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In this paper we compute γK,2 for K = Q(ρ), where ρ is the
real root of the polynomial x3 − x2 + 1 = 0. We refine some
techniques introduced in [Baeza et al. 01] to construct all possi-
ble sets of minimal vectors for perfect forms. These refinements
include a relation between minimal vectors and the Lenstra con-
stant. This construction gives rise to results that can be applied
in several other cases.

1. INTRODUCTION

Let K/Q be a number field of degree m = r+2s, let dK be
its discriminant, and let OK be its ring of integers. Let
{σ1, . . . , σr} (respectively {σr+1, . . . , σm} with σr+j =
σr+s+j) be its real (respectively complex) embeddings.

A tuple S = (S1, . . . , Sr+s), where S1, . . . , Sr are n-
dimensional real symmetric positive definite matrices and
Sr+1, . . . , Sr+s are n-dimensional positive definite Hermi-
tian matrices, is called an n-dimensional positive definite
Humbert form. We refer to such forms as Humbert forms.

Following [Icaza 97], for a column vector v =
(a1, . . . , an)t ∈ On

K we define

S[v] =
r∏

i=1

Si[vσi ]
( r+s∏

i=r+1

Si[vσi ]
)2

,

where vσj = (σj(a1), . . . , σj(an))t for each embedding σj

of K (1 ≤ j ≤ r + s) and Sj [vσj ] := (vσj )∗Sjv
σj . Here v∗

denotes complex conjugation followed by transposition,
i.e., v∗ = vt.

The minimum of S is defined as

µ(S) = min
v∈On

K
\{0}

{
r∏

i=1

Si[vσi ]
( r+s∏

i=r+1

Si[vσi ]
)2

}
.

A vector v ∈ On
K \ {0} is called a minimal vector of

S if S[v] = µ(S). For each Humbert form, the set of
minimal vectors is finite up to multiplication by units.
Throughout this paper we denote by M(S) a (finite) set

c© A K Peters, Ltd.
1058-6458/2007 $ 0.50 per page

Experimental Mathematics 16:4, page 455



456 Experimental Mathematics, Vol. 16 (2007), No. 4

of representatives of the minimal vectors of S and we call
it the set of minimal vectors of S.

The determinant d(S) of S is defined as

d(S) =
r∏

i=1

det Si

r+s∏
i=r+1

(det Si)2.

For a Humbert form S, its γ constant is defined as

γ(S) =
µ(S)

det(S)1/n

(see [Icaza 97]).
Two n-dimensional Humbert forms S and T are called

equivalent if there exists U ∈ GL(n,OK) such that
T = S[U ], where for S = (S1, . . . , Sr+s), S[U ] =
(S1[σ1(U)], . . . , Sr+s[σr+s(U)]). Then obviously γ(S) is
class-invariant. It is also invariant by scaling, namely, if
T = (T1, . . . , Tr+s), with Ti = λiSi for some positive real
numbers λi, then γ(T ) = γ(S). Consequently, for our
purpose, the forms we will be dealing with will always be
considered up to GL(n,OK) equivalence and scaling.

The n-dimensional Hermite–Humbert constant of K

is then given by (see [Icaza 97])

γK,n = sup
S

γ(S) = sup
S

µ(S)
d(S)1/n

,

where the supremum is taken over all n-dimensional pos-
itive definite Humbert forms S.

A form S that is a local maximum for γ(S) is called
an extreme form.

In a previous work by Baeza, Coulangeon, Icaza, and
O’Ryan [Baeza et al. 01], the actual values for γK,2 were
obtained for K = Q(

√
5), K = Q(

√
3), and K = Q(

√
2).

More recently, γK,2 for K = Q(
√

13) was computed in
[Pohst and Wagner 05].

In all those cases, the main computational tool was
provided in [Coulangeon 01], which generalizes a result
due to Voronoi, namely the characterization of extreme
forms for the classical Hermite constant as forms that are
perfect and eutactic. In his work, Coulangeon obtains the
same characterization for extreme forms for the Hermite–
Humbert constant by introducing suitable definitions for
perfection and eutaxy. Considering this characterization,
the procedure for finding perfect forms is based on the
construction of their possible sets of minimal vectors (see
[Baeza et al. 01]). Such a construction turns out to be
not easy, and it becomes more complicated as the de-
gree of the field or the dimension of the forms increases.
The same strategy has been used to provide all known
examples so far (see also [Pohst and Wagner 05]).

In Section 2 we show how this construction can be
related to the so-called Lenstra constant of a number
field K (see [Lenstra 97]). This constant, L(K), defined
for any number field, is the maximal length m of se-
quences ω1, . . . , ωm in OK for which all possible mutual
differences ωi − ωj are units (we have not used the orig-
inal notation M(K) employed by Lenstra). Following
[Leutbecher and Martinet 82], a sequence of the form
0 = ω1, 1 = ω2, ω3, . . . , ωn of elements of K such that
ωi − ωj is a unit (1 ≤ i < j ≤ n) is called an exceptional
sequence. A unit u ∈ O∗

K such that 1−u is also a unit is
called an exceptional unit.

In Section 3 we obtain γK,2 for the cubic field K =
Q(ρ), where ρ is the real root of the polynomial x3 −
x2 + 1 = 0. Finally, in Section 4 we give a list of other
number fields in which the value of Lenstra’s constant
makes them suitable for applying the same techniques to
obtain their binary Hermite–Humbert constant. We also
provide in this last section some further remarks.

2. PRELIMINARY RESULTS

We begin this section by introducing some standard tech-
niques from the geometry of numbers. We will define a
fundamental domain X that will provide us with a suit-
able finite set of algebraic integers; see Definition 2.3.

Let K be a number field with [K : Q] = r + 2s.
Let σ1, . . . , σr : K → R be the real embeddings of K

and σr+1, . . . , σr+s : K → C the complex embeddings
as described in the introduction. The geometric repre-
sentation of K is the map x : K → Rr × Cs, x(α) =
(σ1(α), . . . , σr+s(α)). If α ∈ K∗, the image x(α) lies in
(Rr × Cs)∗ := {x ∈ Rr × Cs : xi �= 0 for 1 ≤ i ≤ r + s}.
In general, we identify Rr ×Cs with Rr+2s as an (r+2s)-
dimensional real vector space.

Let us define � : (Rr × Cs)∗ → Rr+s by

�(x1, . . . , xr+s)

=
(
log |x1|, . . . , log |xr|, log |xr+1|2, . . . , log |xr+s|2

)
.

Considering these two maps, we obtain �K , the loga-
rithmic representation of K, where �K : K∗ → Rr+s is
given by �K(α) = �(x(α)).

If {ε1, . . . , εr+s−1} is a set of fundamental units of
K, then setting �∗ = (1, . . . , 1, 2, . . . , 2), the vector
with r ones and s twos in Rr+s, we see that the set
{�∗, �K(ε1), . . . , �K(εr+s−1)} is an R-basis of Rr+s.

Every x ∈ (Rr × Cs)∗ determines unique numbers
ξ, ξ1, . . . , ξr+s−1 ∈ R given by �(x) = ξ�∗ + ξ1�K(ε1) +
· · · + ξr+s−1�K(εr+s−1).
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In Rr+2s we define the following cone:

X =
{

x ∈ (Rr × R2s)∗ : 0 ≤ ξi < 1 ;

0 ≤ arg x1 <
2π

k

}
,

where the ξi are defined as above and if r > 0, the con-
dition on the argument means that x ≥ 0. Here k is the
number of roots of unity in K.

According to [Borevich and Shafarevich 66, Lemma 1,
Section 5.2], we have the following lemma.

Lemma 2.1. Any ∈ x ∈ (Rr × R2s)∗ has a unique repre-
sentation x = y ·x(η) with y ∈ X and η ∈ O∗

K , where the
product in Rr+2s is defined componentwise.

We then have the following corollary.

Corollary 2.2. In every class of associated numbers of
K∗ there is one and only one number whose geometric
representation lies in X.

In order to prove the main result of this section,
Proposition 2.9, we now introduce some technical defi-
nitions.

Definition 2.3. Given a nonzero natural number c ∈ N,
let us consider the following set of algebraic integers:

NK(c) = {α ∈ OK : (σ1(α), . . . , σr+s(α)) ∈ X

and 1 < |NK/Q(α)| ≤ c}.

It is easy to see that this set is finite. We denote its
order by nK(c).

We will also make use of the following definition.

Definition 2.4. For each 0 �= α ∈ OK we set

Lα(K) = sup{m : ω0, . . . , ωm ∈ OK such that

ωi − ωj = αεij , with εij ∈ O∗
K}.

The following remark, although straightforward, will
be needed later.

Remark 2.5. Let {ω0, . . . , ωm} be elements of OK such
that ωi − ωj = αεij with 0 �= α ∈ OK and εij ∈ O∗

K .
The correspondence ωi �→ ωi−ω0

ω1−ω0
:= ω̃i gives rise to the

sequence {0, ω̃1, . . . , ω̃n}, which satisfies ω̃i − ω̃j ∈ O∗
K .

Therefore, the Lenstra constant L(K) is equal to Lα(K).

Our next results are related to Humbert forms. We
first recall (see [Coulangeon 01]) that if S is an n-
dimensional perfect Humbert form and M(S) is its set
of minimal vectors, then �M(S), the number of minimal
vectors of S, satisfies

�M(S) ≥ r
n(n + 1)

2
+ sn2 − (r + s − 1). (2–1)

We make the following definition:

Definition 2.6. A Humbert form S has a unimodular
minimal n-tuple if there exist v1, . . . , vn ∈ M(S) such
that OKv1 + · · · + OKvn = On

k .

This definition leads to the following result.

Proposition 2.7. If a Humbert form S has a unimod-
ular minimal n-tuple, we may assume by changing the
equivalence class of S that {e1, . . . , en} ⊆ M(S). Here
ei denotes the column vector with 1’s in the ith row and
zero elsewhere.

Proof: Suppose that the Humbert form S has a uni-
modular minimal n-tuple. Then there exists a matrix
U ∈ GL(n,OK) that applies this n-tuple to the set
{e1, e2, . . . , en}. Changing S to the equivalent form S[U ]
gives the desired result.

Bounds for the norm of the determinant of the ma-
trices built on minimal vectors of a Humbert form were
established in [Baeza et al. 01, Lemma 2.4]. Although
stated there only for totally real number fields, it is not
difficult to see that these bounds hold for general num-
ber fields. For the sake of completeness, we restate this
lemma (without proof) in the more general setting we
will need later:

Lemma 2.8. Let K be a number field and S an n-
dimensional Humbert form over K. Assume that S

admits n linearly independent minimal vectors ui =
(ui1, . . . , uin)t, 1 ≤ i ≤ n, and let U = (uij)1≤i,j≤n be
the matrix whose columns are the minimal vectors. Then

|NK/Q(det U)| ≤ γK,n.

We denote by NK/Q the absolute norm NK/Q : K −→ Q.

The following proposition is the main result of this
section. It relates the Lenstra constant L(K) to the ex-
istence of unimodular minimal pairs for binary Humbert
forms. We denote by [x] the least-integer function.
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Proposition 2.9. Let K be a number field of degree m =
r + 2s. Denote by t the number of elements of largest
norm contained in NK([γK,2]). Let S = (S1, . . . , Sr+s)
be a perfect binary Humbert form. Suppose e1 = (1, 0)t ∈
M(S) and that

L(K)
(
(nK([γK,2]) − t)2 + nK([γK,2])

)
< 2r +3s. (2–2)

Then S has a unimodular minimal pair. Moreover, if the
set NK([γK,2]) is empty, then S always has a unimodular
minimal pair.

Proof: Let S be a binary Humbert form. Lemma 2.8 tells
us that for vi = (αi1, αi2)t, vj = (αj1, αj2)t ∈ M(S) with
vi �= µvj and µ ∈ O∗

K , the following inequality holds:∣∣∣∣NK/Q

(
det

[
αi1 αj1

αi2 αj2

])∣∣∣∣ ≤ [γK,2]. (2–3)

Then, if e1 ∈ M(S), we have for vj = (αj1, αj2)t ∈
M(S), vj �= e1, that∣∣∣∣NK/Q

(
det

[
1 αj1

0 αj2

])∣∣∣∣ = |NK/Q(αj2)| ≤ [γK,2].

Assume that for each vi = (αi1, αi2)t ∈ M(S), vi �= e1,
one has αi2 �∈ O∗

K . We will count the possible number of
second coordinates of the minimal vectors satisfying this
condition.

The above inequality implies that αi2 = εiτ for some
τ ∈ OK satisfying |NK/Q(τ)| ≤ [γK,2] and some εi ∈ O∗

K .
That is, τ ∈ NK([γK,2]).

For each τ ∈ NK([γK,2]) we define a subset of M(S)
as follows:

Mτ (S) = {(αi1, αi2)t ∈ M(S) : αi2 = τεi, εi ∈ O∗
K}.

Scaling by units, we may assume that for each vi ∈
Mτ (S), one has αi2 = τ .

For any two vectors in Mτ (S), we have

det
[
αi1 αj1

τ τ

]
= τ(αi1 − αj1).

Since τ is not a unit and |NK/Q(τ)NK/Q(αi1 − αj1)| ≤
[γK,2], inequality (2–3) implies that we have to consider
two possible cases:

(i) αi1 − αj1 = δεij , with δ ∈ NK([γK,2]), εij a unit,
and |NK/Q(δ)| < [γK,2].

(ii) αi1 − αj1 ∈ O∗
K .

Case (i): It is clear that δ does not have the largest
norm among the elements of NK([γK,2]). The definition

of Lenstra’s constant L(K) and the fact that Lδ(K) =
L(K) imply that for a fixed τ ∈ NK([γK,2]), there are at
most

L(K)(nK([γK,2]) − t)

minimal vectors from the contribution of this case.
It is clear that in case (ii), we obtain at most L(K)

minimal vectors.
Considering both cases, we obtain at most

L(K)(nK([γK,2]) − t + 1) minimal vectors in Mτ (S) for
each τ . Each τ ∈ NK([γK,2]), except for the elements
of largest norm in NK([γK,2]), leads to the above
number of possible minimal vectors. After taking into
account all possible nonunits τ , we have altogether at
most L(K)(nK([γK,2]) − t + 1) (nK([γK,2]) − t) possible
minimal vectors for the Humbert form S.

Let us now consider the contribution of the elements
of largest norm in NK([γK,2]). If η is such an element
in NK([γK,2]), then any two vi = (αi1, αi2)t and vj =
(αj1, αj2)t ∈ Mη(S) satisfy αi1 − αj1 ∈ O∗

K . Hence we
have at most L(K) possible vectors.

Therefore, we obtain altogether at most
L(K)

(
(nK([γK,2]) − t)2 + nK([γK,2])

)
possible min-

imal vectors for S whose second coordinates are
nonunits.

Now assume in addition that S is perfect. The bound
(2–1) on the number of minimal vectors implies that S

has at least 2r+3s+1 minimal vectors. We are assuming
that e1 = (1, 0)t is one of the minimal vectors of S, and
therefore S must have at least 2r + 3s minimal vectors
different from e1. Equation (2–2) now implies that at
least for one v = (αi1, αi2)t ∈ M(S), αi2 ∈ O∗

K . Thus
{e1, v} is a unimodular minimal pair for S.

Notice that if NK([γK,n]) is empty, then S always has
a unimodular minimal pair.

As an immediate consequence of the previous result
we have the following proposition.

Proposition 2.10. Let S = (S1, . . . , Sr+s) be a per-
fect binary Humbert form over K (as above). As-
sume that e1 = (1, 0)t ∈ M(S) and suppose that for
any α, β ∈ NK([γK,2]) one has αβ �∈ NK([γK,2]). If
L(K)nK([γK,2]) < 2r+3s, then S has a unimodular min-
imal pair.

Proof: The condition for α, β ∈ NK([γK,2]), αβ �∈
NK([γK,2]), implies that in the proof of the above propo-
sition we have only to consider case (ii). The same count-
ing argument leads to the result.
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Remark 2.11. As a final remark we mention here that the
previous proposition together with some easy combina-
torial arguments simplifies the proof of the existence of a
unimodular pair of minimal vectors for the fields Q(

√
2)

and Q(
√

3) included in [Baeza et al. 01] and the field
Q(

√
13) from [Pohst and Wagner 05].

3. AN EXAMPLE OF COMPUTATION OF γK,2

Let ρ be the real root of the irreducible polynomial x3 −
x2 + 1 ∈ Z[x]. We denote by K the cubic number field
Q(ρ). The discriminant of K is dK = −23; its class
number is given by hK = 1; its signature is (1, 1); and its
ring of integers is OK = Z[ρ]. Our aim is to determine
γK,2. To this end, we will make use of the results of the
previous section. Let S = (S1, S2) be a two-dimensional
Humbert form, that is, S1 is a positive definite 2 × 2
symmetric real matrix and S2 is a positive definite 2× 2
Hermitian complex matrix.

Lemma 3.1. Every binary Humbert form S over K with
#M(S) ≥ 2 has a unimodular pair.

Proof: Since the class number of K is 1, we can always
assume that e1 = (1, 0)t ∈ M(S) for any binary Hum-
bert form S. Using the results of [Ohno and Watanabe
01], one can bound γK,2 in terms of dK and the classical
Hermite constant γQ,6 = 6

√
64/3, obtaining

γK,2 ≤ 23

(
6
√

64/3
)3

33
≤ 3.94.

Since 2 and 3 are inert in K, there are no elements of
norm 2 or 3 in OK . Hence NK([γK,n]) is empty. Now
Proposition 2.9 implies the lemma.

This lemma applies in particular to perfect binary
Humbert forms over K, since they have at least six min-
imal vectors, according to the bound (2–1). If S is such
a form, then up to GL(2,OK) equivalence, we may as-
sume from the previous lemma that M(S) contains both
e1 = (1, 0)t and e2 = (0, 1)t, which we do from now on.

Proposition 3.2. Let S be a perfect binary Humbert form
over K. Then

(i) #M(S) = 6.

(ii) Up to GL(2,OK) equivalence, one may assume that

M(S) ⊃ {e1, e2, e1 + e2}.

If that is the case, then there exist exceptional units
µ4, µ5, µ6 such that {0, 1, µ4, µ5, µ6} is an excep-
tional sequence, and M(S) = {v1, . . . , v6}, with
v1 = e1, v2 = e2, v3 = e1 + e2, and vi = (1, µi)t for
4 ≤ i ≤ 6.

Proof: We may assume that M(S) ⊃ {e1, e2} and con-
sequently write M(S) = {v1, v2, . . . , vN} with v1 = e1,
v2 = e2, and N = #M(S). For i ≥ 3, write vi =
(αi1, αi2)t. Using Lemma 2.8, we infer that

|NK/Q(αi1)| =
∣∣∣∣NK/Q

(
det

[
0 αi1

1 αi2

])∣∣∣∣ ≤ γK,2 (3–1)

and

|NK/Q(αi2)| =
∣∣∣∣NK/Q

(
det

[
1 αi1

0 αi2

])∣∣∣∣ ≤ γK,2. (3–2)

Since
γK,2 ≤ 3.94

and there are no elements in OK with norm 2 or 3, the
components of vi are either units or 0, the last possibility
being excluded since we are assuming that vi �= e1, e2.
Consequently, we can assume, up to multiplication by a
unit, that vi = (1, µi)t with µi ∈ O∗

K . Now applying
Lemma 2.8 again to the matrices

[
1 1
µi µj

]
, we conclude

that µi − µj ∈ O∗
K for i �= j. In other words, the set

{0, µ3, µ4, µ5, . . . , µN} is an exceptional sequence, so that
its cardinality N − 1 is at most 5. But we know that
N ≥ 6, since S is perfect, and thus N = 6, which proves
(i). As for the second assertion, we can replace S by the
equivalent form S

[[
1 0
0 µ3

]]
and assume consequently that

v3 = (1, 1)t, whence the conclusion.

Having established these facts, we see that the solu-
tion to our problem is now theoretically simple, since it
relies essentially on the enumeration of the possible se-
quences {µ4, µ5, µ6} such that {0, 1, µ4, µ5, µ6} is an ex-
ceptional sequence. In particular, the µi’s have to be
exceptional units. The set of exceptional units ẼK is fi-
nite (see [Lang60]), and moreover, it is explicitly known:
according to [Nagell 64, Théorème 2],

ẼK = {ρ,−ρ, ρ−1,−ρ−1, ρ2, ρ−2,−ρ4,−ρ−4,−ρ3,

− ρ−3,−ρ5,−ρ−5}.

This gives rise to finitely many sets {µ4, µ5, µ6} and ac-
cordingly to finitely many possible sets of minimal vec-
tors {v1, . . . , v6} with v1 = e1, v2 = e2, and v3 = e1 + e2.
Next we look for potential Humbert forms S satisfying
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M(S) = {v1, . . . , v6}, which we may further assume to
have minimum 1. This amounts, for each of these sets,
to solving the set of polynomial equations

S[v1] = · · · = S[v6] = 1. (3–3)

Finally, we use the same equivalence relation among
sets of minimal vectors as in [Baeza et al. 01],
which shortens the computations. Namely, two sets
{u1, . . . , u6} and {v1, . . . , v6} are equivalent if (after
a permutation of one of the sets) there exists U ∈
GL(2,OK) and (ε1, . . . , ε6) ∈ O∗

K
6 such that

Uui = εivi, i = 1, . . . , 6,

and it is enough to solve the systems (3–3) correspond-
ing to inequivalent sets, since we are looking for extreme
forms up to GL(2,OK) equivalence.

All the computations were made using magma. We
found six inequivalent sets according to the above equiv-
alence relation. We assume that these sets satisfy the
conditions of Proposition 3.2. To describe them, it is
enough to know the three exceptional units µ4, µ5, and
µ6 corresponding to the second coordinates of v4, v5, and
v6 respectively. The six possibilities we found are as fol-
lows:

E1 =
{−ρ2 + 1,−ρ2 + ρ,−ρ2 + ρ + 1

}
,

E2 =
{−ρ2 + 1,−ρ2 + ρ,−ρ + 1

}
,

E3 =
{
ρ2 − ρ,−ρ,−ρ + 1

}
,

E4 =
{
ρ2 − 2ρ + 2,−ρ2 + ρ,−ρ2 + 2ρ − 1

}
,

E5 =
{
ρ,−ρ2 + ρ,−ρ2 + ρ + 1

}
,

E6 =
{
ρ2 − 2ρ + 2, ρ2 − ρ + 1,−ρ2 + 2ρ − 1

}
.

For the explicit computation we note that we can
express the complex roots of the defining polynomial
x3 − x2 + 1 in terms of ρ as

ρ2 :=
(1 − ρ) +

√
−3ρ2 + 2ρ − 1
2

and

ρ3 :=
(1 − ρ) −

√
−3ρ2 + 2ρ − 1
2

= −ρ2 − ρ + 1.

All computations can be done in the Galois closure of K,
which is the degree-six extension

L = K
(√

−3ρ2 + 2ρ − 1
)

= Q

(
ρ,

√
−3ρ2 + 2ρ − 1

)
.

Also, we can express the unknown real matrix S1 and
the unknown complex matrix S2 as S1 = [ q1 x

x z1 ] and

S2 =
[ q2 yρ2+tρ3

yρ3+tρ2 z2

]
, where q1, q2, x, y, t, z1, z2 are in-

determinates.
Furthermore, q1q

2
2 = 1, since we are assuming that

e1 is minimal. Thus, scaling S1 and S2 by q−1
1 and q−1

2

respectively, which affects neither the minimum of S nor
its set of minimal vectors, one can assume that q1 = q2 =
1. Thus we are left with only five unknowns x, y, t, z1, z2

in the expression of S1 and S2. For each of the sets
above we can write a set of equations given by S[v] =
S1[vσ1 ]S2[vσ2 ]2 = 1, where v is a minimal vector and
σ1, σ2 are the real and complex embeddings.

For instance, considering E3 we have the following
equations:

[ 1 ρ2−ρ ]
[

1 x
x z1

] [
1

ρ2−ρ

]
×

(
[ 1 ρρ2 ]

[
1 yρ2+tρ3

yρ3+tρ2 z2

] [
1

−ρρ2−ρ2+ρ

])2

= 1,

[ 1 −ρ ]
[

1 x
x z1

] [
1−ρ

]
× (

[ 1 ρ2−ρ+1 ]
[

1 yρ2+tρ3
yρ3+tρ2 z2

] [
1−ρ2

])2
= 1,

[ 1 −ρ+1 ]
[

1 x
x z1

] [
1−ρ+1

]
× (

[ 1 ρ2+ρ ]
[

1 yρ2+tρ3
yρ3+tρ2 z2

] [
1−ρ2+1

])2
= 1.

These together with the equations arising from the min-
imal vectors e2, e1 + e2 give a set of five equations in five
unknowns, which for E3 are

(1 + 2(ρ2 − ρ)x + (−ρ + 1)z1)

× (1 − 2y + (−ρ2 + ρ + 1)t + ρz2)2 = 1,

(1 − 2ρx + ρ2z1)

× (1 + (ρ2 − 1)y − 2(ρ2 − ρ)t + (ρ2 − ρ)z2)2 = 1,

(1 − 2(ρ − 1)x + (ρ − 1)2z1)

× (1 + (ρ2 − ρ)y + (−2ρ2 + ρ + 1)t + ρ2z2)2 = 1,

(1 + 2x + z1)(1 − (ρ − 1)(y + t) + z2)2 = 1,

z1z
2
2 = 1.

In order to solve these systems of equations,
first we computed a Gröbner basis for the ideal
they define in the polynomial ring K[x, y, t, z1, z2].
Then using floating-point computations (setting ρ ≈
−0.754877666246692760049 . . . ) we looked for real solu-
tions to the equations. Once we had solutions, we im-
posed the condition on the positivity of the determinant
of S and we traced back these floating-point solutions to
obtain the solutions, just one for each set:

For the set E1 we have

x = − 1
2 (ρ + 1), z1 = ρ2 − ρ + 1, z2 =

√
1 − ρ2,

t = 1
23 (−4ρ2 − 10ρ − 12) + 1

23 (−8ρ2 + 3ρ − 1)
√

1 − ρ2,

y = 1
23 (4ρ2 − 13ρ − 11) + 1

23 (−15ρ2 − 3ρ + 1)
√

1 − ρ2.
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For E2,

x = − 1
2 , z1 = 1, z2 = 1,

t = 1
23 (−11ρ2 + 7ρ − 10) + 1

23

√
29ρ2 + 15ρ + 41,

y = 1
23 (−12ρ2 − 7ρ + 10) − 1

23

√
29ρ2 + 15ρ + 41.

For E3,

x = − 1
2 (ρ2 + 1), z1 = −ρ, z2 =

√
ρ2 − ρ,

t = 1
23 (ρ2 − 9ρ + 3) + 1

23 (−10ρ2 − 2ρ − 7)
√

ρ2 − ρ,

y = 1
23 (−ρ2 − 14ρ − 3) + 1

23 (−13ρ2 + 2ρ + 7)
√

ρ2 − ρ.

For E4,

x = 1
2 (ρ2 − 2ρ − 2), z1 = ρ + 1, z2 =

√
ρ2 − 2ρ + 2,

t = 1
23 (−10ρ2 − 2ρ − 7)

+ 1
23 (−17ρ2 + 15ρ + 18)

√
ρ2 − 2ρ + 2,

y = 1
23 (−13ρ2 + 2ρ + 7)

+ 1
23 (−6ρ2 + 8ρ + 5)

√
ρ2 − 2ρ + 2.

For E5,

x = 1
2 (ρ2 − ρ), z1 = −ρ + 1, z2 = −ρ,

t = 1
23 (−5ρ2 − ρ − 15) + 2

23

√
12ρ2 − 85ρ − 56,

y = 1
23 (5ρ2 + ρ − 8)

+ 1
23 (−ρ2 + ρ + 1)

√
12ρ2 − 85ρ − 56.

For E6,

x = 1
2 (ρ2 − 1), z1 = −ρ2 − ρ, z2 = ρ2 − ρ + 1,

t = 1
23 (−24ρ2 + 9ρ − 3) + 1

23

√
−91ρ2 − 193ρ + 72,

y = 1
23 (−22ρ2 + 14ρ + 3)

− 1
161 (3ρ2 + 2ρ + 1)

√
−91ρ2 − 193ρ + 72.

All the Humbert forms defined by these values are per-
fect and eutactic. Showing that these forms are eutactic
according to [Coulangeon 01, Definition 2.3] amounts es-
sentially to showing that the inverses of the matrices lie in
the open convex hull of some matrix space built from the
minimal vectors and the matrices themselves. Thus, hav-
ing the minimal vectors and the matrices and using the
inner product defined in the containing space, we found
that all the eutaxy coefficients are equal to 1

3 ; hence all
the forms found are eutactic. In all, we have six perfect

eutactic forms. Their gamma constants are

E1 : 4
√

3
9 + 2

9 (3ρ2 − 4ρ + 2)
√

−ρ2 + 1,

E2 : 4
√

3
9 + 2

√
3

207 (2ρ2 − 9ρ + 7)
√

29ρ2 + 15ρ + 41,

E3 : 1
9

(
4(ρ2 − ρ + 1) + (4ρ2 − 10ρ + 8)

√
ρ2 − ρ

)
×

√
−3(ρ2 + ρ),

E4 : 2
9

(
−2ρ + 2 + (ρ2 + 3ρ + 1)

√
3ρ2 − 2ρ + 2

)
×

√
3(ρ2 − ρ − 1),

E5 :
(

−4
9 + 1

23 ( 14
9 ρ2 − 2ρ + 2)

√
12ρ2 − 85ρ − 56

)
×

√
3(−ρ + 1),

E6 : 2
9

(
2(ρ2 − ρ + 1)

+ 1
161 (76ρ2 − 75ρ + 50)

√
−91ρ2 − 193ρ + 72

)
×

√
−3(ρ2 + ρ).

We note that all these values coincide, and using the
above approximation of ρ we give a numerical value for
the gamma constant of K:

γK,2 ≈ 2.46849588200200393036032.

4. FINAL REMARKS

Following the work of Lenstra, [Leutbecher and Martinet
82] introduces for any number field K of degree n the
constant B(K), which is the lower bound of the norms of
the nontrivial ideals in OK . It can be shown that B(K)
is a prime power that satisfies

2 ≤ L(K) ≤ B(K) ≤ 2n = NK/Q(2OK).

The constant B(K) gives some lower bound for γK,2 ac-
cording to the following proposition.

Proposition 4.1. Let [K : Q] = r+2s. If L(K) < 2r+3s,
then

B(K) ≤ γK,2.

Proof: Let S be a binary Humbert form such that γ(S) =
γK,2. In particular, S is perfect, so that #M(S) ≥ 2r +
3s, and we may further assume that e1 ∈ M(S). We
claim that the condition L(K) < 2r + 3s implies that
there exists at least one nonunimodular minimal pair.
Indeed, if this were not the case, we would have, for any
v = (α, β)t ∈ M(S),∣∣∣∣NK/Q

(
det

[
α 1
β 0

])∣∣∣∣ = 1, (4–1)
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whence β ∈ O∗
K . Without loss of generality we may thus

assume that v = (α, 1)t for all v ∈ M(S). Then there
will be a sequence of first coordinates of minimal vec-
tors {α1, α2, . . . , α2r+3s} that gives a Lenstra sequence
of length 2r + 3s. A contradiction.

We now exhibit two fields K in which the value of the
Lenstra constant and the cardinality of NK([γK,2]) allow
us to follow the same computations in order to obtain
the value of their binary Hermite–Humbert constants.
All the fields have class number one:

[K : Q] defining equation dK nK ([γK,2]) L(K) 2r + 3s

3 x3 + x2 − x + 1 −44 3 2 5

4 x4 + x3 + x2 + x + 1 125 1 5 7
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corps algébrique.” Ark. Mat. 5 (1964), 343–356.

[Ohno and Watanabe 01] S. Ohno and T. Watanabe. “Esti-
mates of Hermite Constants for Algebraic Number Fields.”
Comment. Math. Univ. St. Paul 50:1 (2001), 53–63.

[Pohst and Wagner 05] M. Pohst and M. Wagner. “On the
Computation of Hermite–Humbert Constants for Real
Quadratic Number Fields.” Journal de Théorie des Nom-
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