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The semiperiodic behavior of the zeta function ζ(s) and its par-
tial sums ζN (s) as a function of the imaginary coordinate has
been long established. In fact, the zeros of a ζN (s), when re-
duced into imaginary periods derived from primes less than or
equal to N , establish regular patterns. We show that these zeros
can be embedded as a dense set in the period of a surface in
Rk+1, where k is the number of primes in the expansion. This
enables us, for example, to establish the lower bound for the
real parts of zeros of ζN (s) for prime N and justifies the use of
methods of calculus to find expressions for the bounding curves
for sets of reduced zeros in C.

1. INTRODUCTION

Figure 1 is a picture of the first 10,000 suitably normal-
ized zeros of the fifth partial sum of the Riemann zeta
function. (Precise definitions are given in later sections.)
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FIGURE 1. 10,000 normalized zeros of ζ5(s).
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The picture is compelling—it suggests a phenomenon in
need of an explanation—and this is indeed part of both
the genesis and the purpose of this paper.

A second part of the genesis of the paper is a project
to write a robust zero finder, in Maple, for virtually any
analytic function on virtually any region. This is a hard
problem, which will be discussed elsewhere. Finding a
few zeros is easy; reliably finding all zeros is much harder.
Even special-purpose figures, like those in this paper, re-
quire some effort to produce. Off-the-shelf software will
probably not suffice.

Of course, any number theorist will first apply these
methods to the Riemann zeta function in the hope of
shedding a little more light on what number theorists cer-
tainly believe to be the most important unsolved problem
in mathematics.

Section 2 gives a brief introduction to the Riemann
zeta function. For a more comprehensive treatment the
recent publication [Conrey 03] is recommended.

Section 3 discusses previous results for partial sums.
Figure 2, made possible by our zero finder, indicates that
even though the partial sums of ζN (s) do not converge for
�(s) ≤ 1, there is some range in the complex plane where
the zeros of the partial sum do approximate the zeros
of ζ(s). Figure 3 gives a clearer indication that zeros
of partial sums of the alternating series η(s) converge
to zeros of the function itself. Theorem 3.1 improves
previously published results on upper and lower bounds
for the real parts of zeros of partial sums for ζ(s) and
η(s). Refining this, in Theorem 4.10 we obtain a precise
lower bound on the real parts of zeros of ζN (s) for N
prime.

Since ζ(s) encodes so much information about prime
numbers, it is natural to expect that a study of zeros of a
partial sum will involve some study of the prime numbers
involved in the sum. The first part of Section 4 studies
the cases in which two primes are involved. The zeros of
ζ3(s) are shown to be intersection points of two periodic
functions, with periods 2πi/ log(2) and 2πi/ log(3). A
careful analysis shows precisely which intersection points
are zeros of ζ3 and their density as a function of �(s).
Theorem 4.5 gives a more general result for finite expo-
nential sums involving only two primes, stating that all
zeros lie on a periodic curve, where the number of choices
for this period is infinite.

The second part of Section 4 in an extension to the
case in which more primes are involved. The main result
is Theorem 4.9, which shows how the discrete zeros of a
finite exponential sum can be related to the zeros of a
multiply periodic function. In particular, precise bounds

for the distribution of these zeros may be determined
using methods of calculus.

2. BACKGROUND

Early studies of the function

ζ(s) =
∞∑

n=1

1
ns
, s ∈ C, (2–1)

concerned its behavior for real s. Euler pointed out that
this has a representation as a product

ζ(s) =
∏

p prime

(
1− 1

ps

)−1

,

valid for s ∈ C with �(s) > 1, first giving a hint of its
importance in the study of prime numbers. It was Rie-
mann, however, who, in his fundamental paper of 1859,
outlined the analytic properties of what is now known as
the Riemann zeta function. Writing s in the standard
form

s = σ + it,

where σ and t are the real and imaginary parts of s, re-
spectively, it is easily seen that the above series converges
absolutely for σ > 1. Riemann showed that ζ(s) has an
analytic extension to a meromorphic function on C hav-
ing a single simple pole at s = 1. Moreover, he proved
the surprising functional equation

ξ(s) :=
1
2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s) = ξ(1− s),

where Γ(s) is the usual gamma function. Using Euler’s
product formula, we derive that ζ(s) has no zeros for
σ > 1. The functional equation then shows that the
only zeros of ζ(s) in the left half-plane σ < 0 coincide
with the poles of Γ(s/2), the so-called trivial zeros at s =
−2,−4,−6, . . . . All other zeros must lie in the critical
strip 0 ≤ σ ≤ 1. Riemann asserted furthermore that the
number of these roots whose imaginary parts are between
0 and T > 0 is approximately

T

2π
log
(
T

2π

)
− T

2π
, (2–2)

with relative error term O(1/T ). Riemann stated that
the same estimate should hold for all roots with real parts
1
2 , leading to the stronger conjecture that all roots of
the zeta function in the critical strip lie on the critical
line σ = 1

2 , the famous Riemann hypothesis. In 1905
von Mangoldt proved that the estimate (2–2) is correct,
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with an error estimate of O(log(T )); see [Titchmarsh 86,
Chapter 9].

The complex line {z ∈ C : �(s) = 1
2} is known as the

critical line. The Riemann hypothesis was one of the 23
problems proposed by Hilbert in 1900 for mathematicians
to work on in the twentieth century. It remains a problem
for mathematicians in the twenty-first. It is known that
there are at least KT log(T ) such zeros for some constant
K > 0 as T tends to∞; see [Titchmarsh 86, Section 10.9]
or [Edwards 01]. Also, Conrey [Conrey 89] proved that
more than 40% of the zeros of the Riemann zeta function
are on the critical line. Through recent computations, X.
Gourdon and P. Demichel claim confirmation that the
first 10 trillion zeros with t > 0 are indeed on the critical
line.1

3. ZEROS OF PARTIAL SUMS

Since the series (2–1) does not converge for σ ≤ 1, it is
difficult to picture what relationship, if any, might exist
between the zeros of the truncated zeta function

ζN (s) :=
N∑

n=1

1
ns

and ζ(s) in this half-plane. Figure 2, made possible
through the application of the zero finder, illustrates a
few points.

What is first noticeable is a string of zeros of ζ211
near the critical line σ = 1

2 . Spira remarks in [Spira 66,
Section 4] that the Euler–MacLaurin formulation

ζ(s) = ζN−1(s) +N−s +
N1−s

s− 1

+
k∑

n=1

B2n

(2n)!

⎛

⎝
2n−2∏

j=0

(s+ j)

⎞

⎠N1−s−2n +R(k, n, s),

where

R(k,N, s) <

∣∣∣∣∣∣
B2(k+1)

(2(k + 1))!

⎛

⎝
2k∏

j=0

(s+ j)

⎞

⎠N1−s−2(k+1)

∣∣∣∣∣∣

× |s+ 2k + 1|
|σ + 2k + 1| ,

implies that ζ(s) is roughly approximated by ζN (s) near
the critical line for t < 2πN , but t also large enough so
thatN1/2/t is “small.” The strip of zeros is in accordance
with Spira’s observation. Above t = 2πN , about 1326 in
Figure 2, the zeros scatter more wildly.

1http://numbers.computation.free.fr/Constants/
Miscellaneous/zetazeroscompute.html.
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FIGURE 2. 3000 zeros of ζ211(s).

In [Turán 48], Turán points to a possible relationship
between the behavior of the roots of the partial sums of
the zeta function (2–1) and the Riemann hypothesis. He
proves in his Theorem II that the Riemann hypothesis is
valid if there are positive numbers n0 and K such that
for N > n0 the truncated zeta function ζN (s) does not
vanish in the half-plane

σ ≥ 1 +
K√
N
.

In [Montgomery 83], however, Montgomery shows that
for given 0 < c < 4

π − 1 and for N large enough the
function ζN always has zeros in the half-plane

σ > 1 + c
log log(N)

log(N)
,

making Turán’s theorem vacuous. Still, it is interesting
that connections can be made between zeros of ζ(s) in
the critical strip and zeros of the partial sums ζN (s).

Striking in Figure 2 are the three strings of zeros trail-
ing to the left, both above and below the string of zeros
near the critical line. The bottom string originates in a
region near s = 1 where the zeros are fairly scattered. A
result of Knopp [Jentzsch 18, p. 236] asserts that every
point of σ = 1, the line of convergence for the ζ series,
is an accumulation point of the zeros of the partial sums
ζN . As N increases, we expect such patterns to continue,
with the lower string in particular moving upward on the
left and becoming steeper and moving closer to the line
σ = 1 on the right.

The comparison with partial sums in the critical strip
is more direct for the alternating zeta function, defined
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by

η(s) :=
∞∑

n=1

(−1)n+1 1
ns
,

in its region of convergence σ > 0 and then extended by
analytic continuation. We derive that

η(s) =
(

1− 2
2s

)
ζ(s),

so all the zeros of ζ(s) are zeros of η(s). In particular,
ζ(s) and η(s) have the same zeros within the critical strip.
As well, η(s) has the zeros of 1−21−s, namely, the points

ωk := 1 +
2kπi
log(2)

, k ∈ Z. (3–1)

The truncated alternating zeta functions

ηN (s) :=
N∑

n=1

(−1)n+1 1
ns
, N ∈ Z>0,

converge in the plane σ > 0 to the alternating zeta func-
tion as N tends to ∞. In particular, they have roots
“close” to the ωk’s if N is sufficiently large. More specif-
ically, the point

ωk +
1

4 log(2) · ζ(ωk)
(N + 1)−2+ωk

is the asymptotic expression of a root of η2N that con-
verges to ωk for N →∞; see [Turán 48, Section 7].

Consider now Figure 3. Above t = 0, we see two
strings of zeros, one close to the critical line approximat-
ing the zeros of the zeta function, and the other close to
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FIGURE 3. 1000 zeros of η109(s).

s = 1 approximating the zeros of 1 − 21−s, as expected.
Above these the zeros scatter more wildly, as in Figure 2.

It has been proved in the papers [Langer 31] and
[Wilder 17] that the number M of zeros of ζN in the
upper half-plane that have imaginary part less than T

satisfies ∣∣∣∣M −
⌊

log(N)T
2π

⌋∣∣∣∣ ≤ N. (3–2)

This approximates the density of the zeros of 1 ± 1/Ns,
which occur one every distance of 2π/ log(N) up the
imaginary axis, or a frequency of log(N)/2π.

Using (2–2) and (3–1), we see that the number of roots
of η(s) in the same region has the estimate

T

2π
log
(
T

2π

)
− T

2π
+

(log(2))T
2π

.

Differentiating with respect to T , we obtain a frequency
of log(T/π)/2π for these roots as we move up the imag-
inary axis. These two frequencies match at T = Nπ,
which for Figure 3 evaluates as 342.4 . . . , approximately
where this scattering begins. Above this, the number of
zeros of the partial sum is insufficient to match those of
η(s), while below they are in excess, giving some expla-
nation for the string of zeros trailing to the left at the
bottom.

The alternating series converges for σ > 0. The com-
plete set of accumulation points of zeros of the truncated
alternating zeta functions ηN consists of the line σ = 0,
the roots of ζ(s), and the zeros ωk; see [Turán 48, Section
7]. We therefore anticipate the line of convergence, σ = 0
in this case, to be the set of limit points of these bottom
strings of zeros and their conjugates as N increases.

Turán showed [Turán 59] that the positions of zeros
in the half-plane σ > 1 for the partial sums of the alter-
nating zeta function also has relevance for the Riemann
hypothesis. Though his estimates in this case as well
were proved redundant by Montgomery’s work, it is in-
teresting to obtain actual bounds for the real values of
these roots.

It is proved in [Spira 66] that all zeros of ζN have real
parts

1−N < σ < 1.85.

The following simple argument improves this.

Theorem 3.1. Let s be a zero of ζN or ηN . Then s sat-
isfies σ ≤ α, where α is the positive root of ζ(σ) = 2. In
particular, one has σ < 1.73.

Also, s satisfies σ ≥ βN , where βN is the negative root
of ζN−1(σ) = N−σ.
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Proof: Let s be a zero of ζN such that σ > 1. Then

1 = | − 2−s − 3−s − · · · −N−s|
≤ 2−σ + 3−σ + · · ·+N−σ

≤ ζ(σ)− 1.

Since the functions in these inequalities are positive and
decreasing in σ, we need to find the positive solution of
ζ(s) = 2. This is s = 1.728647239.

Similarly,

|N−s| = N−σ = |1 + 2−s + 3−s + · · ·+ (N − 1)−s|
≤ 1 + 2−σ + 3−σ + · · ·+ (N − 1)−σ.

The equation N−σ = ζN−1(σ) is equivalent to
NσζN−1(σ) = 1. Note that NσζN−1(σ) is an increas-
ing function of σ, with asymptote 0 as σ → −∞ and
value N − 1 at 0. Thus N−σ = ζN−1(σ) has a single
negative root, σ = βN . For σ < βN the above inequality
no longer holds. These proofs hold in the same way for
the zeros of ηN .

For ζN (s), Turán shows in [Turán 48, Theorem IV]
that for N large enough, ζN (s) 	= 0 for

σ ≥ 1 + 2(log logN)/ log(N),

so an improved upper bound should be possible in this
case. However, the lower bound is closer to the truth.
Indeed, for N prime, we show in Theorem 4.10 below
that this is the actual bound.

An easy argument shows that βN = −(N +
o(N)) log(2). Writing βN = bNN , we have

N bN N + · · ·+
((

1− 2
N

)N
)−bN

+

((
1− 1

N

)N
)−bN

= 1.

We note that limN→∞
(
1− k

N

)N
= e−k. A limit bN →

b∞ would imply

1 ≈ eb∞ + e2b∞ + e3b∞ + · · · ,
giving b∞ = − log(2) as a first approximation. Compu-
tationally, the estimate βN ≈ −(N − 3/2) log(2) holds
with surprising accuracy at N = 5 and with increasing
accuracy to at least N = 100,000.

4. ZEROS OF SMALL SUMS

4.1 Single-Parameter Curves

Figure 4 shows the positions in the upper half-plane of
the first 2000 zeros of

ζ3(s) = 1 +
1
2s

+
1
3s
.
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FIGURE 4. The first 2000 zeros of ζ3(s).

Although the zeros are not recurring in a completely
regular pattern, their positioning does appear to have a
semiperiodic nature. The algorithm used to locate these
zeros uses a homotopy. In its more general form, for ζN ,
starting from the known position of the zeros of the end
terms

1 +
1
Ns

,

at the points {2πki/ log(N) : k ∈ N}, Newton’s method
was used to find zeros along the path

1 +
1
Ns

+ t

(
N−1∑

n=2

1
ns

)

as t increased from 0 to 1. That this method worked so
well in locating all of the zeros of ζN (s) up to heights
tested suggests that the error estimate in (3–2) above
could be improved to O(1). In any case, in such finite
exponential sums, the largest integer in the expansion,
N , is an indicator of the number of zeros to be found
up to a height T in much the same way as the degree
of a polynomial determines its number of zeros in the
complex plane.

It is then natural to plot the difference between the
zeros found for ζN and the starting values of each path.
This was the inspiration for the plot on the left of Fig-
ure 5, where the imaginary parts of the zeros are reduced
modulo 2π/ log(3), the distance between zeros of 1+1/3s.

We now see a striking regularity. An explanation is
fairly simple. The equation ζ3(s) = 0 becomes two equa-
tions in the real and imaginary parts:

1 + 2−x cos(log(2)y) + 3−x cos(log(3)y) = 0, (4–1)

2−x sin(log(2)y) + 3−x sin(log(3)y) = 0, (4–2)
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FIGURE 5. Zeros of ζ3(s) reduced modulo 2πi
log(3)

and 2πi
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FIGURE 6. Comparison of intersection points.

where s = x + iy. Using the trigonometric formula
cos2(log(2)y) + sin2(log(2)y) = 1, we derive

1 + 2 · 3−x cos(log(3)y) + 9−x = 4−x. (4–3)

This is a curve with period 2π/ log(3) in y that must
contain all the zeros of ζ3(s). If we reduce the imaginary
parts of the zeros modulo 2π/ log(3), they still lie on the
same curve, but all within a single period.

The same procedure may be applied to remove terms
in log(3)y, giving

1 + 2 · 2−x cos(log(2)y) + 4−x = 9−x. (4–4)

Zeros reduced modulo 2π/ log(2) lie on a period of this
curve, as shown on the right of Figure 5.

We can use the curves (4–3) and (4–4) to obtain a
good description of the zeros of ζ3(s). Figure 6 allows us
to compare intersection points.

The graph on the left shows intersection points of the
curves �(ζ3(s)) = 0 and �(ζ3(s)) = 0 as given in (4–1)
and (4–2) above, these points being zeros of ζ3(s). The
graph on the right shows intersection points of the curves
(4–3) and (4–4). These points include the zeros of ζ3(s),
but as we can see in the comparison, not all of the inter-
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section points are zeros of ζ3(s). This graph does show
that the real parts of these zeros are bounded, something
now evident from the graph on the left.

A more careful analysis is needed to show which inter-
section points of (4–3) and (4–4) are zeros of ζ3(s) and
to describe their distribution.

Lemma 4.1. The zeros of ζ3(s) are those points satisfy-
ing Equations (4–3) and (4–4) for which sin(log(3)y) and
sin(log(2)y) are of opposite signs.

Proof: Any zero of ζ3(s) must satisfy (4–3) and (4–4),
since they are derived from (4–1) and (4–2).

Conversely, we obtain (4–1) by adding (4–3) and (4–
4). From Equation (4–3), we obtain

|sin(log(3)y)| = (1− cos2(log(3)y)
)1/2

=

(
4 · 9−x − (4−x − 9−x − 1)2

)1/2

2 · 3−x

=

(
(4−x − (3−x − 1)2)((3−x + 1)2 − 4−x)

)1/2

2 · 3−x
.

Similarly, from (4–4), we obtain

|sin(log(2)y)|

=

(
(9−x − (2−x − 1)2)((2−x + 1)2 − 9−x)

)1/2

2 · 2−x

=
3−x

2−x
|sin(log(3)y)| .

Thus, (4–2) is satisfied if sin(log(3)y) and sin(log(2)y)
are of opposite signs.

This gives us an easy method for deciding which inter-
sections of the curves (4–3) and (4–4) are actual zeros of
ζ3(s). We now need a better description of these curves.

Lemma 4.2.

(1) The curve given by Equation (4–3) consists of con-
gruent convex, closed curve segments contained in
and tangent at each edge of the disjoint boxes

[−1, r1]×
[
(2k + 1)π

log(3)
− r2, (2k + 1)π

log(3)
+ r2

]
,

where k ∈ Z, r1 is the real root of 1−2−x−3−x = 0,
and r2 is the point where the derivative of

(
3
4

)x −
3x − 1/3x is 0.

(2) The curve given by Equation (4–4) is single-valued
in x, with maximum x-values obtained at the points

(
r1,

(2k + 1)π
log(2)

)

and minimum x-values at the points
(
−1,

2kπ
log(2)

)

for k ∈ Z. It has positive slope in the half-periods

y ∈
[

2kπ
log(2)

,
(2k + 1)π

log(2)

]

and negative slope in the half-periods

y ∈
[
(2k − 1)π

log(2)
,

2kπ
log(2)

]

for k ∈ Z.

Proof: (1) We start by rewriting Equation (4–3) as

cos(log(3)y) =
1
2

((
3
4

)x

− 3x − 1
3x

)

and analyzing the function

f(x) :=
1
2

((
3
4

)x

− 3x − 1
3x

)

=
1
2

(
3
4

)x

− cosh((log(3))x)

on the right. For x > 0 the term −3x dominates, while
for x < 0 the term −1/3x dominates, so f(x) → −∞ as
x→ ±∞. Its derivative

f ′(x) = −1
2

log
(

4
3

)(
3
4

)x

− log(3) sinh((log(3))x)

is the sum of two decreasing functions and so is de-
creasing, having a single zero at r2 = −0.1230 . . . with
f(r2) = −0.4911 . . . . Thus, f(x) increases up to r2
and then decreases. The curve is defined only where
cos(log(3)y) ≤ f(r2), i.e., in regions where

(2k + 1)π − y1
log(3)

≤ y ≤ (2k + 1)π + y1
log(3)

with y1 = π−arccos(f(r2)) = 1.0574 . . . < π/2. For each
y-value in the interval

(
(2k + 1)π − y1

log(3)
,
(2k + 1)π + y1

log(3)

)

there are two solutions in x, so that the curve decom-
poses into disjoint closed paths. The curve achieves its
extreme values in x at the points y = (2k+1)π

log(3) where
cos(log(3)y) = −1, giving

0 = f(x) + 1 = −3x

2

(
1 +

1
2x
− 1

3x

)(
1− 1

2x
− 1

3x

)
.
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A simple analysis shows that this has only two real roots,
−1 and r1.

For the curve, we have

(log(3)) sin((log(3))y)
dy

dx
= −f ′(x).

At the extreme values for x, we have sin((log(3))y) = 0,
making the tangents vertical. At the points on the curve
with x = r2, we have f ′(x) = 0, making the tangents
horizontal.

The closed paths are symmetric about
the lines y = (2k + 1)π/ log(3). For y ∈
[((2k + 1)π − y1)/ log(3), (2k + 1)π/ log(3)], we have
sin((log(3))y) > 0, so that the curve is strictly de-
creasing for x ∈ (−1, r2) and strictly increasing for
x ∈ (r2, r1).

To determine convexity, we evaluate the second deriva-
tive, obtaining

(log(3)) sin((log(3))y)
d2y

dx2

= (log(3))2
(3x + 3−x)

2
− log

(
3
4

)2 ( 3
4

)x

2

− (log(3))2 cos((log(3))y)
(
dy

dx

)2

.

For

y ∈ [((2k + 1)π − y1)/ log(3), (2k + 1)π/ log(3)]

we have

sin((log(3))y) > 0, cos((log(3))y) < 0.

Also, for x > 0,

(log(3))23x − log
(

3
4

)2 ( 3
4

)x

2
> 0,

and for x < 0,

(log(3))23−x − log
(

3
4

)2 ( 3
4

)x

2
> 0.

Thus, d2y
dx2 > 0, and the portions of the curve for these

y-values are convex up. Using symmetry, we obtain that
the regions enclosed by the closed paths are convex.

(2) Curve (4–3) is easier to analyze. In this case, let

f(x) =

(
2
9

)x − (2x + 2−x)
2

.

Then the curve has the equivalent formulation

cos((log(2))y) = f(x).

For x < 0, the term
(

2
9

)x dominates, so limx→−∞ = ∞.
For x > 0, the term 2x dominates, so limx→∞ = −∞.
We easily see that f(x) is a strictly decreasing func-
tion, since for x < 0, both (2/9)x − 2−x and −2x are
strictly decreasing, while for x > 0 both (2/9)x and
−(2x+2−x)/2 = − cosh((log(2))x) are strictly decreasing
and f ′(0) = log(2/9)/2 < 0. Thus, every y-value corre-
sponds to a single x-value on the curve. Differentiating,
we obtain

− sin((log(2))y)
dy

dx
= f ′(x).

Since f ′(x) < 0 for all x, the sign of dy
dx is the same as

the sign of sin((log(2))y), giving the result as stated.

We now have a theorem justifying the figures pre-
sented.

Theorem 4.3.

(1) The zeros of ζ3(s) modulo 2πi/ log(3) are dense in
the curve 1 + 2 · 3−x cos(log(3)y) + 9−x = 4−x over
the period y ∈ [0, 2π/ log(3)].

(2) The zeros of ζ3(s) modulo 2πi/ log(2) are dense in
the curve 1 + 2 · 2−x cos(log(2)y) + 4−x = 9−x over
the period y ∈ [0, 2π/ log(2)].

(3) The real parts of the zeros of ζ3(s) are dense in the
interval [−1, r1].

Proof: (1) This uses the facts that both curves (4–4) and
(4–3) have the same range of x-values and that the peri-
ods [0, 2π/ log(3)] and [0, 2π/ log(2)] are rationally inde-
pendent. For a point (x, y + 2kπ/ log(3)) on (4–4) in its
first period, consider the point (x, y′) on curve (4–3) in its
first period such that sin((log(3))y) and sin((log(2))y′)
are of opposite signs. Then we can find 0 < k, l ∈ Z

such that y + 2kπ/ log(3) and y′ + 2lπ/ log(2) are ar-
bitrarily close. Thus we can find intersection points
(xn, yn) that are zeros of ζ3(s) such that xn → x and
yn (mod 2π/ log(3)) → y. Assertion (2) follows from a
like argument, while (3) follows easily from either (1)
or (2).

Note: A more general result is given in Corollary 4.11
below.

Theorem 4.4. All of the zeros of ζ3(s) are simple. They
are distributed so that each disjoint closed segment of the
curve 1+2·3−x cos(log(3)y)+9−x = 4−x contains exactly
one zero of ζ3(s).
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FIGURE 7. Intersections of curves (4–3) and (4–4).

Proof: If a zero of an analytic function

F (z) = f(x, y) + ig(x, y)

has multiple roots at z = a+ ib, then

F ′(a+ ib) =
∂f

∂x
(a, b) + i

∂g

∂x
(a, b) = 0.

For ζ3(z) this translates to the conditions

(log(2))2−x sin((log(2))y) + (log(3))3−x sin((log(3))y)

= 0 (4–5)

and

(log(2))2−x cos((log(2))y) + (log(3))3−x cos((log(3))y)

= 0. (4–6)

From (4–5) and (4–2) we obtain sin((log(2))y) =
sin((log(3))y) = 0, which is impossible since log(2) and
log(3) are rationally independent. Therefore, all zeros of
ζ3(s) must be simple.

For the second claim in the theorem, consider the two
cases illustrated in Figure 7.

Both graphs show the intersection of curve (4–4) with
a single closed segment of curve (4–3), where curve (4–4)
enters from below with positive slope on the left and with
negative slope on the right. We will show in each case
that curve (4–4) has exactly two points of intersection
with curve (4–3) and exits from above with the slope of
the same sign as on entry. Thus, sin((log(2)y) keeps the
same sign at the entry and exit points, while sin((log(3)y)

changes, so that exactly one of these points is a zero
of ζ3(s).

Note first that points on each closed segment of curve
(4–3) encompass the full range of x-values of curve (4–4).
Thus, each closed segment of curve (4–3) must intersect
curve (4–4). Both curves achieve their extreme x-values
at y-values that are integer multiples of their half-periods,
and therefore rationally independent. Thus, these cannot
be intersection points for the curves, meaning that curve
(4–4) must intersect at least once with the lower half and
at least once with the upper half of each closed segment.

Consider the first case, in which the slope of curve
(4–4) is positive, i.e., in one of its first half-periods. We
show that wherever this curve intersects with curve (4–3)
in one of its first half-periods, i.e., the lower half of one
of the closed segments, the slope of curve (4–4) is strictly
greater that that of curve (4–3). A second intersection
before curve (4–3) achieves its maximum x-value is then
impossible, since (4–4) would then have to cross (4–3)
from left to right and have lower slope.

We rewrite Equations (4–3) and (4–4) as

2 cos(log(3)y) = (3/4)x − 3x − 1/3x,

2 cos(log(2)y) = (2/9)x − 2x − 1/2x.

Differentiating, we obtain

2(log(3)) sin((log(3))y)
dy

dx
= (3/4)x log(3/4)− (log(3))(3x − 1/3x)



30 Experimental Mathematics, Vol. 16 (2007), No. 1

and

2(log(2)) sin((log(2))y)
dy

dx
= (2/9)x log(2/9)− (log(2))(2x − 1/2x).

At intersection in the first half-periods of both curves we
have

2−x sin((log(2))y) = 3−x sin((log(3))y),

so that the ratio of the slope of curve (4–3) to (4–4)
simplifies to

R(x) =
log(2)
log(3)

× log(3)36x − 9x log(3) + 2 log(2)9x − 4x log(3)
log(2)36x − 4x log(2) + 2 · 4x log(3)− log(2)9x

.

To show that R(x) is increasing over [−1, r1], we look at
its derivative, which simplifies to

R′(x) =
4 log(2)
log(3)

× 36x
(
(log(3))34x − (log(2))39x − (log(3/2))3

)

((log(2))36x − (log(2))4x + 2(log(3))4x − (log(2))9x)2
.

The only factor that changes sign is

f(x) :=
(
(log(3))34x − (log(2))39x − (log(3/2))3

)
.

We see that f(x) approaches the horizontal asymp-
tote y = −(log(3/2))3 as x → −∞ and has a sin-
gle critical point where (9/4)x = (log(3)/ log(2))2 or
xc = 1.13588 . . . . Thus, f(x) is increasing on [−∞, xc].
Since f(−1) = 0.2278 . . . > 0, we have R′(x) > 0 on
[−1, r1], and hence R(x) increases on [−1, r1]. We ob-
tain R(−1) = −0.4206 . . . and R(r1) = 0.8684 . . . , so
|R(x)| < 1 on [−1, r1]. Since the slope of curve (4–4) is
always positive in this consideration, we have that the
slope of curve (4–4) is strictly greater than that of curve
(4–3) at any point of intersection, as claimed.

In the second case shown in Figure 7, the slope of
curve (4–3) is negative. Where it intersects with curve
(4–4) in one of its first half-periods we have

2−x sin((log(2))y) = 3−x sin((log(3))y).

For the ratio of slopes, R(x) in this case, we again have
|R(x)| < 1, meaning that the slope of curve (4–4) is
strictly less than that of curve (4–3). Thus, there is only
one intersection in this first half-period of curve (4–4).

By the symmetry of the cosine functions for y-values,
curve (4–3) has a single intersection in each case with the

second half-periods of curve (4–4). These must be in the
same half-periods of curve (4–3). For the two intersec-
tions in each case, the sign of sin((log(2))y) remains the
same, while that of sin((log(3))y) changes. The theorem
follows then, from Lemma 4.1.

The occurrence of periods is expressed more generally
in the following theorem.

Theorem 4.5. Let ζN,p,q(s) be an exponential sum com-
posed of terms cn/ns, where cn is constant and n is di-
visible only by the primes p and q. Then the zeros of
ζN,p,q(s) reduced modulo

∣∣∣∣
2πi

m1 log(p) +m2 log(q)

∣∣∣∣

lie on a period of a curve, where (m1,m2) = (0, 1) or
(1, 0) or m1,m2 ∈ Z with gcd(m1,m2) = 1.

Proof: Let cn/ns be one of the terms of ζN,p,q(s) with
n = pe1qe2 . Then

1/ns = p−e1xq−e2x (cos(log(pe1qe2)) + i sin(log(pe1qe2)))

= p−e1xq−e2x
(
cos ((e1 log(p) + e2 log(q))y)

+ i sin ((e1 log(p) + e2 log(q))y)
)
.

Using trigonometric summation formulas, we can express
the real and imaginary parts of ζN,p,q(s) as polynomials
in p−x, q−x and the sine and cosine functions of (log(p))y
and (log(q))y.

Let gcd(m1,m2) = 1. Then we can find l1, l2 ∈ Z with
l1m2 − l2m1 = 1. Solving the linear system

(log(q))y = l1A+m1B,

(log(p))y = −l2A−m2B,

in A and B, we obtain

A = (m1(log(p)) +m2(log(q))) y,

B = − (l1(log(p)) + l2(log(q))) y.

Using trigonometric summation formulas again , we can
express the real and imaginary parts of ζN,p,q(s) as
polynomials in p−x, q−x and the sine and cosine func-
tions of A and B. Now we can use Gröbner ba-
sis reduction to eliminate cos(B) and sin(B) from the
equations � (ζN,p,q(s)) = 0, � (ζN,p,q(s)) = 0, and
cos2(B) + sin2(B) = 0, obtaining a single equation
F (x, cos(A), sin(A)) = 0. The zeros of ζN,p,q(s) lie on this
curve, which has period |2πi/(m1(log(p)) +m2(log(q)))|
in y.
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FIGURE 8. Zeros of ζ3(s) reduced modulo 6πi
log(2637)

and derived curve.

Here are some examples of the application of this the-
orem.

Example 4.6. On the left in Figure 8 we see zeros of ζ3(s)
reduced modulo 3

(
2πi

log(2637)

)
.

We apply Theorem 4.5 with p = 2, q = 3,m1 =
6,m2 = 7, deriving l1 = l2 = 1. Then we have

(log(2))y = −A− 7B,

(log(3))y = A+ 6B,

where

A = (6 log(2) + 7 log(3))y, B = −(log(2) + log(3))y.

Carrying out the algebraic reduction to remove the
trigonometric terms in B, we obtain

2 cos(log(2
6
3
7
)y) · 139968−x

+ 4096
−x − 6 · 43046721−x

− 153 · 688747536−x
+ 78 · 502096953744−x

+ 1287 · 3869835264−x

− 405 · 2754990144−x − 825 · 11019960576−x
+ 21 · 65536−x

− 21 · 4194304−x − 1287 · 44079842304−x
+ 252 · 241864704−x

− 253 · 55788550416−x − 1254 · 967458816−x − 78 · 339738624−x

− 825 · 191102976−x
+ 210 · 1224440064−x

+ 605 · 24794911296−x

+ 715 · 99179645184−x
+ 462 · 4897760256−x

+ 462 · 2176782336−x

+ 94 · 1549681956−x − 1716 · 8707129344−x
+ 1320 · 429981696−x

− 715 · 1719926784−x
+ 59 · 125524238436−x

+ 126 · 26873856−x
+ 7 · 19131876−x

+ 125 · 589824−x

− 41 · 172186884−x − 71 · 37748736−x − 286 · 223154201664−x

− 20 · 3486784401−x
+ 1716 · 19591041024−x − 750 · 107495424−x

− 43 · 147456−x
+ 160 · 9437184−x

+ 855 · 47775744−x − 7 · 16384−x

− 67108864
−x − 35 · 262144−x

+ 13 · 150994944−x
+ 319 · 84934656−x

+ 35 · 1048576−x
+ 6 · 36864−x

+ 2541865828329
−x

− 6 · 282429536481−x
+ 7 · 16777216−x − 372 · 11943936−x

− 13 · 1129718145924−x
+ 84 · 306110016−x − 190 · 2359296−x

+ 396 · 5308416−x − 148 · 1327104−x − 106 · 13947137604−x

− 510 · 21233664−x
+ 21 · 331776−x

+ 4782969
−x

+ 28 · 76527504−x

+ 15 · 387420489−x
+ 300 · 6198727824−x

+ 286 · 764411904−x

+ 15 · 31381059609−x
+ 56 · 2985984−x

= 0,

giving the plot on the right. This expression has 64
nonzero terms, with degrees 1 in cos(log(2637)y), and
26 in each of 2−x and 3−x for comparison with data for
other curves given below.

Example 4.7. Figure 9 shows zeros of η4 reduced modulo
2πi

log(2) and modulo 2π
log(3) .

For the first diagram, the zeros lie on the curve given
by

4−x+1 cos2(log(2)y) + 2
(
2−x − 8−x

)
cos(log(2)y)

− 3 · 4−x + 9−x − 16−x − 1 = 0.

This splits into linear factors in cos(log(2)), one giving
the loops to the left of y = 0 and the other giving the
loops to the right. For the second diagram, the curves
are given by

4 cos2(log(3)y) · 9−x

+
(
4 · 27−x + 4 · 3−x − 6 · 48−x − 2 · 12−x

)
cos(log(3)y)

+ 256−x − 64−x − 2 · 144−x − 36−x + 81−x − 4−x

+ 2 · 9−x − 4 · 16−x + 1 = 0.
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FIGURE 10. 506 zeros of π24 reduced modulo 2πi
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and derived curve (Alexa’s penguin).

This again splits, giving curves to the left and right of
y = 0. The third plot shows several periods of these
curves plotted together.

Example 4.8. We consider the function

π24(s) := 1 +
1
2s

+
1
3s

+
1
4s

+
1
6s

+
1
8s

+
1
9s

+
1

12s
+

1
16s

+
1

18s
+

1
24s

.

Here the terms involve only the primes 2 and 3, so by
Theorem 4.5 the zeros reduced modulo 2πi

log(24) will lie
on a curve in the plane. Using the algebraic reduction

techniques outlined we derived an explicit formula for
this curve, the data on which is contained in Table 1.

no. of terms deg (cos(log(24)y)) deg(2−x) deg(3−x)
π24 1765 8 80 40

TABLE 1. Data of the curve of the reduced zeros of π24.

Figure 10 depicts the curve. Notice that the picture is
turned −90 degrees to obtain a more dramatic effect.

4.2 Multiple-Parameter Curves

We now examine the patterns that appear when the
imaginary parts of the zeros of an exponential sum involv-
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ing three or more primes are reduced via various periods.
We start by reconsidering Figure 1 from the introduction,
in which zeros of ζ5(s) are reduced modulo 2πi/ log(5).
There no longer appears to be a simple curve. Since the
number of zeros is countable, they cannot fill a region.
However, there are areas where they appear to become
dense. There are also shadings and outlines for curves
that ask for explanation.

The zeros of ζ(s) are the intersection points of the
curves

1 +
cos(log(2)y)

2x
+

cos(log(3)y)
3x

+
cos(2 log(2)y)

22x
(4–7)

+
cos(log(5)y)

5x
= 0

and

sin(log(2)y)
2x

+
sin(log(3)y)

3x
+

sin(2 log(2)y)
22x

(4–8)

+
sin(log(5)y)

5x
= 0.

We can eliminate the terms in log(3)y, say, but we are
still left with trigonometric terms in both log(2)y and
log(5)y, so the function we obtain no longer has a sim-
ple period in y as before. We do note, however, that
for values y1 (mod 2π/ log(2)), y2 (mod 2π/ log(3)), y3
(mod 2π/ log(5)), we can find y such that the values
y− y1 (mod 2π/ log(2)), y− y2 (mod 2π/ log(3)), y− y3
(mod 2π/ log(5)) are arbitrarily small. This leads us to
consider log(2)y, log(3)y, and log(5)y as independent
variables log(2)y1, log(3)y2, and log(5)y3. The function

F (x, y1, y2, y3) = 1 + 2x+iy1 + 3x+iy2 + 22(x+iy1) (4–9)

+ 5x+iy3

maps R4 into C. The zeros of F are not discrete, but lie
on smooth surfaces. The function F is periodic in the
variables y1, y2, y3 with periods π1 = 2π/ log(2), π2 =
2π/ log(3), π3 = 2π/ log(5) respectively. Thus, the zeros
of F in R×∏3

j=1[0, πj ] may be taken as representatives of
all the zeros of F . The partial diagonal map I : x+ iy →
(x, y, y, y) takes C into R4. We would like to investigate
the relationship between the zeros of ζ5(s) via the map I
and the zeros of F . We approach this more generally in
the following theorem.

Theorem 4.9. Let

F (x, y1, y2, . . . , yk) : Rk+1 → C

be continuously differentiable and periodic in the vari-
ables y1, y2, . . . , yk with periods π1, π2, . . . , πk, which are

rationally independent. Let I : C→ Rk+1 be the injection
x+ iy → (x, y, y, . . . , y) and

R : Rk+1 → R×
k∏

j=1

[0, πj ]

the reduction map taking each yj to its equivalent modulus
in the period [0, πj ]. Suppose that the function f(x+iy) =
F (x, y, . . . , y) = F ◦I defines a complex analytic function
and that {(x, y1, y2, . . . , yk) : ∂F

∂x 	= 0} is dense in Rk+1.
Then the zeros of f under the composition R◦I are dense
in the zeros of F in R×∏k

j=1[0, πj ].

Proof: Let Xz = (x, y1, y2, . . . , yk) ∈ R ×∏k
j=1[0, πj ] be

a zero of F . We wish to show that for ε > 0 we can
find a zero z of f and a preimage Xz ∈ R−1(Xz) such
that |I(z)−Xz| < ε. By the hypothesis, we may restrict
ourselves to Xz for which a = ∂F

∂x (Xz) 	= 0. Certainly, we
may find z and X ∈ R−1(Xz) such that I(z) and X are
as close as we like. The problem is to find such a z with
f(z) = 0. We start by finding z0 and Xz close enough
and then show that the iterates

zn+1 = zn − f(zn)
f ′(zn)

obtained using Newton’s method converge to the de-
sired z.

Let ε > 0 be given. By the continuity of the deriva-
tives, we can find δ1 < ε such that

|X −Xz| < δ1 ⇒
∣∣∣∣
∂F

∂x
(X)− a

∣∣∣∣ <
min{|a|, 1}
8(k + 1)

.

Further, by continuity, we can find δ2 < δ1 such that

|X −Xz| < δ2 ⇒ |F (X)| < δ1|a|
8(k + 1)

.

We now find z0 ∈ C such that |I(z0) − Xz| < δ2/2 for
some Xz ∈ R−1(Xz). We note the following:

(1) f ′(x+ iy) = ∂f
∂x (x+ iy) = ∂F

∂x (I(x+ iy)).

(2) If |I(z′) − Xz| < δ1 and |I(z′′) − Xz| < δ1 then∣∣∣ f(z′′)−f(z′)
z′′−z′

∣∣∣ < min{|a|,1}
8(k+1) . Otherwise, for some point

z′′′ on the line between z′ and z′′, we would have
|f ′(z′′′)| ≥ min{|a|,1}

8(k+1) . However, since |I(z′′′)−Xz| <
δ1, this contradicts our choice for δ1.

(3) |f ′(z)− a| < |a|/8(k + 1)⇒ |f ′(z)| ≥
(8k + 7)|a|/8(k + 1).
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(4) In C, |z′ − z′′| < δ/(k + 1) ⇒ |I(z′) − I(z′′)| < δ

in Rk+1.

We now examine the Newton’s method iterates. By
the choice of δ2 we have

|z1 − z0| =
∣∣∣∣
f(z0)
f ′(z0)

∣∣∣∣ =
∣∣∣∣
f(z0)
a

+ f(z0)
(

1
f ′(z0)

− 1
a

)∣∣∣∣

≤
∣∣∣∣
F ◦ I(z0)

a

∣∣∣∣+
∣∣∣∣
F ◦ I(z0)

a

∣∣∣∣

∣∣∣∣
F ◦ I(z0)− a
(F ◦ I)′(z0)

∣∣∣∣

<
δ1

8(k + 1)
+

δ1
8(k + 1)

|a|
8(k + 1)

8(k + 1)
|a|(8k + 7)

<
δ1

4(k + 1)
.

This implies |I(z1) − I(z0)| < δ1/4 and ensures that
|I(z1) − Xz| < 3δ1/4, so we still have control over the
size of the derivative.

We assume inductively that |I(zn+1) −Xz| < δ1 and
|I(zn)−Xz| < δ1, which is true for n = 0. Then we have
∣∣∣∣
f(zn+1)
zn+1 − zn

∣∣∣∣ =
∣∣∣∣
f(zn+1)− f(zn)

zn+1 − zn
− f ′(zn)

∣∣∣∣

≤
∣∣∣∣
f(zn+1 − f(zn)
zn+1 − zn

− a
∣∣∣∣+ |a− f ′(zn)|

<
min{|a|, 1}
4(k + 1)

,

and then we have

|zn+2 − zn+1| =
∣∣∣∣
f(zn+1)
f ′(zn+1)

∣∣∣∣

<
min{|a|, 1}
4(k + 1)

|zn+1 − zn| 8(k + 1)
|a|(8k + 7)

<
|zn+1 − zn|
2(k + 1)

.

This gives |I(zn+2)−I(zn+1)| < 1
2 |I(zn+1)−I(zn)|, so we

always have |I(zn) − Xz| < δ1 as our Newton’s method
proceeds. The sequence zn converges to some z ∈ C with
f(z) = F (I(z)) = 0. Also, |I(z) − Xz| ≤ δ1 < ε, as
required.

We apply this theorem along with Theorem 3.1 to es-
tablish a lower bound for the real parts of zeros of ζN (s)
for N prime.

Theorem 4.10. For N prime we have

inf{σ : ζN (s) = 0} = βN ,

where βN is the negative root of ζN−1(βN ) = N−βN .

Proof: Suppose that pj is the jth prime with pk = N .
Substituting log(pj)t = yj in the equations � ((ζN (s)) =
0 and � ((ζN (s)) = 0, we obtain

1 + 2−x cos(y1) + 3−x cos(y2) + · · ·+N−x cos(yk) = 0,

2−x sin(y1) + 3−x sin(y2) + · · ·+N−x sin(yk) = 0.

We see that the substitutions yj = 0 for 1 ≤ j ≤ N − 1
and yk = π cause the second equation to vanish and
transform the first to

1 + 2−x + 3−x + · · ·+ (N − 1)−x −N−x = 0,

for which the negative root is βN . Applying Theorem 4.9,
we can find roots of ζN (σ + it) for which σ is arbitrarily
close to βN . Applying Theorem 3.1, the result follows.

To relate Theorem 4.9 back to our diagrams, we
use the projection P : Rk+1 → C defined by
P (x, y1, . . . , yk) = x + iyk. The next corollary follows
directly.

Corollary 4.11. Let F, f be as in Theorem 4.9 and let V
be the zeros of F in R ×∏k

j=1[0, πj ]. Then the zeros of
f reduced into the period 0 ≤ y < πk are dense in P (V ).

We return to Figure 1 to illustrate Corollary 4.11. The
zeros of ζ5(s) reduced modulo 2πi/ log(5) are dense in
the P -image of the zeros of F (x, y1, y2, y3), as defined in
(4–9), in R ×∏3

j=1[0, πj ]. We can obtain equations for
bounding curves by examining the extreme x-values of
zeros of F . These zeros satisfy

Fr = 1 +
cos(log(2)y1)

2x
+

cos(log(3)y2)
3x

+
cos(2 log(2)y1)

22x

+
cos(log(5)y3)

5x
= 0 (4–10)

and

Fi =
sin(log(2)y1)

2x
+

sin(log(3)y2)
3x

+
sin(2 log(2)y1)

22x

+
sin(log(5)y3)

5x
= 0, (4–11)

where Fr and Fi are the real and imaginary parts of F .
We regard (4–10) and (4–11) as defining x implicitly as
a function of the independent variables y1 and y3. To
find the bounding curve of the image in C of the zeros of
F , we find the extreme values of x for each fixed y3 by
setting ∂x

∂y1
= 0.
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FIGURE 11. Zeros of ζ5(s) reduced modulo 2πi
log(5)

with bounding curve.
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FIGURE 12. 10,000 zeros of η5(s) reduced modulo 2πi
log(5)

with bounding curve.

Taking partial derivatives of (4–10) and (4–11) with
respect to y1, we obtain

∂Fr

∂x

∂x

∂y1
+
∂Fr

∂y1
+
∂Fr

∂y2

∂y2
∂y1

= 0,

∂Fi

∂x

∂x

∂y1
+
∂Fi

∂y1
+
∂Fi

∂y2

∂y2
∂y1

= 0.

We then eliminate ∂y2
∂y1

to obtain the condition

∂Fr

∂y1

∂Fi

∂y2
− ∂Fr

∂y2

∂Fi

∂y1
= 0.

Note that regarding y1 as the dependent variable and y2
independent leads to the same condition.

Doing the formal differentiation, we obtain the equa-
tion

sin(log(3)y2)
3x

(
cos(log(2)y1)

2x
+

2 cos(2 log(2)y1)
22x

)

− cos(log(3)y2)
3x

(
sin(log(2)y1)

2x
+

2 sin(2 log(2)y1)
22x

)

= 0. (4–12)
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FIGURE 13. 12,000 zeros of ζ6(s) reduced modulo 2πi
log(6)

with bounding curve.
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FIGURE 14. 12,000 zeros of η6(s) reduced modulo 2πi
log(6)

and bounding curve.

We now have the three Equations (4–10), (4–11), and
(4–12) to describe the bounding curve. Using algebraic
reduction we can eliminate terms in log(2)y1 and log(3)y2
to obtain a single equation involving x and log(5)y3 hav-
ing period 2πi/ log(5).

In Figure 11 we see the comparison between reduced
zeros of ζ5(s) and a plot of the image of the curve given
by this equation under the projection P .

Applying the same technique, we can derive the equa-
tion for the bounding curve for the zeros of η5(s) reduced
modulo 2πi/ log(5). These are illustrated in Figure 12.
Of interest here is the crescent-moon-shaped area that
appears to exclude zeros. Data on the equations derived
for these bounding curves is given in Table 2.

The algebraic reduction entailed is already fairly in-
volved. For ζ6(s) (Figure 13) and η6(s) (Figure 14) the
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FIGURE 15. 20,000 zeros of ζ5(s) reduced modulo 2πi
log(5/3)

(left) and 2πi
log(10/3)

(center). 20,000 zeros of η5(s) reduced

modulo 2πi
log(5/2)

(right).
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FIGURE 16. 20,000 zeros of ζ6(s) and η6(s) reduced modulo 4πi
log(3/2)

and 4πi
log(3)

, respectively.

no. of terms deg (cos(log(5)y)) deg(2−x) deg(3−x) deg(5−x)

ζ5 183 5 16 8 10

η5 185 5 16 8 10

TABLE 2. Data of the bounding curves of ζ5 and η5.

data on the equations for the bounding curves are given
in Table 3. These evaluations were done using Maple 8,
and seem to approach the limit of what current algebraic
packages are able to handle practically.

For these examples, what are probably the more ob-
vious periods, i.e., 2πi/ log(N), were chosen for reducing
zeros. As in the case with two prime exponential sums,
we can choose a period 2πi/L, where L is a rational lin-

ear combination of log(pj)’s for primes pj appearing in
the sum. The finer structures of these diagrams are more
apparent in the sums involving three primes; see Figures
15 and 16. With more primes, the diagrams for some
periods often seem fairly amorphous. However, as we
see in Figure 17, the choice of an appropriate period
may still give a diagram with interesting separations of
points.
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FIGURE 17. 20,000 zeros of ζ10(s) and η10(s) reduced modulo 2πi
log(10/9)

and 2πi
log(2)

, respectively.
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FIGURE 18. 50,000 zeros of η10(s) reduced into R ×
[

−π
log(2)

, π
log(2)

]
×
[

−π
log(3)

, π
log(3)

]
and bounding surface.

no. of terms deg (cos(log(6)y)) deg(2−x) deg(3−x) deg(5−x)

ζ6 1197 7 30 18 12

η6 1202 7 30 18 12

TABLE 3. Data of the bounding curves of ζ5 and η6.

5. FURTHER WORK

A natural extension is to look at projections into more
than one period, giving representations of zeros in higher-
dimensional spaces. For ζ5, for example, and other
Dirichlet series involving three primes, an appropriate
3D representation in R × [0, π1]× [0, π2], for appropriate
periods π1, π2, will show the reduced zeros becoming
dense in a surface. Figure 18 shows a further rendering
of zeros of η10, where the x-axis represents the real part,
the y-axis the residue of the imaginary part in the period

[
−π

log(2) ,
π

log(2)

]
, and the z-axis the residue of the imagi-

nary part in the period
[

−π
log(3) ,

π
log(3)

]
. This gives more

detail than the 2D rendering in the right of Figure 17,
which is the view through the bottom of the box. The
rounded bump shown on the right in Figure 17 is shown
to extend in a ropelike structure along the z-axis. The
somewhat amorphous scattering of zeros seen on the right
resolves into ridges running diagonally in the yz-plane.
The graphic on the right shows the bounding surface for
the zeros. This parametric equation was obtained using
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differentiation and algebraic reduction as described in the
previous section.

Further work planned includes the extension of work of
van de Lune and te Riele [van de Lune and te Riele 82] to
find near extreme zeros of partial sums of the ζ-function,
in particular, zeros with real part greater than 1. Also, we
would like to extend this investigation to include partial
sums of L-series.
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