⊗R S. Then the
following statements hold:

(a) The Krull dimension of AR̂ is less than or equal to
1. The maximal ideals of AR̂ correspond bijectively
under taking preimages to the maximal ideals of AF.
Primes p of height 0 that are contained in a prime
of height 1 of AR̂ are in bijection with primes of AK

under extension (i.e., pAK), for which the notation
pe will be used.

Under these correspondences, one has AF,m
∼=

AR̂,m ⊗R̂ F, and AK,pe ∼= AR̂,p.

(b) The algebra AR̂ decomposes as

AR̂
∼=

∏
m

AR̂,m,

where the product runs over the maximal ideals m

of AR̂.

(c) The algebra AF decomposes as

AF
∼=

∏
m

AF,m,

where the product runs over the maximal ideals m

of AF.

(d) The algebra AK decomposes as

AK
∼=

∏
p

AK,pe ∼=
∏
p

AR̂,p,

where the products run over the minimal prime ide-
als p of AR̂ that are contained in a prime ideal of
height 1.

Proof: Since AR̂ is a finitely generated R̂-module, AR̂/p

with a prime p is an integral domain that is a finitely
generated R̂-module. Hence, it is either a finite field or
a finite extension of R̂. This proves that the height of p

is less than or equal to 1. The correspondences and the
isomorphisms of part (a) are easily verified. The decom-
positions in parts (b) and (c) hold, since R̂ is Henselian,
and hence any finite algebra is the product of its localiza-
tions. Part (d) follows by tensoring (b) over R̂ with K.

Similar decompositions for A-modules are derived
by applying the idempotents of the decompositions of
part (b).

Proposition 3.6. Assume the setup of Proposition 3.5 and
let M,N be A-modules that as R-modules are free of finite
rank. Suppose that

(a) M ⊗R C ∼= N ⊗R C as A⊗R C-modules, or

(b) M ⊗R K̄ ∼= N ⊗R K̄ as A⊗R K̄-modules.

Then for all prime ideals m of AF corresponding to height-
1 primes of AR̂, the equality

dimF(M ⊗R F)m = dimF(N ⊗R F)m

holds.

Proof: As for A, we also write MK for M ⊗RK and sim-
ilarly for N and R̂, F, etc. By choosing an isomorphism
C ∼= K̄, it suffices to prove part (b). Using Proposi-
tion 3.5, part (d), the isomorphism M ⊗R K̄ ∼= N ⊗R K̄

can be rewritten as⊕
p

(MK,pe ⊗K K̄) ∼=
⊕

p

(NK,pe ⊗K K̄),
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where the sums run over the minimal primes p of AR̂ that
are properly contained in a maximal prime. Hence, an
isomorphism MK,pe ⊗K K̄ ∼= NK,pe ⊗K K̄ exists for each
p. Since for each maximal ideal m of AR̂ of height 1 we
have by Proposition 3.5

MR̂,m ⊗R̂ K ∼=
⊕

p⊆m min.

MK,pe

and similarly for N , we get

dimF MF,m = rkR̂MR̂,m =
∑

p⊆m min.

dimK MK,pe

=
∑

p⊆m min.

dimK NK,pe = rkR̂NR̂,m

= dimF NF,m.

This proves the proposition.

3.2.2 The Stop Criterion. We begin with the following
proposition.

Proposition 3.7. Let m be a maximal ideal of
TO→F(Mk(N,χ ; O)) that is nontorsion and non-
Eisenstein. Then the following statements hold:

(a) CMk(N, χ̄ ; F)m
∼=Mk(N, χ̄ ; F)m.

(b) 2 · dimF Sk(N, χ̄ ; F)m = dimF CMk(N, χ̄ ; F)m.

(c) If p 
= 2, then

dimF Sk(N, χ̄ ; F)m = dimF CMk(N, χ̄ ; F)+m.

Proof: Part (c) follows directly from part (b) by decom-
posing CMk(N, χ̄ ; F) into a direct sum of its plus and its
minus parts. Statements (a) and (b) will be concluded
from Proposition 3.6. More precisely, it allows us to de-
rive from Theorem 3.3 that

dimF

(
(Mk(N,χ ; O)/torsion)⊗O F

)
m

= dimF

(
Eisk(N, χ̄ ; F)⊕ Sk(N, χ̄ ; F)⊕ Sk(N, χ̄ ; F)∨

)
m

and

dimF

(
(CMk(N,χ ; O)/torsion)⊗O F

)
m

= 2 · dimF

(
Sk(N, χ̄ ; F)

)
m
.

The latter proves part (b), since m is nontorsion.
Since by the definition of a non-Eisenstein prime,
Eisk(N, χ̄ ; F)m = 0, and again since m is nontorsion,
it follows that

dimF CMk(N, χ̄ ; F)m = dimFMk(N, χ̄ ; F)m,

which implies part (a).

We will henceforth often regard non-Eisenstein non-
torsion primes as in the proposition as maximal primes
of TF(Sk(N, χ̄ ; F)) = TO→F(Sk(N,χ)).

Corollary 3.8. (Stop criterion.) Let m be a maximal ideal
of TF(Sk(N, χ̄ ; F)) that is non-Eisenstein and nontor-
sion.

(a) One has

dimFMk(N, χ̄ ; F)m = 2 · dimF TF

(Mk(N, χ̄ ; F)
)
m

if and only if

TF

(
Sk(N, χ̄ ; F)

)
m
∼= TF

(CMk(N, χ̄ ; F)
)
m
.

(b) One has

dimF CMk(N, χ̄ ; F)m = 2·dimF TF

(CMk(N, χ̄ ; F)
)
m

if and only if

TF

(
Sk(N, χ̄ ; F)

)
m
∼= TF

(CMk(N, χ̄ ; F)
)
m
.

(c) Assume p 
= 2. One has

dimF CMk(N, χ̄ ; F)+m = dimF TF

(CMk(N, χ̄ ; F)
)
m

if and only if

TF

(
Sk(N, χ̄ ; F)

)
m
∼= TF

(CMk(N, χ̄ ; F)+
)
m
.

Proof: We prove only (a), since (b) and (c) are similar.
From part (b) of Proposition 3.7 and the fact that the
F-dimension of the algebra TF

(
Sk(N, χ̄ ; F)

)
m

is equal to
that of Sk(N, χ̄ ; F), since they are dual to each other, it
follows that

2 · dimF TF

(
Sk(N, χ̄ ; F)

)
m

= dimF

(CMk(N, χ̄ ; F)
)
m
.

The result is now a direct consequence of equations (3–1)
and (3–2) and Corollary 3.4.

Note that the first line of each statement uses only
modular symbols and not modular forms, but it allows
us to make statements involving modular forms. This
is the aforementioned stop criterion; the computation of
Hecke operators can be stopped if this equality is reached.

We now list some results concerning the validity of the
equivalent statements of Corollary 3.8.

Proposition 3.9. Let p ≥ 5 be a prime, k ≥ 2, and N ≥
5 with p � N integers, F a finite extension of Fp, χ̄ :
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(Z/NZ)× → F× a character, and m a maximal ideal of
TF(Sk(N, χ̄ ; F)) that is non-Eisenstein and nontorsion.
Suppose (i) that 2 ≤ k ≤ p− 1 or (ii) that k ∈ {p, p+ 1}
and m is ordinary. Then

TF

(
Sk(N, χ̄ ; F)

)
m
∼= TF

(CMk(N, χ̄ ; F)
)
m

∼= TF

(CMk(N, χ̄ ; F)+
)
m
.

Proof: Using the comparison with group cohomology of
[Wiese 08, Theorem 6.1], the result follows under assump-
tion (i) from [Edixhoven 06, Theorem 5.2] and is proved
under assumption (ii) in [Wiese 07b, Corollary 6.9] for
the case of the group Γ1(N) and no Dirichlet character.
The passage to a character is established by [Wiese 07b,
Theorem 7.4] and the remark following it. One identifies
the mod-p modular forms appearing with corresponding
Katz forms using Carayol’s lemma [Edixhoven 97, Propo-
sition 1.10].

We end this section by stating the so-called Sturm
bound (also called the Hecke bound), which gives the
best a priori upper bound for how many Hecke oper-
ators are needed to generate the entire Hecke algebra.
We need it in our algorithm only in cases in which it
is theoretically not known that the stop criterion will be
reached. This will enable the algorithm to detect whether
the Hecke algebra on modular symbols is not isomorphic
to the corresponding one on cuspidal modular forms.

Proposition 3.10. (Sturm bound.) The Hecke algebra
TZ[χ]→F(Sk(N,χ)) can be generated as an algebra by the
Hecke operators Tl for all primes l smaller than or equal
to

kN

12

∏
q|N

q prime

(
1 +

1
q

)
.

Proof: This follows from [Stein 07, Theorem 9.18].

3.3 Algorithm

In this section we present a sketch of the algorithm that
we used for our computations. The Magma code, an
example, and a manual are published as supplemental
material to this article and are available online.1

Algorithm 3.11.
Input: Integers N ≥ 1, k ≥ 2, a finite field F, a character
χ : (Z/NZ)× → F×, and for each prime l less than or

1http://www.expmath.org/expmath/volumes/17/17.1/Wiese/
supplement.zip.

equal to the Sturm bound an irreducible polynomial fl ∈
F[X].
Output: An F-algebra.

• M ← CMk(N,χ ; F), l← 1, L← empty list.

• repeat

– l← next prime after l.

– Compute Tl on M and append it to the list L.

– M ← the restriction of M to the fl-primary
subspace for Tl, i.e., to the largest subspace of
M on which the minimal polynomial of Tl is a
power of fl.

– A← the F-algebra generated by the restrictions
to M of T2, T3, . . . , Tl.

• until 2 ·dim(A) = dim(M) [the stop criterion] or l >
Sturm bound.

• return A.

The fl should, of course, be chosen as the minimal
polynomials of the coefficients al(f) of the normalized
eigenform f ∈ Sk(N,χ ; F̄) whose local Hecke algebra
one wants to compute. Suppose the algorithm stops
at the prime q. If q is greater than the Sturm bound,
the equivalent conditions of Corollary 3.8 do not hold.
In that case, the output should be disregarded. Other-
wise, A is isomorphic to a direct product of the form∏

m T(Sk(N,χ ; F))m, where the m are those maximal
ideals such that the minimal polynomials of T2, T3, . . . , Tq

on T(Sk(N,χ ; F))m are equal to powers of f2, f3, . . . , fq.
It can happen that A consists of more than one factor.
Hence, one should still decompose A into its local factors.
Alternatively, one can also replace the last line but one
in the algorithm by

• until
(
(2 · dim(A) = dim(M)) and A is local

)
or l >

Sturm bound,

which ensures that the output is a local algebra. In prac-
tice, one modifies the algorithm such that a polynomial
fl need not be given for every prime l, but that the algo-
rithm takes each irreducible factor of the minimal poly-
nomial of Tl if no fl is known. It is also useful to choose
the order in which l runs through the primes. For exam-
ple, one might want to take l = p at an early stage with p
the characteristic of F if one knows that this operator is
needed, which is the case in all computations concerning
Question 1.9.
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Level Wt ResD Dim EmbDim NilO GorDef #Ops #(p < HB) Gp

5939 5 3 12 3 5 2 5 366 D7

TABLE 1. Sample entry of important characteristics of a computed local Hecke algebra.

4. COMPUTATIONAL RESULTS

In view of Question 1.9, we produced 384 examples
of odd irreducible continuous Galois representations
Gal(Q/Q) → GL2(Fp) that are completely split at p.
The results are documented in tables that are published
as supplemental material to this article. The complete
data, which can be processed by our Magma package,
are also available online.2

The Galois representations were created either by class
field theory or from an irreducible integer polynomial
whose Galois group embeds into GL2(Fp). All examples
but one are dihedral; the remaining one is icosahedral.
For each of these an eigenform was computed giving rise
to it. The Gorenstein defect of the corresponding local
Hecke algebra factor turned out always to be 2, support-
ing Question 1.9.

The authors preferred to proceed in this way instead
of computing all Hecke algebras mod p in weight p for all
“small” primes p and all “small” levels, since nondihedral
examples in which the assumptions of Question 1.9 are
satisfied are very rare.

4.1 Table Entries

For every computed local Hecke algebra, enough data
are stored to re-create it as an abstract algebra, and im-
portant characteristics are listed in the tables available
online. A sample table entry appears as Table 1.

Each entry corresponds to the Galois conjugacy class
of an eigenform f mod p with associated local Hecke al-
gebra A. The first and second columns indicate the level
and the weight of f . The latter is in all examples equal
to the characteristic of the base field k (a finite extension
of Fp) of the algebra. Let mA denote the maximal ideal
of A. Then ResD stands for the degree of K = A/mA

over Fp. Let us consider A ⊗k K. It decomposes into a
direct product of a local K-algebra B and its Gal(K/k)-
conjugates. The K-dimension of B (which is equal to the
k-dimension of A) is recorded in the fourth column.

Let mB be the maximal ideal of B. The embedding
dimension EmbDim is the K-dimension of mB/m

2
B . By

Nakayama’s lemma, this is the minimal number of B-
generators for mB . The nilpotency order NilO is the

2http://www.expmath.org/expmath/volumes/17/17.1/Wiese/
supplement.zip.

maximal integer n such that mn
B is not the zero ideal.

The column GorDef contains the Gorenstein defect of B
(which is the same as the Gorenstein defect of A).

By #Ops it is indicated how many Hecke operators
were used to generate the algebra A, applying the stop
criterion (Corollary 3.8). This is contrasted with the
number of primes smaller than the Sturm bound (Propo-
sition 3.10; it is also called the Hecke bound), denoted
by #(p < HB). One immediately observes that the stop
criterion is very efficient. Whereas the Sturm bound is
roughly linear in the level, in 365 of the 384 calculated
examples, fewer than ten Hecke operators sufficed, in 252
examples even five were enough.

The final column contains the image of the mod-p Ga-
lois representation attached to f as an abstract group.

4.2 Dihedral Examples

All Hecke algebras except one in our tables correspond
to eigenforms whose Galois representations are dihedral,
since these are by far the easiest to obtain explicitly, since
one can use class field theory. This is explained now.

Let p be a prime and d a square-free integer that is
1 mod 4 and not divisible by p. We denote by K the
quadratic field Q(

√
d). Further, we consider an unrami-

fied character χ : Gal(Q/K) → Fp
×

of order n ≥ 3. We
assume that its inverse χ−1 is equal to χ conjugated by
σ, denoted by χσ, for σ (a lift of) the nontrivial element
of Gal(K/Q). The induced representation

ρχ := IndGal(Q/Q)

Gal(Q/K)
(χ) : Gal(Q/Q)→ GL2(Fp)

is irreducible, and its image is the dihedral group Dn of
order 2n. If l is a prime not dividing 2d, we have

ρχ(Frobl) = ( 0 1
1 0 )

if
(

d
l

)
= −1, and

ρχ(Frobl) =
(

χ(FrobΛ) 0
0 χσ(FrobΛ)

)

if
(

d
l

)
= 1 and lOK = Λσ(Λ). This explicit descrip-

tion makes it obvious that the determinant of ρχ is the
Legendre symbol l �→ (

d
l

)
.

Since the kernel of χ corresponds to a subfield of the
Hilbert class field of K, simple computations in the class
group of K allow one to determine which primes split



Kilford and Wiese: On the Failure of the Gorenstein Property for Hecke Algebras of Prime Weight 49

completely. These give examples satisfying the assump-
tions of Question 1.9 (the Frobenius at p is the identity)
if ρχ is odd, i.e., if p = 2 or d < 0.

We remark that for characters χ of odd order n, the
assumption χ−1 = χσ is not a big restriction, since any
character can be written as χ = χ1χ2 with χσ

1 = χ−1
1

and χσ
2 = χ2; hence the latter descends to a character

of Gal(Q/Q) and the representation ρχ is isomorphic to
ρχ1 ⊗ χ2.

All dihedral representations are known to come from
eigenforms in the minimal possible weight with level
equal to the (outside of p) conductor of the represen-
tation [Wiese 04, Theorem 1].

In the tables, we computed the Hecke algebras of odd
dihedral representations as above in the following ranges.
For each prime p less than 100 and each prime l less than
or equal to the largest level occurring in the table for p,
we chose d as plus or minus l such that d is 1 mod 4, and
we let H run through all nontrivial cyclic quotients of
the class group of Q(

√
d) of order coprime to p. For each

H we chose (unramified) characters χ of the absolute
Galois group of Q(

√
d) corresponding to H, up to Galois

conjugacy and up to replacing χ by its inverse. Then χ is
not the restriction of a character of Gal(Q/Q). By genus
theory, the order of χ is odd, since the class number is,
so we necessarily have χ−1 = χσ. We computed the local
factor of TFp

(Sp(l,
(

d
·
)
; Fp)) corresponding to ρχ if ρχ is

odd and p is completely split. For the prime p = 2 we
also allowed square-free integers d that are 1 mod 4 and
whose absolute value is less than 5000.

4.3 Icosahedral Example

With the help of a list of polynomials provided by Gunter
Malle [Malle 06], a Galois representation of Gal(Q/Q)
with values in GL2(F2) that is of prime conductor, com-
pletely split at 2, and thus satisfies the assumptions of
Question 1.9 and whose image is isomorphic to the icosa-
hedral group A5 could be described explicitly. The mod-
ular forms in weight 2 predicted by Serre’s conjecture
were found, and the corresponding Hecke algebra turned
out to have Gorenstein defect equal to 2.

Let f ∈ Z[X] be an irreducible polynomial of degree 5
whose Galois group, i.e., the Galois group of the normal
closure L of K = Q[X]/(f), is isomorphic to A5. We
assume that K is unramified at 2, 3, and 5. We have the
Galois representation

ρf : Gal(Q/Q) � Gal(L/Q) ∼= A5
∼= SL2(F4).

We now determine its conductor and its traces. Let p be a
ramified prime. Since the ramification is tame, the image

of the inertia group ρf (Ip) at p is cyclic of order 2, 3, or
5. In the first case, the image of a decomposition group
ρf (Dp) at p is either equal to ρf (Ip) or equal to Z/2Z×
ρf (Ip). If the order of ρf (Ip) is odd and ρf (Ip) = ρf (Dp),
then any completion of L at the unique prime above p
is totally ramified and cyclic of degree #ρf (Ip), hence
contained in Qp(ζp) for ζp a primitive pth root of unity.
It follows that p is congruent to 1 mod #ρf (Ip). If the
order of ρf (Ip) is odd, but ρf (Ip) is not equal to ρf (Dp),
then ρf (Dp) is a dihedral group and the completion of
L at a prime above p has a unique unramified quadratic
subfield S. Thus, we have the exact sequence

0→ ρf (Ip)→ ρf (Dp)→ Gal(S/Qp)→ 0.

On the one hand, it is well known that the conjugation
by a lift of the Frobenius element of Gal(S/Qp) acts on
ρf (Ip) by raising to the pth power. On the other hand,
since the action is nontrivial, it also corresponds to in-
version on ρf (Ip), since the only elements of order 2 in
(Z/3Z)× and (Z/5Z)× are −1. As a consequence, p is
congruent to −1 mod #ρf (Ip) in this case.

We hence have the following cases:

(1) Suppose pOK = P5. Then p ≡ ±1 mod 5.

(a) If p ≡ 1 mod 5, then ρf |Ip
∼

(
χ 0

0 χ−1

)
with χ a

totally ramified character of Gal(Qp/Qp) of or-
der 5.

(b) If p ≡ −1 mod 5, then ρf (Dp) is the dihedral
group with 10 elements.

(2) Suppose pOK = P3QR or pOK = P3Q.

(a) If p ≡ 1 mod 3, then ρf |Ip
∼

(
χ 0

0 χ−1

)
with χ a

totally ramified character of Gal(Qp/Qp) of or-
der 3.

(b) If p ≡ −1 mod 3, then ρf (Dp) is the dihedral
group with 6 elements.

(3) Suppose that p is ramified, but that we are neither
in case (1) nor in case (2). Then ρf |Ip

∼ ( 1 1
0 1 ).

By the definition of the conductor at p it is clear that
it is p2 in cases (1) and (2) and p in case (3). However,
in cases (1)(a) and (2)(a) one can choose a character ε of
Gal(Q/Q) of the same order as χ whose restriction to Dp

gives the character χ. If one twists the representation ρf

by ε, one finds also in these cases that the conductor at
p is p.
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Level Wt ResD Dim EmbDim NilO GorDef #Ops #(p < HB) Gp

89491 2 2 12 4 3 2 4 1746 A5

TABLE 2. Table entry for the icosahedral example.

Dimension 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 36 40 46 56 60
Number of algebras 206 58 25 3 24 6 20 3 12 3 5 4 2 1 2 2 4 1 2 1

TABLE 3. The number of times that each dimension appears.

An inspection of the conjugacy classes of the group
SL2(F4) shows that the traces of ρf twisted by some char-
acter ε of Gal(Q/Q) are as follows. Let l be an unramified
prime.

• If the order of Frobl is 5, then the trace at Frobl

is ε(Frobl)w, where w is a root of the polynomial
X2 +X + 1 in F2[X].

• If the order of Frobl is 3, then the trace at Frobl is
ε(Frobl).

• If the order of Frobl is 1 or 2, then the trace at Frobl

is 0.

These statements allow the easy identification of the
modular form belonging to an icosahedral representation.

We end this section with some remarks on our icosa-
hedral example. It was obtained using the polynomial
x5−x4−79x3 +225x2 +998x−3272. The corresponding
table entry is shown as Table 2.

Hence, in level 89,491 and weight 2 there is a single
eigenform g mod 2 up to Galois conjugacy whose first
couple of q-coefficients agree with the traces of a twist
of the given icosahedral Galois representation. From this
one can deduce that the Galois representation ρg of g has
an icosahedral image and is ramified only at 89,491. Since
weight-lowering is not known in our case, we cannot prove
that ρg coincides with a twist of the given one. It might,
however, be possible to exclude the existence of two dis-
tinct icosahedral extensions of the rationals inside C that
ramify only at 89,491 by consulting tables. According to
Malle, the icosahedral extension used has smallest dis-
criminant among all totally real A5-extensions of the ra-
tionals in which 2 splits completely.

5. FURTHER RESULTS AND QUESTIONS

In this section we present some more computational ob-
servations for Hecke algebras under the assumptions of
Question 1.9, which lead us to ask some more questions.

5.1 On the Dimension of the Hecke Algebra

From the data, we see that many even integers appear
as dimensions of the Tm. We know that the dimen-
sion must be at least 4, since this is the dimension of
the smallest non-Gorenstein algebra that can appear in
our case. This extends the results of [Kilford 02], where
the dimensions of the Hecke algebras TZ→F2(S2(Γ0(431)))
and TZ→F2(S2(Γ0(503))) localized at the non-Gorenstein
maximal ideals are shown to be 4.

In Table 3 we see exactly how many times each dimen-
sion appears in our data. We observe that every even
integer between 4 and 32 appears, and that the largest
dimension is 60. The most common dimension is 4, which
appears about half the time. However, since the dimen-
sion of the Hecke algebra attached to Sk(Γ1(N)) increases
with N and with k, this may be an artifact of the data
being collected for “small” levels N and primes p.

It seems reasonable that there should be infinitely
many cases with dimension 4, and plausible that every
even integer greater than or equal to 4 should appear as a
dimension infinitely many times. From the tables, we see
that algebras of dimension 4 appear at very high levels,
so they do not appear to be becoming rare as the dimen-
sion increases, but this may, of course, be an artifact of
our data.

We note that not every example that arises from
an elliptic curve in characteristic p = 2 has Hecke
algebra with dimension 4; for example, the algebra
TZ→F2(S2(Γ0(2089))) localized at its non-Gorenstein
maximal ideal has dimension 18. In level 18,097 there
is a dimension-36 example arising from an elliptic curve.

5.2 On the Residue Degree

We will now solve an easy aspect of the question of the
possible structures of non-Gorenstein local algebras oc-
curring as local Hecke algebras. We assume for the cou-
ple of lines to follow the generalized Riemann hypothesis
(GRH).

We claim that then the residue degrees of Tm (in the
notation of Question 1.9) are unbounded if we let p and
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N run through the primes such that p 
= N and N is
congruent to 3 modulo 4.

This is so because class groups of imaginary quadratic
fields Q(

√−N) have arbitrarily large cyclic factors of odd
order, since the exponent of these class groups is known
to go to infinity as N does, by the main result of [Boyd
and Kisilevsky 72], which assumes GRH. So the discus-
sion on dihedral forms in Section 4 immediately implies
the claim.

5.3 On the Embedding Dimension

One can ask whether the embedding dimension of the
local Hecke algebras in the situation of Question 1.9 is
bounded if we allow p and N to vary. This, however,
seems to be a difficult problem. The embedding dimen-
sions occurring in our tables are 3 (299 times), 4 (78
times) and 5 (7 times).

The embedding dimension d is related to the number
of Hecke operators needed to generate the local Hecke
algebra, in the sense that at least d Hecke operators are
needed. Probably, d Hecke operators can be found that
do generate, but they need not be the first d prime Hecke
operators, of course. However, as our tables suggest, in
most cases the actual computations were done using very
few operators, and there are 99 of the 384 cases in which
the computation finished after only d operators.
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