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In this paper, we show that the Newton polytope of an ob-
servation Y from a two-dimensional hidden Markov model
(2D HMM) lies in a three-dimensional subspace of its ambient
eight-dimensional space, whose vertices correspond to the most
likely explanations (“hidden” states) for Y given the model. For
each Newton polytope, there exists a set of “essential” vertices,
which form a skeleton for the polytope. All observations in the
same orbit (identical under translations, rotations, and transpo-
sitions) have the same Newton polytope. Our main conjecture
is that the maximal number of vertices of any Newton polytope
is of order n2.

1. INTRODUCTION

1.1 Graphical Models

A graphical model [Murphy 98] is a graph in which nodes
represent random variables and the (lack of) arcs repre-
sent conditional independence assumptions. In particu-
lar, a directed graphical model is one in which a node is
independent of its ancestors given its parents. For ex-
ample, a one-dimensional hidden Markov model (HMM)
is a directed graphical model and is given by the follow-
ing: An observation bit Yi is dependent only on its cor-
responding hidden state Xi, that is, P (Yi = yi | Yi−1 =
yi−1, . . . , Y1 = y1,Xi = xi,Xi−1 = xi−1, . . . , X1 = x1) =
P (Yi = yi | Xi = xi), and the current state Xi is in-
dependent of the first i − 2 states given the previous
state Xi−1, that is, P (Xi = xi | Xi−1 = xi−1,Xi−2 =
xi−2, . . . , X1 = x1) = P (Xi = xi | Xi−1 = xi−1). See
Figure 1 for a graphical representation of the HMM.

1.2 Tropical Geometry and Newton Polytopes

When making an inference on a statistical (graphical)
model, one typically seeks to maximize the probability
fY = P (Y ), where Y = [Yi] is an observation from
the model. However, it is often simpler to look at
L(Y ) = − log P (Y ), which is then minimized to find the
best explanation for Y1 · · ·Yn. If fY can be expressed in
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FIGURE 1. The hidden Markov model (HMM).

polynomial form, it can be tropicalized by replacing the
operators (+,×) with the operators (min,+). Minimiz-
ing the tropicalized map g of f is essentially equivalent
to minimizing L(Y ) = − log(P (Y )).

Definition 1.1. Given a polynomial map f : Rm → R
that can be expressed as

f =
q∑

i=1

cix
νi,1
1 x

νi,2
2 · · ·xνi,m

m ,

the Newton polytope NP(f) of f is defined as the con-
vex hull of the point set N = {(νi,1, νi,2, . . . , νi,m) | i =
1, . . . , q}, i.e., NP(f) = conv(N).

An important property of the Newton polytope NP(f)
is that the tropical morphism g of f is linear on each cone
in the normal fan of NP(f) [Pachter and Sturmfels 04,
Theorem 2]. Furthermore, each vertex of the Newton
polytope indexes its corresponding normal cone in which
g is minimized. This property will be useful to us in our
character-recognition algorithm, which is currently under
development.

1.3 Two-Dimensional Hidden Markov Model
(2D HMM)

The two-dimensional hidden Markov model that we will
use has the following properties:

1. Each hidden state Xi,j depends on its “past” only
through its immediate left and immediate top neigh-
boring states X(i−1)n,j and Xi,(j−1)n

, where (x)n is
defined to be x (mod n).

2. Each observation bit Yi,j depends only on its corre-
sponding hidden state Xi,j .

3. All random variables are binary variables (having
values 0 or 1).
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FIGURE 2. Graphical representation of an n × n
two-dimensional HMM.

4. We define P (X(i+1)n,j = l | Xi,j = k) = ak,l,
P (Xi,(j+1)n

= l | Xi,j = k) = ak,l, and P (Yi,j =
l | Xi,j = k) = bk,l.

For a fixed observation Y = [yi,j ], we have

fY = P (Y )

=
∑

X∈Xn

∏
(i,j)

axi,j ,x(i+1)n,j
axi,j ,xi,(j+1)n

bxi,j ,yi,j
,

where Xn = {0, 1}n×n. The tropicalized map gY is then

gY = min
X∈Xn

∑
(i,j)

[sxi,j ,x(i+1)n,j
+ sxi,j ,xi,(j+1)n

+ txi,j ,yi,j
],

where s·,· = − log(a·,·) and t·,· = − log(b·,·). Figure 2
gives a graphical representation of the 2D HMM.

Example 1.2. (Newton polytope for a 2D HMM.) Let

Y =

⎡
⎢⎢⎣

1 0 1 0
0 1 0 0
1 0 1 0
0 0 0 0

⎤
⎥⎥⎦ .

Then NP(Y ) has vertices

A = (32, 0, 0, 0, 11, 5, 0, 0),

B = (0, 0, 0, 32, 0, 0, 11, 5),

C = (12, 10, 10, 0, 11, 0, 0, 5),

D = (0, 10, 10, 12, 0, 5, 11, 0),

E = (0, 16, 16, 0, 8, 0, 3, 5),

E′ = (0, 16, 16, 0, 3, 5, 8, 0),

and

(8, 6, 6, 12, 7, 0, 4, 5), (12, 6, 6, 8, 4, 5, 7, 0).
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(a)

(b)

FIGURE 3. NP(Y ) for Example 1.2. (a) Top view; (b)
Front view.

We will prove in the next section that these Newton
polytopes are effectively three-dimensional; hence they
can be visualized by any software package with 3D graph-
ing capabilities, such as MATLAB or polymake. Using
the first, second, and fifth entries of each vertex, we plot
NP(Y ) in Figure 3. Using terminology from the following
section, we will call the all-zeros vertex A, the all-ones
vertex B, the “self” vertex C, the “anti-self” vertex D,
and the “checkerboard” or “near-checkerboard” vertex
(or vertices) E (E′,E′′, . . . ). The two remaining, unla-
beled, vertices of NP(Y ) are specific to Y and generally
do not show up for every element in Xn.

2. PROPERTIES OF NEWTON POLYTOPES
FOR 2D HMMS

Definition 2.1. Given any positive integer n, a candidate
vertex u of a Newton polytope for a given hidden state
grid X ∈ Xn and observation grid Y ∈ Xn is given by
the powers of the monomial corresponding to X and Y ;
that is, for the monomial au1

00au2
01au3

10au4
11bu5

00bu6
01bu7

10bu8
11 , the

associated candidate vertex is u = (u1, . . . , u8).

Lemma 2.2. The second and third coordinates (corre-
sponding to the number of zero-to-one and one-to-zero
state-to-state transitions, respectively) are always equal
for any candidate vertex of any observation grid for any
n = 1, 2, . . . .

Proof: If there is no zero-to-one transition, then X must
consist of all zeros or all ones. In either case there are

no zero-to-one or one-to-zero transitions. Otherwise, as-
sume that there is at least one zero-to-one (or one-to-
zero) transition for the hidden state grid X associated
with a candidate vertex.

Find a row (or column) in X with a zero-to-one
transition. Then xi,j = 0 and xi,(j+1) (mod n) = 1
for some i, j. Then there exists a k∗ ≤ n such that
k∗ = arg mink≥1{xi,(j+k) (mod n) = 0}.

Hence there is a one-to-zero transition corresponding
to xi,(j+k∗−1) (mod n) = 1 and xi,(j+k∗) (mod n) = 0. Thus
each zero-to-one transition has a corresponding one-to-
zero transition and vice versa.

Lemma 2.3. Given a positive integer n, for any candidate
vertex u of any observation grid, we have u1+u2 = 2(u5+
u6) and u3 +u4 = 2(u7 +u8), where the ui will be defined
in the proof.

Proof: For every state, there are two state-to-state tran-
sitions and one state-to-observation transition leaving it.
Here u1 and u2 denote the number of state-to-state tran-
sitions leaving a zero state in the grid, and u5 and u6 de-
note the number of state-to-observation transitions leav-
ing a zero state. Hence u1 + u2 = 2(u5 + u6).

Likewise, u3 and u4 denote the number of state-to-
state transitions leaving a one state in the grid. Finally,
u7 and u8 denote the number of state-to-observation
transitions from a one state. Hence u3+u4 = 2(u7 + u8).

Theorem 2.4. Given fixed positive integers n, k, the New-
ton polytope for any fixed observation grid Y ∈ Xn with k

ones lies in a three-dimensional subspace of the ambient
eight-dimensional space in which each vertex lies.

Proof: Without loss of generality, we will assume that u1,
u2, and u5 are the coordinates of each candidate vertex on
which the remaining coordinates are linearly dependent.
We have shown by the preceding lemmas that u3 and u6

are linearly dependent.
Furthermore, we know that u1 + u2 + u3 + u4 = 2n2,

the total number of state-to-state transitions, so u4 is lin-
early dependent. The observation Y has a fixed number
k of ones, so we must have u5 + u7 = n2 − k transitions
to observation zeros and u6 + u8 = k transitions to ob-
servation ones; hence u7 and u8 are linearly dependent,
the latter by Lemma 2.3.

Not only are these Newton polytopes three-
dimensional, they also have what we will call “essen-
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tial” vertices, that is, vertices due to certain hidden state
grids that occur in the Newton polytope for every obser-
vation. We first define the “checkerboard” and “near-
checkerboard” grids.

Definition 2.5. For n even, the “checkerboard” grid X =
[xi,j ] can be described by xi,j = 1 if i + j ≡ 0 (mod 2)
and xi,j = 0 otherwise.

Remark 2.6. By symmetry there exist two versions of the
checkerboard grid, which yields the maximum number
of zero-to-one (also one-to-zero) state-to-state transitions
(n2) when n is even.

Definition 2.7. For n odd, the “near-checkerboard” grids
X = [xi,j ] and Z = [zi,j ] can be described by xi,j = 1 if
(j − i) (mod n) ≡ k for k = 0, 2, . . . , n − 3 and xi,j = 0
otherwise, and zi,j = 1 − xi,j (mod 2).

Remark 2.8. The near-checkerboard grids for n odd yield
the maximum number of zero-to-one (one-to-zero) state-
to-state transitions (n2−n). For a given row (or column)
of a hidden state grid, when n is odd, the maximum
number of zero-to-one input transitions is n−1

2 , which is
achieved by each row (and column) of X and Z.

Additionally, the near-checkerboard grids have the
maximum number of zero-to-zero (one-to-one) state-to-
state transitions (2n) for all hidden state grids with the
maximum number of zero-to-one (one-to-zero) state-to-
state transitions. By symmetry there are 2n shifted ver-
sions of the near-checkerboard grids.

Proposition 2.9. The candidate vertices of the following
hidden state grids are always vertices of any Newton poly-
tope for a given observation Y :

A. The all-zeros grid.

B. The all-ones grid.

C. The “self” grid Y .

D. The “anti-self” grid W = [|1 − yi,j |].

E. For n even, the checkerboard grid or its shifted ver-
sion; for n odd, the near-checkerboard grids (or their
shifted versions).

We will refer to these as the “essential” vertices.

Proof: The all-zeros (all-ones) grid alone yields the max-
imal number of zero-to-zero (one-to-one) state-to-state

transitions 2n2, whence the first two vertices on our list.
Also, the self (anti-self) grid causes the maximal number
of zero-to-zero (zero-to-one) state-to-observation transi-
tions n2−k along with the maximal number of one-to-one
(one-to-zero) state-to-observation transitions k, whence
the third and fourth vertices.

Since for n even and n odd, respectively, the checker-
board and near-checkerboard grids cause the maximal
number of zero-to-one (one-to-zero) state-to-state tran-
sitions, there will be vertices due to the checkerboard or
near-checkerboard grids for every Newton polytope.

3. BOUNDING POLYTOPES FOR
THE NEWTON POLYTOPE

For n ≥ 6 we have encountered difficulty computing the
Newton polytopes for observations Y ∈ Xn (cf. Sec-
tion 5).

It may be possible to use an approximation of the
Newton polytope in our character-recognition algorithm,
which is currently under development. Certainly there
exists a lower-bound polytope Plower such that Plower ⊆
NP(Y ), which provides a first approximation of NP(Y ).

A good choice for a lower-bound polytope Plower is the
convex hull of the essential vertices for Y described in
the previous section. Since each of the essential vertices
is also a vertex of NP(Y ), then we must have Plower ⊆
NP(Y ).

Lemma 3.1. The polytope given by the convex hull of the
essential vertices for a given observation Y , Plower, is a
subset of the Newton polytope of Y , NP(Y ).

Proof: Since the collection of essential vertices is a subset
of the vertices of NP(Y ), any convex combination of the
essential vertices must also be in NP(Y ); hence Plower ⊆
NP(Y ).

In addition, there exist many possibilities for an
upper-bound polytope Pupper. One possibility for Pupper

is the convex hull of the union of the Newton polytopes
of all observations in Xn with the same number k of ones
as Y . This polytope Pupper has the form given by the fol-
lowing theorem. For brevity we consider only 1 ≤ k < n.

Theorem 3.2. Let mn(k) = k − 1 be the maximal num-
ber of one-to-one state-to-state transitions in an n × n

grid with 1 ≤ k < n ones. Let X
(k)
n = {X ∈ Xn |

X has k ones}. The upper-bound polytope Pupper =
conv(

⋃
X∈X

(k)
n

NP(X)) is equal to P , which has vertices
given in Table 1 and is graphically depicted in Figure 4.
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Grid u1 u2 = u3 u4 u5 u6 u7 u8

1. All-zeros 2n2 0 0 n2 − k k 0 0

2. All-ones 0 0 2n2 0 0 n2 − k k

3. Maximum self 2n2 − 4k + mn(k) 2k − mn(k) mn(k) n2 − k 0 0 k

4. Minimum self 2n2 − 4k 2k 0 n2 − k 0 0 k

5. Maximum anti-self mn(k) 2k − mn(k) 2n2 − 4k + mn(k) 0 k n2 − k 0

6. Minimum anti-self 0 2k 2n2 − 4k 0 k n2 − k 0

7a. CB (n even) 0 n2 0 n2

2
0 n2

2
− k k

8a. CB (n even) 0 n2 0 n2

2
− k k n2

2
0

7b. NCB (n odd) 2n n2 − n 0 n2+n
2

− k k n2−n
2

0

8b. NCB (n odd) 2n n2 − n 0 n2+n
2

0 n2−n
2

− k k

9b. NCB (n odd) 0 n2 − n 2n n2−n
2

0 n2+n
2

− k k

10b. NCB (n odd) 0 n2 − n 2n n2−n
2

− k k n2+n
2

0

TABLE 1. Vertices of the upper bound polytope P

Proof: First we will show that P ⊆ Pupper. If we show
that each vertex v of P is contained in NP(X) for some
X ∈ X

(k)
n , then certainly v ∈ ⋂

X∈X
(k)
n

NP(X) and hence
v ∈ Pupper. Then P ⊆ Pupper, since Pupper is also convex.

The vertices due to the all-zeros and all-ones grids
(1, 2) are the same for all X ∈ X

(k)
n ; hence they are in

Pupper. The “extremal” self vertices (that is, the maxi-
mal and minimal self grids 3 and 4) are due to the grids
in X

(k)
n with maximal and minimal (mn(k) and 0, respec-

tively) one-to-one state-to-state transitions. The former
grid can be expressed by placing the k ones starting at
x1,1 and proceeding from left to right and top to bottom
until all the ones are exhausted, then placing zeros in

(a)

(b)

FIGURE 4. Upper-bound polytope Pupper for n = 3 and
k = 2.(a) Top view; (b) Front view.

the remainder of the locations. The latter grid can be
achieved for n even by placing the k ones in a subset of
the locations that contain ones in the checkerboard grid
(or near-checkerboard grid with fewer ones) and placing
zeros in the remainder of the locations. The “extremal”
anti-self vertices (5 and 6) are due to the ones comple-
ment of the extremal self grids.

For n even, the vertices due to the checkerboards (CB)
7a and 7b can be achieved by the observation equal to
the minimal self grid 4 from above and the ones com-
plement of the minimal self grid. For n odd, the near-
checkerboard (NCB) vertices 8b and 10b are achieved
with the observation equal to the minimal self grid 4
from above and the ones complement of the minimal
self grid. The near-checkerboard vertex 9b is realized
by the observation equal to the grid where the k ones are
placed in locations of ones in the near-checkerboard grid
with n2+n

2 ones and the remainder of the locations are
filled with zeros. The remaining near-checkerboard ver-
tex 7b is accomplished by taking the ones complement
of the previous observation. Hence we have shown that
P ⊆ Pupper.

Now we show that Pupper ⊆ P by considering the
facets of P and proving that each candidate vertex u

of each Newton polytope NP(X),X ∈ X
(k)
n is contained

in P .

Facet 1. The first facet is formed by vertices 1, 2, and 3
and is given by (n2 − k)(2k − mn(k))u1 + (n2 − k)(4k −
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mn(k))u2 ≥ 2n2(2k − mn(k))u5. By setting k′ to be
the number of ones in the state grid causing u, we can
rearrange the previous equation to be

I1 = k(n2 − k)u2 + n2(k + 1)u6 − (n2 − k′)k(k + 1) ≥ 0.

Since u4 ≤ mn(k′) for any state grid with k′ ones, we
must have u2 ≥ 2k′ − mn(k′) ≥ 2 for 0 < k′ < n2 (we
ignore the k′ = 0, n2 cases; the all-zeros and all-ones grids
cause vertices of P ).

We consider two cases: k ≥ k′, which implies u6 ≥
k − k′; and k′ > k, which implies u6 ≥ 0. For the first
case,

I1 ≥ k(n2 − k)(2k′ − mn(k′)) + n2(k + 1)(k − k′)

− (n2 − k′)k(k + 1)

= k(n2 − k)(k′ + 1) + n2(k + 1)(k − k′)

− (n2 − k′)k(k + 1)

= (n2 − k)(k − k′) ≥ 0.

So I1 holds for k ≥ k′. Next, we consider k′ > k:

I1 ≥ k(n2 − k)(2k′ − mn(k′)) − (n2 − k′)k(k + 1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k[(n2 − k)(k′ + 1) − (n2 − k′)(k + 1)]
for k ≤ k′ ≤ n − 1,

k[(n2 − k)n − (n2 − k′)(k + 1)]
for n ≤ k′ = p′n ≤ (n − 1)n,

k[(n2 − k)(n + 1) − (n2 − k′)(k + 1)]
for n < k′ = p′n + q′ < n2 − n, q′ �= 0,

k[(n2 − k)(n2 + 1 − k′) − (n2 − k′)(k + 1)]
for n2 − n + 1 ≤ k′ = n2 − q′ ≤ n2 − 1,

≥

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k(n2 + 1)(k′ − k) ≥ 0,

k[(n2 − k)n − (n2 − n)(k + 1)]
= kn[n2 − (k + 1)n + 1] > 0,

k[(n2 − k)(n + 1) − (n2 − (n + 1))(k + 1)]
= k[n3 − kn2 + n + 1] > 0,

k[(n2 − k)(1 + q′) − q′(k + 1)]
≥ k[2n2 − 3k − 1] > 0.

Hence I1 also holds for k′ > k.

Facet 2. The second facet is formed by vertices 1, 2, and
5, and can be given by the following inequality:

I2 = k(k + 1)(n2 − k′) + k(n2 − k)u2 − n2(k + 1)u6 ≥ 0,

where again k′ is the number of ones in the state grid
that cause u for some observation Y ∈ X

(k)
n . Because

u6 ≤ min(k, n2 − k′), there are two cases to consider.
First, we consider k′ ≤ n2 − k, which implies u6 ≤ k:

I2 ≥ k(k + 1)(n2 − k′) + k(n2 − k)(2k′ − mn(k′))

− n2(k + 1)k,

I2

k
≥ (n2 − k)(2k′ − mn(k′)) − k′(k + 1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n2 − k)(k′ + 1) − k′(k + 1)
for 1 ≤ k′ ≤ n − 1,

(n2 − k)n − k′(k + 1)
for n ≤ k′ = p′n ≤ (n − 1)n

(n2 − k)(n + 1) − k′(k + 1)
for n < k′ = p′n + q′ < (n − 1)n, q′ �= 0,

(n2 − k)(n2 − k′ + 1) − k′(k + 1)
for n2 − n − 1 ≤ k′ = n2 − q′ ≤ n2 − k,

≥

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2(n2 − k) − (k + 1) > 0,

n[n2 − kn − (n − 1)] > 0,

n3 − (k + 1)n2 + n + k + 1 > n + k + 1 > 0,

(n2 − k)(1 + q′) − (n2 − q′)(k + 1)
= (q′ − k)(n2 + 1) ≥ 0.

So I2 holds for k′ ≤ n2 − k. Next we consider n2 − k <

k′ = n2 − q′ < n2, so u6 ≤ n2 − k′:

I2 ≥ k(k + 1)(n2 − k′) + k(n2 − k)(2k′ − mn(k′))

− n2(k + 1)(n2 − k′),

= (n2 − k)[k(2k′ − mn(k)) − (k + 1)(n2 − k′)],

= (n2 − k)[k(q′ + 1) − (k + 1)q′],

= (n2 − k)(k − q′) > 0.

Furthermore, I2 holds for k′ > n2 − k.
Facet 3 : Another facet of P is formed by vertices 1, 3, and
4. The inequality corresponding to this facet is described
by u7 ≥ 0, which is true for all candidate vertices u.
Facet 4 : Similar to facet 3, this facet is formed by vertices
2, 5, and 6, which has inequality given by u5 ≥ 0, which
again is satisfied by all candidate vertices u.
Facet 5 : Vertices 1, 4, 7a, 8a (or 1, 4, 7b, 8b for n odd)
form this facet, which has inequality given by u4 ≥ 0.
All candidate vertices u satisfy this condition.
Facet 6 : Similarly, vertices 2, 6, 7a, 8a (or 2, 6, 9b, 10b
for n odd) form this facet, whose inequality is described
by u1 ≥ 0. All u satisfy this.
Facet 7 : Vertices 1, 5, 6, 8a (or 1, 5, 6, 7b, 10b for n odd)
form the facet with inequality given by u8 ≥ 0, which is
satisfied by all u.
Facet 8 : Similarly, vertices 2, 3, 4, 7a (or 2, 3, 4, 8b, 9b
for n odd) form the facet with inequality u6 ≥ 0, which
is also satisfied by all u.
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Facet 9 (n odd): The facet with inequality u2 ≤ n2 − n

is formed by the near-checkerboard vertices 7b, 8b, 9b,
and 10b, which holds for all candidate vertices u.

Thus we have shown that Pupper ⊆ P , and hence P =
Pupper.

With the above lemma and theorem, we can determine
the vertices of the Newton polytope for a few special
cases for all n. The following corollaries list the vertices
for the all-zeros observation grid and the vertices for the
grid with a single one and the rest zeros, considering n

even and odd separately.

Corollary 3.3. For n even, the vertices of the Newton
polytope for the n × n all-zeros observation grid Y are
given by

v1 =
[
2n2, 0, 0, 0, n2, 0, 0, 0

]
,

v2 =
[
0, n2, n2, 0,

n2

2
, 0,

n2

2
, 0

]
,

v3 =
[
0, 0, 0, 2n2, 0, 0, n2, 0

]
.

Proof: From Proposition 2.9, v1 is the all-zeros (and
self) vertex, v2 the checkerboard vertex, and v3 the all-
ones (and anti-self) vertex. Since this polytope is two-
dimensional (because u6 = u8 = 0 for all candidate ver-
tices), we need only show that any candidate vertex u

satisfies the inequalities given by the three edges:

Edge 1: The inequality due to the edge between v1 and
v3 is given by u2 ≥ 0, which is satisfied by all u.

Edge 2: The edge between v1 and v2 gives the inequality
u4 ≥ 0, which holds for all u.

Edge 3: The inequality from the edge between v2 and
v3 is u1 ≥ 0, which also holds for all u.

Hence the lower-bound polytope Plower is equal
to NP(Y ).

Corollary 3.4. For n ≥ 3 odd, the vertices of the Newton
polytope for the n × n all-zeros observation grid Y are
given by

v1 =
[
2n2, 0, 0, 0, n2, 0, 0, 0

]
,

v2 =
[
2n, n2 − n, n2 − n, 0,

n2 + n

2
, 0,

n2 − n

2
, 0

]
,

v3 =
[
0, n2 − n, n2 − n, 2n,

n2 − n

2
, 0,

n2 + n

2
, 0

]
,

v4 =
[
0, 0, 0, 2n2, 0, 0, n2, 0

]
.

Proof: By the aforementioned proposition, v1 is the all-
zeros (and self) vertex, v4 the all-ones (and anti-self)
vertex, and v2 and v3 are vertices due to the near-
checkerboard input grids. Again, as for n even, this poly-
tope is two-dimensional, and we need only show that any
candidate vertex u satisfies the inequalities given by the
four edges:

Edge 1: The inequality due to the edge between v1 and
v4 is u2 ≥ 0, which is satisfied by all u.

Edge 2: The edge between v1 and v2 gives the inequality
u4 ≥ 0, which holds for all u.

Edge 3: The edge between v3 and v4 gives the inequality
u1 ≥ 0, which is true for all u.

Edge 4: The inequality for the edge between v2 and v3

is u2 ≤ n2 − n, which holds for all u with n odd.

Hence, as with n even, the lower-bound polytope Plower

equals NP(Y ).

Corollary 3.5. For n even, the vertices of the Newton
polytope for the n × n observation grid Y with a single
bit equal to one are given by

v1 =
[
2n2, 0, 0, 0, n2 − 1, 1, 0, 0

]
,

v2 =
[
2n2 − 4, 2, 2, 0, n2 − 1, 0, 0, 1

]
,

v3 =
[
0, n2, n2, 0,

n2

2
− 1, 1,

n2

2
, 0

]
,

v4 =
[
0, n2, n2, 0,

n2

2
, 0,

n2

2
− 1, 1

]
,

v5 =
[
0, 2, 2, 2n2 − 4, 0, 1, n2 − 1, 0

]
,

v6 =
[
0, 0, 0, 2n2, 0, 0, n2 − 1, 1

]
.

Proof: Notice that v1 is the all-zeros vertex, v2 the self
vertex, v3 and v4 the near-checkerboard vertices, v5 the
anti-self, and v6 the all-ones vertex; hence the above poly-
tope is Plower. For k = 1, the minimal- and maximal-self
(hence also minimal- and maximal-anti-self) vertices be-
come one vertex, since mn(1) = 0. Then Pupper = Plower,
which implies NP(Y ) = Plower = Pupper, which has the
above vertices.

Corollary 3.6. For n ≥ 3 odd, the vertices of the Newton
polytope for the n × n observation grid Y with a single
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bit equal to one are given by

v1 =
[
2n2, 0, 0, 0, n2 − 1, 1, 0, 0

]
,

v2 =
[
2n2 − 4, 2, 2, 0, n2 − 1, 0, 0, 1

]
,

v3 =
[
2n, n2 − n, n2 − n, 0,

n2 + n − 2
2

, 1,
n2 − n

2
, 0

]
,

v4 =
[
2n, n2 − n, n2 − n, 0,

n2 + n

2
, 0,

n2 − n − 2
2

, 1
]

,

v5 =
[
0, n2 − n, n2 − n, 2n,

n2 − n − 2
2

, 1,
n2 + n

2
, 0

]
,

v6 =
[
0, n2 − n, n2 − n, 2n,

n2 − n

2
, 0,

n2 + n − 2
2

, 1
]

,

v7 =
[
0, 2, 2, 2n2 − 4, 0, 1, n2 − 1, 0

]
,

v8 =
[
0, 0, 0, 2n2, 0, 0, n2 − 1, 1

]
.

Proof: Notice that v1 is the all-zeros vertex, v2 the self
vertex, v3, v4, v5, and v6 the near-checkerboard vertices,
v7 the anti-self, and v8 the all-ones vertex. As in the
previous corollary, NP(Y ) = Plower = Pupper, which has
the above vertices.

4. NEWTON POLYTOPES AND ORBITS

Let X ∈ Xn = {0, 1}n×n be a grid. Let G = D2n � C2

be the group of rotations, reflections, and translations
acting on Xn. Let orbit(X) = {Z ∈ Xn : g(X) = Z for
some g ∈ G}.

The existence of orbits in our model may be problem-
atic, since the two-dimensional images of the characters 6
and 9, or b, d, and p, for example, may lie in the same or-
bit and, by the following theorem, have the same Newton
polytope. We first prove a useful lemma.

Lemma 4.1. Let Y = g(X) for some g ∈ G. Let Z cause
point vZ in the Newton polytope of X,NP(X). Then
W = g(Z) causes vZ in NP(Y ).

Proof: Suppose Z has n1 zero-to-zero, n2 = n3 zero-to-
one (one-to-zero), and n4 one-to-one state-to-state tran-
sitions. Because g does not change the neighbors of a
bit in the grid, W will have the same number of state-
to-state transitions n1, n2, n3, n4. Now suppose Z and X

have n5 zero-to-zero state-to-observation transitions, n6

zero-to-one, n7 one-to-zero, and n8 one-to-one. Each hid-
den state bit zi,j has corresponding observation bit xi,j .
Likewise, each hidden state bit wk,l = g(zi,j) of W has
corresponding observation bit yk,l = g(xi,j) of Y . Hence
the number of zero-to-zero state-to-observation transi-
tions n5 has not changed. Likewise, n6, n7, n8 have not

changed. So Z causes vZ = (n1, n2, n3, n4, n5, n6, n7, n8)
in NP(X), which is also caused by W = g(Z) in NP(Y ),
where Y = g(X).

Theorem 4.2. The Newton polytope of an observation grid
X ∈ Xn is the same as for all Y ∈ orbit(X).

Proof: Let g(X) = Y for some g ∈ G. Suppose the
vertices v1, v2, . . . , vM of NP(X) are caused by hidden
state grids Z1, Z2, . . . , ZM , where M is the number of
vertices of NP(X). Notice that the hidden state grids
g(Z1), g(Z2), . . . , g(ZM ) will cause the same (candidate)
vertices of NP(Y ) by the above lemma.

It now remains to show that no other hidden state grid
can cause any additional vertices or cancel any previous
vertices of NP(Y ). Let V = {v1, v2, . . . , vM}. Suppose
W can cause a new vertex vW /∈ V of NP(Y ). However,
by the above lemma, g−1(W ) will cause the same point
vW in NP(X), which has vertex set V . Since vW is not
a vertex of NP(X), it cannot be a vertex of NP(Y ).

We now consider the number of orbits to determine
how much calculation is necessary to determine every
possible Newton polytope for a given n.

Theorem 4.3. The number of distinct orbits in Xn when
n is an odd prime is
1

8n2

[
2n2

+ (n2 − 1)2n + 4n2(n2+n)/2 + 4(n2 − n)2(n+1)/2

+ n22(n2+1)/2 + 2n22(n2+3)/4
]
.

Theorem 4.4. The number of distinct orbits in Xn when
n = 2m, where m is a positive integer, is

1
8 · 22m

[
222m

+ 3
m∑

i=1

(
22(i−1)+22m−i

)

+ 2m+2m+1+22m−1−2m

+ 3 · 2m+22m−1

+ 2
m−1∑
i=1

(
22m−i+2m−1+i

)
+ 22m+22m−1

+ 3 · 22m−2+22m−1
+ 2m+1+2m+22m−1−2m−1

+ 2
m∑

i=1

(
2m−1+i+22m−i−1

)

+ 22m+2+22m−2
+ 22m+22m−2

]
.

Sketch of proof: The idea for this proof comes from [Biggs
89, Sections 20.1 and 20.4]. The number of distinct orbits
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of Xn is given by

1
|G|

∑
g∈G

ζg(x1, x2, . . . , xn2)]x1=2,x2=2,...,xn2=2,

where ζg(x1, x2, . . . , xn2) =
∏n2

i=1 xαi
i satisfies the follow-

ing conditions:

1. αi is the number of i-cycles in g.

2.
∑n2

i=1 αi = n2.

This completes the proof sketch. �

Corollary 4.5. The number of orbits for X2 is 6; for X3,
it is 26; for X4, 805; and for X5, 172 112.

Remark 4.6. For n ≤ 4, since the number of hidden
state grids (2n2

) and the number of orbits are reasonably
small, we have calculated the Newton polytope for every
observation grid in Xn, n = 2, 3, 4. The simple algorithm
we use is to calculate every possible candidate vertex by
considering every hidden state grid and then to perform a
convex-hull operation to determine the Newton polytope.

5. NUMBER OF VERTICES OF NEWTON POLYTOPES

A major concern about Newton polytopes is how many
vertices they have as the dimension n of the underlying
grid increases and how to compute those vertices as n

increases.

Conjecture 5.1. The maximum number of vertices of a
Newton polytope NP(X) for X ∈ Xn is of order n2.

Remark 5.2. An exhaustive search using the computer
software packages MATLAB and LRS over all the orbits
of X2, X3, and X4 yields 9, 20, and 31, respectively,
as the maximum number of vertices for a Newton poly-
tope, suggesting that the upper bound should be approx-
imately 2n2.

An example of a Newton polytope for a 4 × 4 obser-
vation grid with the maximal number (31) of vertices is
plotted using polymake in Figure 5. An interesting ob-
servation is that this same polytope arises for all three
orbits in X4, whose polytope has 31 vertices. For view-
ing purposes, we consider the line segment from the all-
zeros vertex (A) to the all-ones vertex (B) to be the
“spine.” We consider the checkerboard vertex (E) to be
the “nose.” (If n is odd, there will be vertices due to

(a)

(b)

FIGURE 5. Newton polytope for a 4× 4 observation with
31 vertices. (a) Top view; (b) Front View.

the near-checkerboard grids, which form the “snubbed
nose.”) The self (C) and anti-self (D) vertices will be
considered the top and bottom vertices, respectively, of
the Newton polytope.

Using suffixes of candidate vertices, we show that the
upper bound on the number of vertices is no greater
than O(n4).

Definition 5.3. A candidate vertex

u = (u1, u2, u3, u4, u5, u6, u7, u8)

has prefix (u1, u2, u3, u4), denoting the number of zero-
to-zero, zero-to-one, one-to-zero, and one-to-one state-to-
state transitions, respectively, and suffix (u5, u6, u7, u8),
denoting the number of zero-to-zero, zero-to-one, one-
to-zero, and one-to-one state-to-observation transitions,
respectively.

The entries of the suffix of u satisfy u5 + u7 = n2 − k

and u6 + u8 = k, where k is the number of ones in the
observation grid Y . Suppose a hidden state grid X has
i ones. Then also u5 + u6 = n2 − i and u7 + u8 = i.
Without loss of generality, assume k, i ≤ n2

2 . Then the
number of possible suffixes for X and Y is min(k, i) + 1.
Considering all possible hidden state grids X ∈ Xn, there
are no more than

2

⌊
n2
2

⌋
∑
i=0

[min(k, i) + 1]

possible distinct suffixes for Y in NP(Y ).
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Lemma 5.4. The Newton polytope of Y can have at most
two vertices with the same suffix s.

Proof: Suppose v1 = [2n2 − 4i+ ν1, 2i− ν1, 2i− ν1, ν1, s],
v2 = [2n2−4i+ν2, 2i−ν2, 2i−ν2, ν2, s], and v3 = [2n2−
4i+ν3, 2i−ν3, 2i−ν3, ν3, s] are vertices of NP(Y ), where
ν1 < ν2 < ν3. Now let 1 > α = ν3−ν2

ν3−ν1
> 0, and form

v = αv1 + (1−α)v3 = v2. So v2 is a convex combination
of v1 and v3; hence it cannot be a vertex of NP(Y ).

The maximum number of possible suffixes for any ob-
servation grid Y ∈ Xn occurs when k = 	n2

2 
, which
gives (	n2

2 
+1)(	n2

2 
+2) possible suffixes. From this we
can see that the maximum number of vertices in NP(Y )
can be no more than 2(	n2

2 
 + 1)(	n2

2 
 + 2), which is of
order n4.

Suffixes have proved useful in computing the New-
ton polytopes of observations with n > 4. Since the
number of possible hidden state grids 2n2

is at least
225 = 33 554 432, it is computationally expensive to con-
sider every hidden state grid in order to find approxi-
mately 2n2 vertices, especially since we know some ver-
tices that arise every time. Instead of considering every
hidden state grid, we propose the following method for
computing Newton polytopes:

1. Compute the “essential” vertices of the Newton
polytope.

2. Form a list of possible suffixes, whose length is of
order n4.

3. For each suffix, determine which prefixes could not
cause vertices of the polytope by using convex-hull
methods, and discard them.

4. If any prefixes remain from step 3, determine
whether any are possible.

In determining whether prefixes are possible given a
suffix, we invoke a combinatorial search, which, for large
enough values of u6 and u7, may unfortunately slow down
computation considerably.

Example 5.5. For the 5 × 5 observation grid

Y =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

we can use the suffix method to calculate the Newton
polytope, which has 38 vertices and is plotted in Figure 6.

(a)

(b)

FIGURE 6. Newton polytope for a 5× 5 observation with
38 vertices. (a) Top view; (b) Front view.

In attempting to prove that the bound on the maximal
number of vertices for the Newton polytope is of order n2,
we find that a bound closer to the desired bound results
from a theorem of Andrews [Andrews 63], via [Pachter
and Sturmfels 04, Theorem 7], which states that

#vertices(NP(x)) ≤ constant · Ed(d−1)/(d+1),

where E = 3n2 is the number of edges in the graphical
model and d is the number of parameters in the model.
Because we have shown that the effective dimension of
the Newton polytope is three, the bound on the number
of vertices is c(3n2)3/2, which is of order n3.

6. CHARACTER-RECOGNITION ALGORITHM

We use an approach similar to that in [Merialdo et al.
00], wherein we train the 2D HMM by determining the
optimal set of parameters λ(k) for each training image
O(k), k ∈ A, A a collection of characters (numbers,
letters, symbols). After tropicalizing the probability
map P (O(k) | λ), we find that the optimal parameters
γ(k) = − log(λ(k)) satisfy

γ(k) = arg min
γv∈ΓV

〈v, γv〉,

where γv minimizes the tropicalized probability map in
the normal cone of v, ΓV is the set of γv for each v ∈ V ,
and V is the vertex set of NP(O(k)). Hence the number
of computations in training the 2D HMM is of order n2,
according to our conjecture.

Similarly, for each testing image I, we search for the
optimal index k∗ ∈ A, where

k∗ = arg min
k∈A

{
min
v∈V

〈v, γ(k)〉
}

,
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where V is the vertex set of NP(I); hence the testing
algorithm should also have O(n2) computations for each
image I.
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