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We consider the problem of obtaining good upper and lower
bounds on the number of balanced Boolean functions in n vari-
ables with degree less than or equal to k. This is the same as
the problem of finding bounds on the number of codewords of
weight 2n−1 in the Reed–Muller code of length 2n and order
k. We state several conjectures and use them to obtain good
bounds. We believe that the conjectures will be highly useful
for further research.

1. INTRODUCTION

The goal of this paper is to use some plausible conjec-
tures to derive good upper and lower bounds on the num-
ber B(k, n), which is defined as the number of balanced
Boolean functions in n variables with degree less than or
equal to k. As usual, we say that a Boolean function in
n variables is balanced if exactly half of its 2n values are
zero.

It is obvious that

B(n, n) =
(

2n

2n−1

)
,

and we shall see later that B(n− 1, n) = B(n, n). There
is a formula for B(n− 2, n) that goes back at least as far
as [Camion 79, p. 8], but it is doubtful that there is any
simple formula for B(k, n) for k < n− 2. One reason for
this doubt is the connection of B(k, n) with the notorious
weight-distribution problem for Reed–Muller codes.

An excellent account of the theory of Reed–Muller
codes is given in [MacWilliams and Sloane 78, Chap-
ters 13–15]. The Reed–Muller codes are defined in terms
of Boolean functions as follows: Any Boolean function
f(x) = f(x1, . . . , xn) can be uniquely specified by a truth
table that lists the 2n different values of f(x) as x varies.
We assume that x runs through its values in lexicograph-
ical order, beginning with (0, . . . , 0) and (0, . . . , 0, 1) and
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ending with (1, . . . , 1). Thus for example, the truth table
for

f(x1, x2, x3) = x1 + x3 + x1x2 + x1x2x3 (1–1)

would be given by

(0, 1, 0, 1, 1, 0, 0, 0).

We will identify a Boolean function with its truth table,
so we could write

f(x) = (0, 1, 0, 1, 1, 0, 0, 0)

instead of (1–1). The kth-order Reed–Muller code of
length 2n, denoted by R(k, n), is the set of all vectors
(truth tables) associated with Boolean functions f(x) in
n variables with degree less than or equal to k. These
vectors are called the codewords of R(k, n).

The weight of a Boolean function f(x), denoted by
wt(f), is the number of 1’s in the truth table for the
function f , so wt(f) is simply the Hamming weight of
the vector associated with f . The weight distribution of
R(k, n) is the list of the possible weights of the codewords
in R(k, n), along with a count of how many times each
weight occurs.

The weight distribution of R(1, n) is trivial, and the
weight distribution ofR(2, n) is known (see [MacWilliams
and Sloane 78, pp. 434–445]). From these one can de-
duce by duality the weight distribution of R(n − 2, n)
and R(n − 3, n), but in other cases there is no known
formula for the weight distribution of any general class
of Reed–Muller codes. Even the case R(3, n) remains
mysterious.

As far back as 1970 some progress was made in count-
ing the codewords of small or large weight in R(k, n)
[MacWilliams and Sloane 78, Chapter 15, Theorem 11,
p. 446]. There has been no significant progress for code-
words of middling weight since then. SinceB(k, n) counts
the codewords of the middle weight 2n−1, we cannot ex-
pect a simple formula. In fact, it seems difficult even to
prove a good estimate for B(k, n).

As explained below, if we make some plausible con-
jectures, then we can achieve good upper and lower
bounds on B(k, n). Even if these conjectures cannot
be proved, we can use them to derive interesting con-
sequences, which can then possibly be proved or at least
tested for correctness. There is precedent for the useful-
ness of difficult but insightful conjectures (for example,
the Riemann hypothesis and Schanuel’s conjecture).

2. A BALANCED FUNCTION DISTRIBUTION
CONJECTURE

Let F (k, n) denote the set of all Boolean functions in
n variables of degree less than or equal to k. Let
P (k, n) = |F (k, n)|, where as usual, |S| denotes the num-
ber of elements in the set S. Hence

P (k, n) = 21+C(n,1)+C(n,2)+···+C(n,k), (2–1)

where C(n, j) =
(
n
j

)
, 0 ≤ j ≤ n.

Let G(k, n) denote the set of all Boolean functions in
n variables that are made up of one or more terms of
exact degree k, so

|G(k, n)| = 2C(n,k). (2–2)

We make the following conjecture:

Conjecture 2.1. For any function g in G(k+1, n), k > 0,
we have
∣∣{ g + f : f runs through F (k, n) and g + f is balanced }∣∣
< B(k, n).

That is, the coset R(k, n) in R(k+1, n)/R(k, n) has more
balanced functions than any other coset.

We believe that this conjecture gives a fundamental
property of the cosets R(k, n). We give two plausible con-
sequences of Conjecture 2.1. To distinguish these from
results that we can prove, we explicitly state that Con-
jecture 2.1 must be assumed.

Corollary 2.2. (Assume Conjecture 2.1.) For each k, 1 ≤
k ≤ n− 1, we have

B(k, n) · 2C(n,k+1) > B(k + 1, n).

Proof: This follows immediately from (2–1) and Conjec-
ture 2.1.

Corollary 2.3. (Assume Conjecture 2.1.) For each k, 1 ≤
k ≤ n− 1, we have

B(k + 1, n)
P (k + 1, n)

<
B(k, n)
P (k, n)

.

Proof: Since

2C(n,k+1)B(k, n)/P (k + 1, n) = B(k, n)/P (k, n),

the result follows from Corollary 2.2.
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Coset Representative fi Balanced Functions in fi + R(2,6)
0 1,828,134

x1x2x3 1,702,624
x1x2x3 + x2x4x5 1,675,520
x1x2x3 + x4x5x6 0

x1x2x3 + x2x4x5 + x3x4x6 1,665,664
x1x2x3 + x1x4x5 + x2x4x6 + x3x5x6 + x4x5x6 0

TABLE 1. Balanced functions in the cosets of R(3, 6)/R(2, 6).

Coset Representative fi Balanced Functions in fi + R(2,7)
0 300,503,590

x1x2x3 171,425,760
(x1x2 + x3x4)x5 156,664,832
x1x2x3 + x4x5x6 152,199,168

(x1x2 + x3x4)x5 + x1x3x6 153,664,128
x1x2x3 + x4x5x6 + (x1 + x4)(x2 + x5)(x3 + x6) 151,797,760

(x1x2 + x3x4 + x5x6)x7 152,985,600
(x1x2 + x3x4)x5 + x1x6x7 151,417,600

x1x2x3 + x4x5x6 + (x1 + x4)(x2 + x5)x7 151,169,024
(x1x2 + x3x4)x5 + x1x3x6 + x2x3x7 152,182,784

x1x2x3 + x4x5x6 + (x1 + x4)(x2 + x5)(x3 + x6) + x1x4x7 151,080,960
x1x2x3 + x4x5x6 + x2x3 + x4x6 + ((x1 + x4)(x2 + x5) + x3x6)x7 151,057,408

TABLE 2. Balanced functions in the cosets of R(3, 7)/R(2, 7).

The large computations necessary to determine the
weight distribution of all cosets in R(k + 1, n)/R(k, n)
have been carried out for k = 2, n = 6 (in [Hou 96]) and
for k = 2, n = 7 (in [Kasami et al. 95]). In the n = 6
case, there are only 6 cosets fi + R(2, 6) that have dif-
ferent weight distributions. In the n = 7 case, there are
only 12 cosets fi +R(2, 7) that have different weight dis-
tributions. Tables 1 and 2 give coset representatives fi in
these two cases, plus a count of the number of balanced
functions in each coset. Conjecture 2.1 is confirmed in
both cases. It is interesting to note the very uneven dis-
tribution of the balanced functions in the cosets of R(2, 6)
(where two cosets have no balanced functions at all), as
contrasted with the rather even distribution of the bal-
anced functions in the cosets of R(2, 7) other than coset
R(2, 7) itself.

The following deep theorem of McEliece (see [McEliece
72] or [MacWilliams and Sloane 78, p. 447]) motivates
our Conjectures 3.2 and 4.1, which can be thought of as
attempts to make more precise the role played by the
powers of 2. Here [ · ] is the usual greatest-integer func-
tion.

Theorem 2.4. The weight of every codeword in R(k, n) is
divisible by 2[(n−1)/k].

We cannot prove Conjecture 2.1 in general, but we can
prove the special case k = n− 1 (which is well known in
coding theory):

Theorem 2.5. For each n ≥ 2, the set x1x2 · · ·xn

+F (n − 1, n) has no balanced functions; that is,
B(n− 1, n) = B(n, n).

Proof: Let fn(x) denote any function in F (n − 1, n). It
suffices to show that

∑

x∈GF (2)k

fk(x) ≡ 0 (mod 2) (2–3)

for each k = 2, 3, . . . , since then the truth table of
x1x2 · · ·xk + fk(x) will have an odd number of 1’s. This
simply means that all of the codewords in R(n−1, n) have
even weight, and this follows from the trivial weight dis-
tribution of R(n− 1, n).

3. LOWER BOUNDS FOR B(k, n)

We quickly get a lower bound for B(k, n) from Corollary
2.2 of Conjecture 2.1.

Theorem 3.1. (Assume Conjecture 2.1.) For 1 ≤ k ≤
n− 1, we have

B(k, n) >
(

2n

2n−1

)
P (k, n)
22n−1

.

Proof: By Corollary 2.3 we have

B(k, n) >
P (k, n)B(n− 1, n)

P (n− 1, n)
,
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Lower Bound B(k, n) Upper Bound

12,870 B(3, 4) = 12,870 12,870

18,783,800 B(3, 5) = 18,796,230a 1.89311 × 107

8.73863 × 1011 B(3, 6) = 874,731,154,374b 8.77283 × 1011

2.863475220222 × 1016 B(4, 6) = 2.86347527939 × 1016a 2.874682 × 1016

5.193576914 × 1018 B(3, 7) = 5.193595576 × 1018c 5.20373 × 1018

8.922497198703 × 1028 B(4, 7) = 8.922497198992 × 1028a 8.939940 × 1028

1.973538269 × 1027 B(3, 8) = 1.973540804 × 1027 d 1.97547 × 1027

1.164971371872 × 1048 B(4, 8) = 1.164971371906 × 1048 a 1.16610959 × 1048

1.91890047 × 1038 B(3, 9) = 1.9189023 × 1038 e 1.91984 × 1038

6.94355 × 10113 B(5, 9) = 6.94355 × 10113 6.94694 × 10113

1.910087568 × 1052 B(3, 10) = 1.9100875806 × 1052f 1.91055 × 1052

Key: a, [Koumoto 04]; b, [Hou 96, Koumoto 04]; c, [Koumoto 04, Sugino et al. 71];
d, [Hou 94, ?]; e, [Koumoto 04, Sugita et al. 96]; f, [Langevin 03].

TABLE 3. Number of balanced Boolean functions.

and by Theorem 2.5,

B(n− 1, n) = B(n, n) =
(

2n

2n−1

)
.

Theorem 3.1 now follows from (2–1).

We obtain a stronger lower bound if we assume the
following stronger version of Corollary 2.3.

Conjecture 3.2. If 3 ≤ k ≤ n− 1, then

2[(n−1)/k]B(k + 1, n)
P (k + 1, n)

≤ 2[(n−1)/(k+1)]B(k, n)
P (k, n)

. (3–1)

We note that equality holds in Conjecture 3.2 when
k = n− 1. Also, Conjecture 3.2 is the same as Corollary
2.3 with equality allowed except where n ≡ 1 (mod k).
Using Conjecture 3.2 we get the following improvement
of the lower bound for B(k, n).

Theorem 3.3. (Assume Conjecture 3.2). For 3 ≤ k ≤
n− 1, we have

B(k, n) ≥ 2[(n−1)/k]

(
2n

2n−1

)
P (k, n)

22n . (3–2)

Proof: Applying (3–1) successively for k, k+ 1, . . . , n− 1
we obtain

B(k, n)
P (k, n)

≥ 2[(n−1)/k]−1B(n− 1, n)
P (n− 1, n)

.

Now the theorem follows from

B(n− 1, n) =
P (n− 1, n)

22n−1

(
2n

2n−1

)
,

which is just another way of stating Theorem 2.5.

Note that for k = n − 1 equality holds in (3–2). Ta-
ble 3 shows that the lower bound is very good for the
known values of B(k, n). For example, the lower bound
for B(5, 9) agrees with the actual value for the first 34
most-significant digits.

From [Sugita et al. 96] we have the lower bound

6.94354672901341402258049303141755053056 × 10113

for B(5, 9), and the exact value

6.94354672901341402258049303141755061046 × 10113.

4. UPPER BOUNDS FOR B(k, n)

Our upper bounds depend on the following conjecture.

Conjecture 4.1. If 3 ≤ k ≤ n− 1, then

2[ n−1
k ]B(k, n+ 1)

P (k, n+ 1)
< 2[ n

k ]B(k, n)
P (k, n)

. (4–1)

If n > 10, then we can improve (4–1) by adding a factor
1√
2

on the right:

2[ n−1
k ]B(k, n+ 1)

P (k, n+ 1)
< 2[ n

k ]− 1
2
B(k, n)
P (k, n)

. (4–2)

Inequality (4–1) is weaker than Conjecture 3.2, but in-
equality (4–2) is stronger. We remark that it is not true
that B(k, n)/P (k, n) decreases as n increases, though
(4–1) shows that this is true except perhaps when n ≡ 0
(mod k). For example, we see from Table 3 that

B(3, 7)
P (3, 7)

= 0.29 >
B(3, 6)
P (3, 6)

= 0.20.
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Theorem 4.2. (Assume Conjectures 3.2, 4.1). For 3 ≤
k ≤ n− 2, we have

B(k, n) < 2[ n−1
k ]P (k, n)/

√
π2n−1. (4–3)

Proof: It follows by induction from the case k = 3 of
(3–1) in Conjecture 3.2 that

2[ n−1
3 ]B(k, n)

P (k, n)
≤ 2[ n−1

k ]B(3, n)
P (3, n)

for k ≥ 4. (4–4)

If (4–3) is true for k = 3, then (4–4) gives

B(k, n)
P (k, n)

≤ 2[ n−1
k ]−[ n−1

3 ]B(3, n)
P (3, n)

<
2[ n−1

k ]

√
π2n−1

,

so (4–3) holds for any k ≥ 4. Thus it suffices to prove
(4–3) for k = 3 and n ≥ 5.

The values in Table 3 show that (4–3) is true for k = 3
and 5 ≤ n ≤ 10, so we may assume n > 10 and use
the stronger version (4–2) of Conjecture 4.1. We assume
(4–3) for k = 3 and that n > 10. Then from (4–2) we get

B(3, n+ 1)
P (3, n+ 1)

< 2[ n
3 ]−[ n−1

3 ]− 1
2
B(3, n)
P (3, n)

<
2[ n

3 ]

√
π2n

,

which completes the proof by induction.

We can compare the lower bound of Theorem 3.3 with
the upper bound of Theorem 4.2 using the estimate (eas-
ily derived from Stirling’s formula for k!)

(
2n

2n−1

)
=

22n

√
π2n−1

(
1− c2−n

)
,

where c > 0 is a constant.
The paper [Braeken et al. 05] is relevant to our work;

the numerical results there concerning the cosets of the
first-order Reed–Muller code are all consistent with our
conjectures.
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