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We prove that the D4 root system (equivalently, the set of ver-
tices of the regular 24-cell) is not a universally optimal spherical
code. We further conjecture that there is no universally optimal
spherical code of 24 points in S3, based on numerical computa-
tions suggesting that every 5-design consisting of 24 points in S3

is in a 3-parameter family (which we describe explicitly, based
on a construction due to Sali) of deformations of the D4 root
system.

1. INTRODUCTION

In [Cohn and Kumar 07] the authors (building on work
by Yudin, Kolushov, and Andreev in [Yudin 93, Kolushov
and Yudin 94, Kolushov and Yudin 97, Andreev 96, An-
dreev 97]) introduce the notion of a universally optimal
code in Sn−1, the unit sphere in R

n. For a function
f : [−1, 1) → R and a finite set C ⊂ Sn−1, define the
energy Ef (C) by

Ef (C) =
∑

c,c′∈C

c�=c′

f
(〈c, c′〉),

where 〈c, c′〉 is the usual inner product. We think of f as
a potential function, and Ef (C) as the potential energy
of the configuration C of particles on Sn−1. Note that
because each pair of points in C is counted in both orders,
Ef (C) is twice the potential energy from physics, but of
course this constant factor is unimportant.

A function f : [−1, 1) → R is said to be absolutely
monotonic if it is smooth and it and all its derivatives are
nonnegative on [−1, 1). A finite subset C0 ⊂ Sn−1 is said
to be universally optimal if Ef (C0) ≤ Ef (C) for all C ⊂
Sn−1 with #C = #C0 and all absolutely monotonic f .
We say that C0 is an optimal spherical code if tmax(C0) ≤
tmax(C) for all such C, where

tmax(C) := max
c,c′∈C

c�=c′

〈c, c′〉

is the cosine of the minimal distance of C. A univer-
sally optimal code is automatically optimal (let f(t) =
(1 − t)−N or (1 + t)N for large N).
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In [Cohn and Kumar 07], linear programming bounds
are applied to show that many optimal codes are in fact
universally optimal. Notably absent from this list is
the D4 root system CD4 , which is expected but not yet
proved to be the unique optimal code of size 24 in S3.
This root system can also be described as the vertices of
the regular 24-cell.

It is shown in [Cohn and Kumar 07] that the vertices
of any regular polytope whose faces are simplices form
a universally optimal spherical code. The dodecahedron,
120-cell, and cubes in R

n with n ≥ 3 are not even optimal
spherical codes (see [Sloane 00]) and hence cannot be uni-
versally optimal. Thus the 24-cell was the only remain-
ing regular polytope. Cohn and Kumar conjectured in an
early draft of [Cohn and Kumar 07] that CD4 was uni-
versally optimal, but reported the numerical result that
for the natural potential function f(t) = (1 − t)−1 there
was another code C ⊂ S3 with #C = 24 at which Ef
has a local minimum only slightly larger than Ef (CD4)
(668.1902+, compared with 668).

What makes this code noteworthy is that in simula-
tions of particle dynamics on S3 under the potential func-
tion f (along with a viscosity force to remove kinetic en-
ergy and cause convergence to a local minimum for Ef ),
24 particles converge more than 90% of the time to C,
rather than to CD4 . Similar effects appear to occur for
f(t) = (1 − t)−s for other values of s. In other words,
these codes have a much larger basin of attraction than
CD4 , despite being suboptimal.

In this paper we give a simple description of a one-
parameter family of configurations Cθ that includes these
codes, and exhibit choices of f (such as f(t) = (1 + t)8)
and θ for which Ef (Cθ) < Ef (CD4). We thus disprove
the conjectured universal optimality of CD4 .

We further conjecture that there is no universally op-
timal spherical code of 24 points in S3. Any such code
would have to be a 5-design, because CD4 is. Numeri-
cal computations led us to a 3-parameter family of such
designs that can be constructed using an approach intro-
duced by Sali in [Sali 94]. The family contains CD4 as a
special case, and consists of deformations of CD4 .

We exhibit these designs and prove that, within the
family, CD4 minimizes the energy for every absolutely
monotonic potential function, and is the unique mini-
mizer unless that function is a polynomial of degree at
most 5. Our computations suggest that every 5-design of
24 points in S3 is in the new family. If true, this would
imply the nonexistence of a universally optimal design of
this size in S3 because we already know that CD4 is not
universally optimal.

One way to think about the D4 root system’s lack of
universal optimality is that it explains how D4 is worse
than E8. TheD4 and E8 root systems are similar in many
ways: they are both beautiful, highly symmetrical con-
figurations that seem to be the unique optimal spherical
codes of their sizes and dimensions. However, one strik-
ing difference is that linear programming bounds prove
this optimality and uniqueness for E8 but not for D4 (see
[Arestov and Babenko 97, Bannai and Sloane 81, Leven-
shtein 79, Odlyzko and Sloane 79]). This leads one to
wonder what causes that difference. Is D4 in some way
worse than E8? Our results in this paper show that the
answer is yes: for E8, linear programming bounds prove
universal optimality (see [Cohn and Kumar 07]), while
for D4 universal optimality is not merely unproved but
in fact false.

2. THE CODES Cθ

We computed the 24×24 Gram matrix of inner products
between the points of the suboptimal but locally optimal
configuration mentioned above for the potential function
f(t) = (1− t)−1. Each inner product occurred more than
once, suggesting that the configuration had some sym-
metry. By studying this pattern we eventually identified
the configuration with a code in the following family of
24-point codes Cθ ⊂ S3. (We are of course not the first to
use this approach of computing a code numerically and
using its Gram matrix to detect symmetries and then find
good coordinates. One recent case — also, as it happens,
for codes in S3 — is [Sloane et al. 03], where the method
is called “beautification.”)

We identify R
4 with the complex vector space C

2 so
that

S3 = {(w1, w2) ∈ C
2 : |w1|2 + |w2|2 = 1}.

For θ ∈ R/2πZ such that sin 2θ �= 0 and sin θ �= cos θ we
set

Cθ := {(z, 0), (0, w), (z sin θ, w cos θ),

(z cos θ, w sin θ) : z3 = w3 = 1}.

Thus Cθ consists of 24 unit vectors, namely 3 + 3
of the form (z, 0) or (0, w) and 32 + 32 of the form
(z sin θ, w cos θ) or (z cos θ, w sin θ). Each of these codes
has 72 symmetries (each complex coordinate can be in-
dependently conjugated or multiplied by cube roots of
unity, and the two coordinates may be switched), form-
ing a group G isomorphic to the wreath product of the
symmetric group S3 with S2. This group does not act
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transitively: there are two orbits, one consisting of the
six points (z, 0) and (0, w) and the other consisting of the
remaining 18 points.

Listing all possible pairs c, c′ ∈ Cθ with c �= c′, we find
that there are in general 11 possible inner products, with
multiplicities ranging from 18 to 84. We thus compute
that

Ef (Cθ) = 18
(
f(0) + f(sin 2θ)

)
+ 36

(
f(sin θ) + f(cos θ)

)
+ 36

(
f

(
sin2 θ − 1

2
cos2 θ

)
+ f

(
cos2 θ − 1

2
sin2 θ

))

+ 72
(
f

(
− sin θ

2

)
+ f

(
− cos θ

2

)

+ f

(
sin 2θ

4

)
+ f

(
− sin 2θ

2

))

+ 84f
(
−1

2

)
.

For CD4 we have the simpler formula

Ef (CD4) = 24f(−1) + 192
(
f

(
1
2

)
+ f

(
−1

2

))
+ 144f(0).

3. FAILURE OF UNIVERSAL OPTIMALITY

By Theorem 9b in [Widder 41, p. 154], an absolutely
monotonic function on [−1, 1) can be approximated, uni-
formly on compact subsets, by nonnegative linear com-
binations of the absolutely monotonic functions f(t) =
(1+ t)k with k ∈ {0, 1, 2, . . . }. To test universal optimal-
ity of some spherical code C0 it is thus enough to test
whether Ef (C0) ≤ Ef (C) holds for all C ⊂ Sn−1 with
#C = #C0 and each f(t) = (1 + t)k. We wrote a com-
puter program to compute Ef (CD4) and Ef (Cθ), and
plotted the difference Ef (CD4) − Ef (Cθ) as a function
of θ.

For k ≤ 2 the plots suggested that Ef (CD4) = Ef (Cθ)
for all θ. This is easy to prove, either directly from the
formulas or more nicely by observing that CD4 and Cθ
are both spherical 2-designs (the latter because G acts
irreducibly on R

4), so Ef (CD4) + 24f(1) and Ef (Cθ) +
24f(1) both equal 24 times the average of c 	→ f

(〈c, c0〉)
over S3 for any c0 ∈ S3.

For k = 3, the plot suggested that Ef (CD4) ≤ Ef (Cθ),
with equality at a unique value of θ in [0, π], numerically
θ = 2.51674+. We verified this by using the rational
parametrization

sin θ =
2u

1 + u2
, cos θ =

1 − u2

1 + u2

of the unit circle, computing Ef (CD4) − Ef (Cθ) sym-
bolically as a rational function of u, and factoring this
function. We found that

Ef (CD4) − Ef (Cθ) = −18
(u6 − 6u4 − 12u3 + 3u2 − 2)2

(u2 + 1)6
,

and thus that Ef (CD4) ≤ Ef (Cθ), with equality if and
only if u is a root of the sextic u6 − 6u4 − 12u3 +3u2 − 2.
This sextic has two real roots,

u = −(0.51171+), u = 3.09594−,
which yield the two permutations of {sin θ, cos θ} =
{0.58498−,−(0.81105+)} and thus give rise to a unique
code Cθ with Ef (CD4) = Ef (Cθ). This code is charac-
terized more simply by the condition that sin θ + cos θ
is a root of the cubic 3y3 − 9y − 2 = 0, or better yet
that sin3 θ + cos3 θ = − 1

3 . The latter formulation also
lets us show that this is the unique Cθ that is a spher-
ical 3-design: the cubics on R

4 invariant under G are
the multiples of Re(w3

1) + Re(w3
2), and the sum of this

cubic over Cθ is 6 + 18(sin3 θ + cos3 θ). Since CD4 and
this particular Cθ are both 3-designs, they automatically
minimize the energy for any potential function that is a
polynomial of degree at most 3. We must thus try k > 3
if we are to show that CD4 is not universally optimal.

For k = 4 through k = 7 the plot indicated that
Ef (Cθ) comes near Ef (CD4) for θ ≈ 2.52 but stays safely
above Ef (CD4) for all θ, which is easily proved using the
rational parametrization. (For k = 4 and k = 5 we could
also have seen that CD4 minimizes Ef by noting that CD4

is a 5-design.) However, for k = 8 the minimum value of
Ef (Cθ), occurring at θ = 2.529367746+, is 5064.9533+,
slightly but clearly smaller than Ef (CD4) = 5065.5. That
is, this Cθ is a better code than CD4 for the potential
function (1+ t)8, so CD4 is not optimal for this potential
function and hence not universally optimal.

The maximum value of Ef (CD4) − Ef (Cθ) for f(t) =
(1+ t)k remains positive for k = 9, 10, 11, 12, 13, attained
at values of θ that slowly increase from θ = 2.52937− for
k = 8 to θ = 2.54122− for k = 13. Each of these is itself
enough to disprove the conjecture that CD4 is universally
optimal. (Another natural counterexample is f(t) = e6t

with θ = 2.53719+.)
We found no further solutions of Ef (CD4) > Ef (Cθ)

with k > 13. It is clear that Ef (CD4) < Ef (Cθ) must
hold for all θ if k is large enough, because tmax(Cθ) >
tmax(CD4) = 1

2 : the smallest value t0 of tmax(Cθ) is
(
√

7 − 1)/3 = 0.54858+, occurring when either

t0 = sin θ = cos2 θ − 1
2

sin2 θ
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with θ = 2.56092+ or

t0 = cos θ = sin2 θ − 1
2

cos2 θ

with θ = 5.29305+. Quantifying what “large enough”
means, and combining the resulting bound with our com-
putations for smaller k, we obtained the following result:

Proposition 3.1. For 8 ≤ k ≤ 13, there exists a choice of
θ for which

Ef (Cθ) < Ef (CD4)

when f(t) = (1 + t)k. For other nonnegative integers k,
no such θ exists.

Proof: If k is large enough that

18f

(√
7 − 1
3

)
> 24f(−1) + 192

(
f

(
1
2

)
+ f

(
−1

2

))

+ 144f(0),

then Ef (CD4) < Ef (Cθ). This criterion is wasteful, but
we have no need of sharper inequalities. Calculation
shows that this criterion holds for all k ≥ 75. This leaves
only finitely many values of k. For each of them, we use
the rational parametrization of the unit circle to trans-
late the statement of Proposition 3.1 into the assertion
of existence or nonexistence of a real solution of a poly-
nomial in Z[u], which can be confirmed algorithmically
using Sturm’s theorem. Doing so in each case completes
the proof.

We cannot rule out the possibility that there exists a
universally optimal 24-point code in S3, but it seems ex-
ceedingly unlikely. If CD4 is the unique optimal spherical
code, as is widely believed, then no universally optimal
code can exist. The same conclusion follows from the
conjecture in the next section.

It is still natural to ask which configuration minimizes
each absolutely monotonic potential function. We are
unaware of any case in which another code beats CD4 and
all the codes Cθ for some absolutely monotonic potential
function, but given the subtlety of this area we are not
in a position to make conjectures confidently.

4. NEW SPHERICAL 5-DESIGNS

Spherical designs are an important source of minimal-
energy configurations: a spherical τ -design automatically
minimizes the potential energy for f(t) = (1 + t)k with
k ≤ τ . Conversely, if an N -point spherical τ -design exists

in Sn−1, then every N -point configuration in Sn−1 that
minimizes the potential function f(t) = (1 + t)τ must be
a τ -design. Thus, when searching for universally optimal
configurations, it is important to study τ -designs with τ
as large as possible.

For 24 points in S3, the D4 root system forms a 5-
design. By Theorem 5.11 in [Delsarte et al. 77], ev-
ery 6-design must have at least 30 points, so 24 points
cannot form a 6-design. Counting degrees of freedom
suggests that 24-point 4-designs are plentiful, but 5-
designs exist only for subtler reasons. One can search
for them by having a computer minimize potential en-
ergy for f(t) = (1 + t)5. Here, we report on a three-
dimensional family of 5-designs found by this method.
The D4 root system is contained in this family, and all
the designs in the family can be viewed as deformations
of CD4 . We conjecture that there are no other 24-point
spherical 5-designs in S3. We shall show that this con-
jecture implies the nonexistence of a universally optimal
24-point code in S3.

Our construction of 5-designs slightly generalizes a
construction of Sloane, Hardin, and Cara for the 24-cell
(Construction 1 and Theorem 1 in [Sloane et al. 03]). The
Sloane–Hardin–Cara construction also works for certain
other dimensions and numbers of points, and can be fur-
ther generalized using our more abstract approach. For
example, one can construct a family of designs in S2n−1

from a design in CP
n−1. We plan to treat further appli-

cations in a future paper. See also the final paragraph of
this section.

Fix an “Eisenstein structure” on the D4 root lattice,
that is, an action of Z[r], where r = e2πi/3 is a cube root
of unity. (It is enough to specify the action of r, which
can be any element of order 3 in Aut(D4) that acts on R

4

with no nonzero fixed points; such elements constitute a
single conjugacy class in Aut(D4).) Then R

4 is identified
with C

2, with the inner product given by

〈
(z1, z2), (ζ1, ζ2)

〉
= Re

(
z1ζ1 + z2ζ2

)
.

The group µ6 of sixth roots of unity (generated by
−1 and r) acts on CD4 and partitions its 24 points
into four hexagons centered at the origin; call them
H0,H1,H2,H3. In coordinates, we may take

H0 = {(w, 0) : w ∈ µ6},
H1 = {(uiw, tiw) : w ∈ µ6},
H2 = {(uiw, rtiw) : w ∈ µ6},
H3 = {(uiw, rtiw) : w ∈ µ6},
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where u =
√

1/3 and t =
√

2/3. For any complex num-
bers a0, a1, a2, a3 with |a0| = |a1| = |a2| = |a3| = 1, we
define

D(a0, a1, a2, a3) = a0H0 ∪ a1H1 ∪ a2H2 ∪ a3H3.

We claim that D(a0, a1, a2, a3) is a 5-design. That is,
we claim that for every polynomial P of degree at most
5 on R

4, the average of P (c) over c ∈ D(a0, a1, a2, a3)
equals the average of P (c) over c ∈ S3. It is sufficient
to prove that the average is independent of the choice
of a0, a1, a2, a3, because D(1, 1, 1, 1) = CD4 is already
known to be a 5-design. But this is easy: for each m ∈
{0, 1, 2, 3}, the restriction of P to the plane spanned by
Hm is again a polynomial of degree at most 5, and amHm

is a 5-design in the unit circle of this plane, so the average
of P over amHm is the average of P over this unit circle,
independent of the choice of am.

This construction via rotating hexagons is a special
case of Lemma 2.3 in [Sali 94], where that idea is applied
to prove that many spherical designs are not rigid. Sali
rotates a single hexagon to prove that CD4 is not rigid,
but he does not attempt a complete classification of the
24-point 5-designs.

It is far from obvious that there is no other way to
perturb the D4 root system to form a 5-design. For ex-
ample, if there were two disjoint hexagons in D4 that
did not come from the same choice of Eisenstein struc-
ture as above, then rotating them independently would
produce 5-designs not in our family. However, one can
check via a counting argument that every pair of disjoint
hexagons does indeed come from some common Eisen-
stein structure. This supports our conjecture that there
are no other 24-point spherical 5-designs in S3.

The family of 5-designs of the form D(a0, a1, a2, a3)
is three-dimensional, for the following reason. One
of the four parameters a0, a1, a2, a3 is redundant, be-
cause for every α ∈ C

∗ with |α| = 1 we have
D(αa0, αa1, αa2, αa3) ∼= D(a0, a1, a2, a3). We may thus
assume α0 = 1. We claim that for each (a1, a2, a3)
there are only finitely many (a′1, a

′
2, a

′
3) such that

D(1, a1, a2, a3) ∼= D(1, a′1, a
′
2, a

′
3). If this were not true,

there would be an infinite set of designs D(1, b1, b2, b3)
equivalent under automorphisms of S3 that stabilize H0

pointwise. But this is impossible, because such an auto-
morphism must act trivially on the first coordinate z1.
Hence our 5-designs constitute a three-dimensional fam-
ily, as claimed.

Some other known spherical designs can be similarly
generalized. For instance, the 7-design of 48 points in S3,
obtained in [Sloane et al. 03] from two copies of CD4 , has

a decomposition into six regular octagons, which can be
rotated independently to yield a five-dimensional family
of 7-designs.

It is also fruitful to take a more abstract approach.
A 24-point design with a µ6 action is specified by four
points, one in each orbit. Our new designs are char-
acterized by the condition that under the natural map
C

2 \ {(0, 0)} → CP
1 given by (z1, z2) 	→ z1/z2, the four

points must map to the vertices of a regular tetrahedron
(if we identify CP

1 with S2 via stereographic projection,
with CP

1 = C∪{∞} and S2 a unit sphere centered at the
origin). In slightly different language, we have specified
the image of the design under the Hopf map S3 → S2.
The fact that the regular tetrahedron is a spherical 2-
design in S2 plays a crucial role, and can be used to
prove that this construction yields 5-designs. Likewise,
the six octagons that make up each of our 7-designs map
to the vertices of a regular octahedron, which is a spher-
ical 3-design. Again, we intend to discuss this approach
in more detail in a future paper.

5. OPTIMALITY OF CD4 AMONG NEW 5-DESIGNS

In this section we prove that among all these new 5-
designs, the 24-cell minimizes potential energy for each
absolutely monotonic potential function. As before, it is
sufficient to do this for f(t) = (1 + t)k. For k ≤ 5 this
follows immediately from the spherical design property,
and for k > 5 we will show directly that CD4 is the unique
minimizer.

Within each hexagon Hm, the six points are in the
same relative position in each design, and thus make the
same contribution to the potential energy. Hence it suf-
fices to show that the potential energy between each pair
of hexagons is separately minimized for the D4 configu-
ration.

Let a0 = 1, a1 = ieiθ, a2 = ieiφ, and a3 = ieiψ. Be-
cause of the sixfold rotational symmetry of each Hm, the
angles θ, φ, and ψ are determined only modulo π/3. In
particular, θ = φ = ψ = π/6 yields the 24-cell (because
π/2 ≡ π/6 (mod π/3)).

First, consider the pair (H0,H1). We find that the
inner products between the points of H0 and a1H1 are
(1/

√
3) cos(θ + jπ/3) with 0 ≤ j ≤ 5, each repeated

six times. By Lemma 5.1 below, the sum is minimized
exactly when θ ≡ π/6 (mod π/3). Similarly, consider-
ing (H0,H2) and (H0,H3) shows that the correspond-
ing contributions to potential energy are minimized when
φ ≡ π/6 (mod π/3) or ψ ≡ π/6 (mod π/3), respectively.
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Next, consider the pair (H1,H2). The dot products
possible are of the form

Re
(
(u2 + rt2)a1a2w

j
)

=
1√
3

cos
(

3π
2

+ θ − φ+
jπ

3

)

with 0 ≤ j ≤ 5, each repeated six times. Once again
we conclude from Lemma 5.1 that the potential energy
is minimized when θ ≡ φ (mod π/3). Similarly, consid-
ering the remaining pairs (H1,H3) and (H2,H3) shows
that θ ≡ φ ≡ ψ (mod π/3). Thus, it will follow from the
lemma below that for each k ≥ 6, the D4 configuration
with θ = φ = ψ = π/6 is the unique code in this family
that minimizes the potential energy under the potential
function f(t) = (1 + t)k.

Lemma 5.1. Let k be a nonnegative integer. When k ≥ 6,
the function

θ 	→
5∑
j=0

(
1 +

cos(θ + jπ/3)√
3

)k

has a unique global minimum within [0, π/3], which oc-
curs at θ = π/6. When k ≤ 5, the function is constant.

Proof: We must show that the coefficient of yk in the
generating function

5∑
j=0

∞∑
k=0

((
1 +

cos(θ + jπ/3)√
3

)k

−
(

1 +
cos(π/6 + jπ/3)√

3

)k)
yk

is zero if k ≤ 5 or θ ≡ π/6 (mod π/3) and strictly posi-
tive otherwise. Explicit computation using the sum of
a geometric series shows that the generating function
equals

y6
(
cos2 θ

)(
4 cos2 θ − 3

)2
216

(
1

1 − y
+

2
2 − y

+
2

2 − 3y

)

×
5∏
j=0

1

1 − y
(
1 + cos(θ+jπ/3)√

3

) .
The factor of

(
cos2 θ

)(
4 cos2 θ − 3

)2 vanishes iff θ ≡ π/6
(mod π/3) and is positive otherwise. Clearly the factor

1
1 − y

+
2

2 − y
+

2
2 − 3y

has positive coefficients, as does

5∏
j=0

1

1 − y
(
1 + cos(θ+jπ/3)√

3

) ,

because 1 + cos(θ + jπ/3)/
√

3 > 0 for all j. It follows
that their product has positive coefficients, and taking
the factor of y6 into account completes the proof.

6. LOCAL OPTIMALITY

So far, we have not addressed the question of whether
our new codes are actually local minima for energy. Of
course that is not needed for our main result, because
they improve on the 24-cell regardless of whether they
are locally optimal, but it is an interesting question in its
own right.

For the codes Cθ this question appears subtle, and
we do not resolve it completely. To see the issues in-
volved, consider the case of f(t) = (1 − t)−1. As θ

varies, the lowest energy obtained is 668.1920+ when
θ = 2.5371+. That code appears to be locally mini-
mal among all codes, based on diagonalizing the Hessian
matrix numerically, but we have not proved it. By con-
trast, the other two local minima within the family Cθ
(with energy 721.7796+ at θ = −(2.0231+) and energy
926.3218+ at θ = 0.5320+) are critical points but def-
initely not local minima among all codes; the Hessians
have 22 and 36 negative eigenvalues, respectively.

We do not know a simple criterion that predicts
whether a local minimum among the codes Cθ as θ varies
will prove to be a local minimum among all codes, but
it is not hard to prove that every critical point in the
restricted setting is also an unrestricted critical point.
Specifically, a short calculation shows that for every code
Cθ and every smooth potential function, the gradient of
potential energy on the space of all configurations lies
in the tangent space of the subspace consisting of all
the codes Cθ. It follows immediately that if the deriva-
tive with respect to θ of potential energy vanishes, then
the gradient vanishes as well. Furthermore, such critical
points always exist: starting at an arbitrary code Cθ and
performing gradient descent will never leave the space of
such codes and will always end at a critical point.

At this point one may wonder whether it is even clear
that the regular 24-cell is a local minimum for all ab-
solutely monotonic potential functions. It is straightfor-
ward to show that it is a critical point, but we know of
no simple proof that it is actually a local minimum. The
best proof we have found is the following calculation.

For each of the 24 points, choose an orthonormal basis
of the tangent space to S3 at that point, and compute
the Hessian matrix of potential energy with respect to
these coordinates. Its eigenvalues depend on the poten-
tial function, but the corresponding eigenspaces do not.
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There is a simple reason for that, although we will not re-
quire this machinery. Consider the space Sym24(S3) of all
unordered sets of 24 points in S3. The symmetry group
of the 24-cell acts on the tangent space to Sym24(S3) at
the point corresponding to the 24-cell, and this repre-
sentation breaks up as a direct sum of irreducible repre-
sentations. On each nontrivial irreducible representation
the Hessian has a single eigenvalue, and these subspaces
do not depend on the potential function. In practice, the
simplest way to calculate the eigenspaces is not to use
representation theory, but rather to find them for one
potential function and then verify that they are always
eigenspaces.

If the potential function is f : [−1, 1) → R, then the
eigenvalues of the Hessian are

0,
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′′
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1

2

)
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′′
(0) + 2f

′′
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2

)
− 12f

′
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2
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2
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2

)
+ 4f

′
(−1),

with multiplicities 6, 9, 16, 8, 12, 4, 9, and 8, respectively.
One mild subtlety is that 0 is always an eigenvalue,

so one might worry that the second derivative test is in-
conclusive. However, note that the potential energy is
invariant under the action of the 6-dimensional Lie group
O(4), which yields the 6 eigenvalues of 0. In such a case,
if all other eigenvalues are positive, then local minimality
still holds, for the following reason. Notice that O(4) acts
freely on the space of ordered 24-tuples of points in S3

that span R
4, and it acts properly since O(4) is compact.

The quotient space is therefore a smooth manifold, and
the positivity of the remaining eigenvalues suffices for the
potential energy to have a strict local minimum on the
quotient space.

To complete the proof, we need only consider f(t) =
(1+ t)k with k ∈ {0, 1, 2, . . . }. For k ≤ 5 the other eigen-
values are not all positive (some vanish), but because the
24-cell is a spherical 5-design it is automatically a global

minimum for these energies. For k ≥ 6 one can check
that all the other eigenvalues are positive. That is obvi-
ous asymptotically, because they grow exponentially as
functions of k; to prove it for all k ≥ 6 one reduces the
problem to a finite number of cases and checks each of
them. It follows that the regular 24-cell locally minimizes
potential energy for each absolutely monotonic potential
function, and it is furthermore a strict local minimum
(modulo orthogonal transformations) unless the poten-
tial function is a polynomial of degree at most 5.
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