A Class of Conjectured Series Representations for $1 / \pi$

Jesús Guillera

CONTENTS

1. A Special Type of Recurrence
2. A Companion Sequence
3. Two Conjectures
4. Examples

References

Using the second conjecture in the paper [Guillera 06b] and inspired by the theory of modular functions, we find a method that allows us to obtain explicit formulas, involving eta or theta functions, for the parameters of a class of series for $1 / \pi$. As in [Guillera 06b], the series considered in this paper include Ramanujan's series as well as those associated with the Domb numbers and Apéry numbers.

1. A SPECIAL TYPE OF RECURRENCE

The sequence of integers

$$
\begin{equation*}
B_{n}=\frac{(2 n)!^{3}}{n!^{6}} \tag{1-1}
\end{equation*}
$$

satisfies the following recurrence:

$$
n^{3} B_{n}-8(2 n-1)^{3} B_{n-1}=0
$$

Other sequences of integers satisfying a first-order recurrence whose coefficients are third degree-polynomials,

$$
\begin{gather*}
B_{n}=\frac{(4 n)!}{n!^{4}} \tag{1-2}\\
B_{n}=\frac{(2 n)!(3 n)!}{n!^{5}} \tag{1-3}
\end{gather*}
$$

and

$$
\begin{equation*}
B_{n}=\frac{(6 n)!}{(3 n)!n!^{3}} \tag{1-4}
\end{equation*}
$$

satisfy the recurrences

$$
\begin{aligned}
& n^{3} B_{n}-8(2 n-1)(4 n-3)(4 n-1) B_{n-1}=0 \\
& n^{3} B_{n}-6(2 n-1)(3 n-2)(3 n-1) B_{n-1}=0
\end{aligned}
$$

and

$$
n^{3} B_{n}-24(2 n-1)(6 n-5)(6 n-1) B_{n-1}=0
$$

respectively. Examples of sequences of integers that satisfy a second-order recurrence with third-degree polynomials as coefficients are [Almkvist and Zudilin 03] the sequence of Domb numbers [Chan et al. 04]

Keywords: Ramanujan series, series for $1 / \pi$, Domb numbers, Apéry numbers, Dedekind η function, Jacobi θ functions

$$
\begin{equation*}
B_{n}=\sum_{j=0}^{n}\binom{n}{j}^{2}\binom{2 j}{j}\binom{2 n-2 j}{n-j} \tag{1-5}
\end{equation*}
$$

which satisfy
$n^{3} B_{n}-2(2 n-1)\left(5 n^{2}-5 n+2\right) B_{n-1}+64(n-1)^{3} B_{n-2}=0 ;$
the sequence of Apéry numbers

$$
\begin{equation*}
B_{n}=\sum_{j=0}^{n}\binom{n}{j}^{2}\binom{n+j}{j}^{2} \tag{1-7}
\end{equation*}
$$

which satisfy
$n^{3} B_{n}-(2 n-3)\left(17 n^{2}-17 n+5\right) B_{n-1}+(n-1)^{3} B_{n-2}=0 ;$
and the sequences

$$
\begin{equation*}
B_{n}=\sum_{j=0}^{n}\binom{n}{j}^{4} \tag{1-8}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{n}=\sum_{j=0}^{\lfloor n / 3\rfloor} 3^{n-3 j}\binom{n}{3 j}\binom{n+j}{j} \frac{(3 j)!}{j!^{3}} \tag{1-9}
\end{equation*}
$$

which satisfy similar recurrences. Our interest in sequences of integers B_{n} satisfying a recurrence with thirddegree polynomials as coefficients comes from the fact that for certain of them [Almkvist and Zudilin 03] there exist algebraic numbers z, a, and b such that

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{n} z^{n}(a+b n)=\frac{1}{\pi} \tag{1-10}
\end{equation*}
$$

Series for $1 / \pi$ associated with the sequences in (1-1), (1-2), (1-3), and (1-4) were first discovered by Ramanujan and were extensively studied later. Proofs can be found in [Berndt and Chan 01, Borwein and Borwein 87, Chan et al. 01, Chudnovsky and Chudnovsky 87, Ramanujan 14]. In [Guillera 06a] the author gave simpler proofs of some identities of the form (1-10) using the WZ method. Series for $1 / \pi$ using the Apéry numbers (1-7) were presented in a talk of T. Sato [Sato 02]. Motivated by them, similar series for $1 / \pi$ associated with the Domb numbers $(1-5)$ have been studied and proved in [Chan et al. 04]. H. H. Chan [Chan 05], also gives some examples of series for $1 / \pi$ associated with several sequences, one of them with the numbers (1-9). Y. Yang has proved similar evaluations [Yang 05] using the numbers (1-8) and following a technique explained in [Yang 04]. Other sequences satisfying recurrences with third-degree polynomials as coefficients [Almkvist and Zudilin 03] will be used in the examples of Section 4.

2. A COMPANION SEQUENCE

To each B_{n}, we associate a companion D_{n} defined by

$$
D_{n}=\frac{d B_{n}}{d n}
$$

where $d / d n$ means that we differentiate as if n were a continuous variable. From the recurrence of B_{n} we can obtain a recurrence for D_{n}. For example, the recurrence (1-6) for the Domb numbers (1-5) can be written in the form

$$
B_{n}=2 \frac{(2 n-1)\left(5 n^{2}-5 n+2\right)}{n^{3}} B_{n-1}-64 \frac{(n-1)^{3}}{n^{3}} B_{n-2}
$$

and differentiating with respect to n as if n were a continuous variable, we obtain

$$
\begin{aligned}
D_{n}= & 2 \frac{(2 n-1)\left(5 n^{2}-5 n+2\right)}{n^{3}} D_{n-1}-64 \frac{(n-1)^{3}}{n^{3}} D_{n-2} \\
& +6 \frac{5 n^{2}-6 n+2}{n^{4}} B_{n-1}-192 \frac{(n-1)^{2}}{n^{4}} B_{n-2} .
\end{aligned}
$$

From the initial conditions $B_{0}=1$ and $D_{0}=0$, we get

$$
\begin{align*}
& B_{1}=4 B_{0}+0 B_{-1}=4 \tag{2-1}\\
& D_{1}=4 D_{0}+0 D_{-1}+6 B_{0}+0 B_{-1}=6 \tag{2-2}
\end{align*}
$$

and with those values and using the recurrences, we can determine B_{2}, B_{3}, \ldots and D_{2}, D_{3}, \ldots

3. TWO CONJECTURES

In this section we give a method and two conjectures that will allow us to obtain explicit formulas involving eta or theta functions for the parameters of a class of series for $1 / \pi$.

Motivated by the theory of modular functions we begin by introducing the variable

$$
\begin{equation*}
q=e^{-\pi \sqrt{N}} \tag{3-1}
\end{equation*}
$$

Now, inspired by the paper [Guillera 06b], we define the functions

$$
\begin{equation*}
S(z)=\sum_{n=0}^{\infty} B_{n} z^{n} \tag{3-2}
\end{equation*}
$$

and

$$
W(z)=\sum_{n=0}^{\infty} \frac{d B_{n}}{d n} z^{n}=\sum_{n=0}^{\infty} D_{n} z^{n}
$$

and consider the following equation relating z and q :

$$
\begin{equation*}
q=z \exp \frac{W(z)}{S(z)} \tag{3-3}
\end{equation*}
$$

If we write z as a series of powers of q,

$$
\begin{equation*}
z=\alpha_{1} q+\alpha_{2} q^{2}+\alpha_{3} q^{3}+\alpha_{4} q^{4}+\cdots \tag{3-4}
\end{equation*}
$$

then the coefficients are given by

$$
\begin{align*}
& \alpha_{1}=\lim _{z \rightarrow 0} \frac{z}{q} \\
& \alpha_{2}=\lim _{z \rightarrow 0} \frac{z-\alpha_{1} q}{q^{2}} \tag{3-5}\\
& \alpha_{3}=\lim _{z \rightarrow 0} \frac{z-\alpha_{1} q-\alpha_{2} q^{2}}{q^{3}}
\end{align*}
$$

In the same way, if we write S as a series of powers of q,

$$
\begin{equation*}
S=1+\beta_{1} q+\beta_{2} q^{2}+\beta_{3} q^{3}+\beta_{4} q^{4}+\cdots \tag{3-6}
\end{equation*}
$$

the coefficients are given by

$$
\begin{align*}
& \beta_{1}=\lim _{z \rightarrow 0} \frac{S-1}{q} \\
& \beta_{2}=\lim _{z \rightarrow 0} \frac{S-1-\beta_{1} q}{q^{2}} \tag{3-7}\\
& \beta_{3}=\lim _{z \rightarrow 0} \frac{S-1-\beta_{1} q-\beta_{2} q^{2}}{q^{3}}
\end{align*}
$$

Conjecture 3.1. The coefficients of (3-4) and (3-6), given by (3-5) and (3-7), are all integers, and z and S are the products of a finite number of Dedekind η functions:

$$
\eta(q)=q^{1 / 24} \prod_{n=0}^{\infty}\left(1-q^{n+1}\right)
$$

Furthermore, for some rational values of N, z is an algebraic number.

We define the function

$$
V(z)=\sum_{n=0}^{\infty} \frac{d}{d n}\left(B_{n} z^{n}\right)=W(z)+\ln (z) S(z)
$$

From (3-1) and (3-3), we get the equation

$$
\begin{equation*}
\frac{V(z)}{S(z)}=-\pi \sqrt{N} \tag{3-8}
\end{equation*}
$$

Inspired by the paper [Guillera 06b], we consider the equations

$$
\begin{align*}
& a S+b z \frac{d S}{d z}=\frac{1}{\pi} \tag{3-9}\\
& a V+b z \frac{d V}{d z}=0 \tag{3-10}
\end{align*}
$$

From (3-8) and (3-10) we get

$$
\begin{equation*}
a(\ln q) S+b z \frac{d}{d z}[(\ln q) S]=0 \tag{3-11}
\end{equation*}
$$

and using (3-11) we obtain

$$
\begin{equation*}
a(\ln q) S+b z\left[\frac{1}{q}\left(\frac{d z}{d q}\right)^{-1} S+(\ln q) \frac{d S}{d z}\right]=0 \tag{3-12}
\end{equation*}
$$

From (3-12) and (3-9) we obtain the following formula, which allows us to determine the parameter b :

$$
\begin{equation*}
\frac{b}{\sqrt{N}}=\frac{q}{z S} \frac{d z}{d q} \tag{3-13}
\end{equation*}
$$

Using (3-9), we get the following formula for the parameter a :

$$
a=\frac{1}{S}\left(\frac{1}{\pi}-b z \frac{d S}{d z}\right)=\frac{1}{S}\left[\frac{1}{\pi}-b z \frac{d S}{d q}\left(\frac{d z}{d q}\right)^{-1}\right]
$$

which, with the use of (3-13), gives

$$
\begin{equation*}
a=\frac{1}{S}\left[\frac{1}{\pi}-\frac{q \sqrt{N}}{S} \frac{d S}{d q}\right] \tag{3-14}
\end{equation*}
$$

which allows us to determine the parameter a.
Conjecture 3.2. Substituting the values of z and S in (3-13) and (3-14) we obtain values for a and b such that the following identity holds:

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{n} z^{n}(a+b n)=\frac{1}{\pi} \tag{3-15}
\end{equation*}
$$

Moreover, for the rational values of N for which z is an algebraic number (see Conjecture 3.1), the parameters a and b are also algebraic numbers.

4. EXAMPLES

Example 4.1. We take the sequence of numbers

$$
B_{n}=\sum_{j=0}^{n}\binom{2 j}{j}^{2}\binom{2 n-2 j}{n-j}^{2}
$$

The numbers B_{n} are obtained recursively by setting $B_{0}=$ 1 and
$B_{n}=8 \frac{(2 n-1)\left(2 n^{2}-2 n+1\right)}{n^{3}} B_{n-1}-256 \frac{(n-1)^{3}}{n^{3}} B_{n-2}$.

Although this is a second-order recurrence, we can obtain B_{1} as in (2-1). The companions D_{n} satisfy the recurrence $D_{0}=0$ and

$$
\begin{aligned}
D_{n}= & 8 \frac{(2 n-1)\left(2 n^{2}-2 n+1\right)}{n^{3}} D_{n-1}-256 \frac{(n-1)^{3}}{n^{3}} D_{n-2} \\
& +8 \frac{6 n^{2}-8 n+3}{n^{4}} B_{n-1}-768 \frac{(n-1)^{2}}{n^{4}} B_{n-2},
\end{aligned}
$$

and again, we obtain D_{1} as in (2-2). Following the method described in Section 3, we get

$$
\begin{aligned}
z= & q-8 q^{2}+44 q^{3}-192 q^{4}+718 q^{5}-2400 q^{6}+7352 q^{7} \\
& -20992 q^{8}+\cdots, \\
S= & 1+8 q+24 q^{2}+32 q^{3}+24 q^{4}+48 q^{5}+96 q^{6}+64 q^{7} \\
& +28 q^{8}+\cdots .
\end{aligned}
$$

Searching the sequences of the coefficients of these series in the On-Line Encyclopedia of Integer Sequences [Sloane 06], we find that

$$
\begin{equation*}
z=\frac{\theta_{2}^{4}(q)}{16 \theta_{3}^{4}(q)}=\frac{\lambda^{*}(q)^{2}}{16} \tag{4-1}
\end{equation*}
$$

and

$$
\begin{equation*}
S=\theta_{3}^{4}(q) \tag{4-2}
\end{equation*}
$$

where $\theta_{2}(q)$ and $\theta_{3}(q)$ are Jacobi theta functions and $\lambda^{*}(q)$ is the elliptic lambda modulus function, defined by

$$
\lambda^{*}(q)=\frac{\theta_{2}^{2}(q)}{\theta_{3}^{2}(q)}
$$

Substituting in (3-2) the values given in (4-1) and (4-2), we obtain the formula

$$
\theta_{3}^{4}(q)=\sum_{n=0}^{\infty} B_{n}\left(\frac{\theta_{2}^{4}(q)}{16 \theta_{3}^{4}(q)}\right)^{n}
$$

Substituting (4-1) and (4-2) in (3-13) and expanding in a power series of q, we get

$$
\begin{aligned}
\frac{b}{\sqrt{N}}= & 1-16 q+128 q^{2}-704 q^{3}+3072 q^{4}-11488 q^{5} \\
& +38400 q^{6}-\cdots
\end{aligned}
$$

Again using the On-Line Encyclopedia of Integer Sequences [Sloane 06], we are lucky and find that

$$
\begin{equation*}
\frac{b}{\sqrt{N}}=1-\frac{\theta_{2}^{4}(q)}{\theta_{3}^{4}(q)}=1-\lambda^{*}(q)^{2}=\frac{\theta_{4}^{4}(q)}{\theta_{3}^{4}(q)} \tag{4-3}
\end{equation*}
$$

Substituting (4-2) in (3-14), we obtain

$$
\begin{equation*}
a=\frac{\frac{1}{\pi}-4 \sqrt{N} q_{\frac{1}{\theta_{3}(q)}} \frac{d \theta_{3}(q)}{d q}}{\theta_{3}^{4}(q)}=\alpha(-q)\left[1-\lambda^{*}(q)^{2}\right] \tag{4-4}
\end{equation*}
$$

where $\alpha(q)$ is the elliptic alpha function, defined by

$$
\alpha(q)=\frac{\frac{1}{\pi}-4 \sqrt{N} q \frac{1}{\theta_{4}(q)} \frac{d \theta_{4}(q)}{d q}}{\theta_{3}^{4}(q)}
$$

Substituting in $(3-15)$ the values of the parameters given in $(4-1),(4-3)$, and $(4-4)$, we obtain the following formula:

$$
\frac{1}{\pi}=\left[1-\lambda^{*}(q)^{2}\right] \sum_{n=0}^{\infty} B_{n}\left(\frac{\lambda^{*}(q)^{2}}{16}\right)^{n}[\alpha(-q)+\sqrt{N} n]
$$

where $q=e^{-\pi \sqrt{N}}$ or $q=-e^{-\pi \sqrt{N}}$.
Example 4.2. We take the numbers defined recursively by $B_{0}=1$ and

$$
B_{n}=4 \frac{(2 n-1)\left(3 n^{2}-3 n+1\right)}{n^{3}} B_{n-1}-16 \frac{(n-1)^{3}}{n^{3}} B_{n-2}
$$

The companions D_{n} satisfy the recurrence $D_{0}=0$ and

$$
\begin{aligned}
D_{n}= & 4 \frac{(2 n-1)\left(3 n^{2}-3 n+1\right)}{n^{3}} D_{n-1}-16 \frac{(n-1)^{3}}{n^{3}} D_{n-2} \\
& +4 \frac{9 n^{2}-10 n+3}{n^{4}} B_{n-1}-48 \frac{(n-1)^{2}}{n^{4}} B_{n-2} .
\end{aligned}
$$

Following the method described in Section 3, we get

$$
\begin{aligned}
z= & q-8 q^{2}+28 q^{3}-64 q^{4}+142 q^{5}-352 q^{6}+792 q^{7}-1536 q^{8} \\
& +2917 q^{9}-5744 q^{10}+\cdots
\end{aligned}
$$

and

$$
\begin{aligned}
S= & 1+4 q+8 q^{2}+16 q^{3}+24 q^{4}+24 q^{5}+32 q^{6}+32 q^{7}+24 q^{8} \\
& +52 q^{9}+48 q^{10} \cdots .
\end{aligned}
$$

With the On-Line Encyclopedia of Integer Sequences, we find that

$$
\begin{equation*}
S=\theta_{3}^{2}(q) \theta_{3}^{2}\left(q^{2}\right) \tag{4-5}
\end{equation*}
$$

Using the Maple package q-series [Garvan 05], more specifically the functions prodmake and etamake, we find that

$$
\begin{equation*}
z=q \prod_{n=0}^{\infty}\left(\frac{1-q^{2 n+1}}{1-q^{8 n+4}}\right)^{8}=\left[\frac{\eta\left(q^{8}\right)}{\eta\left(q^{2}\right)} \frac{\eta(q)}{\eta\left(q^{4}\right)}\right]^{8} \tag{4-6}
\end{equation*}
$$

From the identities [Garvan 05]

$$
\begin{align*}
& \theta_{2}(q)=2 \frac{\eta^{2}\left(q^{4}\right)}{\eta\left(q^{2}\right)} \\
& \theta_{3}(q)=\frac{\eta^{5}\left(q^{2}\right)}{\eta^{2}\left(q^{4}\right) \eta^{2}(q)} \tag{4-7}\\
& \theta_{4}(q)=\frac{\eta^{2}(q)}{\eta\left(q^{2}\right)}
\end{align*}
$$

we can get

$$
\begin{equation*}
\eta(q)=\left[\frac{1}{2} \theta_{2}(q) \theta_{3}(q) \theta_{4}^{4}(q)\right]^{1 / 6} \tag{4-8}
\end{equation*}
$$

which allows us to convert formulas using the Dedekind eta function into formulas using the Jacobi theta functions θ_{2}, θ_{3}, and θ_{4}. From (4-6) and using (4-8), we can $\operatorname{express} z$ with θ functions. A more simplified formula is

$$
\begin{equation*}
z=\left[\frac{\theta_{2}\left(q^{2}\right)}{\theta_{2}(q)} \frac{\theta_{4}(q)}{\theta_{4}\left(q^{2}\right)}\right]^{4} \tag{4-9}
\end{equation*}
$$

which can be obtained using the first and third identities of (4-7). Substituting (4-5) and (4-9) in (3-2), we obtain the formula

$$
\sum_{n=0}^{\infty} B_{n}\left[\frac{\theta_{2}\left(q^{2}\right)}{\theta_{2}(q)} \frac{\theta_{4}(q)}{\theta_{4}\left(q^{2}\right)}\right]^{4 n}=\theta_{3}^{2}(q) \theta_{3}^{2}\left(q^{2}\right)
$$

Taking the logarithm of (4-6) and differentiating with respect to q, we get

$$
\begin{equation*}
\frac{q}{z} \frac{d z}{d q}=1+8 \sum_{n=0}^{\infty} \frac{(2 n+1) q^{2 n+1}}{1-q^{2 n+1}}-8 \sum_{n=0}^{\infty} \frac{(8 n+4) q^{8 n+4}}{1-q^{8 n+4}} . \tag{4-10}
\end{equation*}
$$

From the formula (3.2.24) of [Borwein and Borwein 87] and the identities $\theta_{4}(-q)=\theta_{3}(q)$ and $\theta_{2}^{4}(-q)=-\theta_{2}^{4}(q)$, we get

$$
\theta_{2}^{4}(q)+\theta_{3}^{4}(q)=1+24 \sum_{n=0}^{\infty} \frac{(2 n+1) q^{2 n+1}}{1-q^{2 n+1}}
$$

which allows us to write (4-10) using θ functions:

$$
\begin{equation*}
\frac{q}{z} \frac{d z}{d q}=\frac{4 \theta_{2}^{4}\left(q^{4}\right)+4 \theta_{3}^{4}\left(q^{4}\right)-\theta_{2}^{4}(q)-\theta_{3}^{4}(q)}{3} \tag{4-11}
\end{equation*}
$$

Substituting (4-5) and (4-11) in (3-13), we obtain

$$
\begin{equation*}
\frac{b}{\sqrt{N}}=\frac{4 \theta_{2}^{4}\left(q^{4}\right)+4 \theta_{3}^{4}\left(q^{4}\right)-\theta_{2}^{4}(q)-\theta_{3}^{4}(q)}{3 \theta_{3}^{2}(q) \theta_{3}^{2}\left(q^{2}\right)} \tag{4-12}
\end{equation*}
$$

Substituting (4-5) in (3-14), we obtain

$$
\begin{equation*}
a=\frac{\frac{1}{\pi}-2 \sqrt{N} q\left(\frac{1}{\theta_{3}(q)} \frac{d \theta_{3}(q)}{d q}+\frac{1}{\theta_{3}\left(q^{2}\right)} \frac{d \theta_{3}\left(q^{2}\right)}{d q}\right)}{\theta_{3}^{2}(q) \theta_{3}^{2}\left(q^{2}\right)} . \tag{4-13}
\end{equation*}
$$

Substituting in (3-15) the values of the parameters z, b, and a given by $(4-9),(4-12)$, and $(4-13)$, we obtain a family of series for $1 / \pi$.

Example 4.3. We take the numbers defined recursively by $B_{0}=1$ and

$$
B_{n}=3 \frac{(2 n-1)\left(3 n^{2}-3 n+1\right)}{n^{3}} B_{n-1}+27 \frac{(n-1)^{3}}{n^{3}} B_{n-2}
$$

The companions D_{n} satisfy the recurrence $D_{0}=0$ and

$$
\begin{aligned}
D_{n}= & 3 \frac{(2 n-1)\left(3 n^{2}-3 n+1\right)}{n^{3}} D_{n-1}+27 \frac{(n-1)^{3}}{n^{3}} D_{n-2} \\
& +3 \frac{9 n^{2}-10 n+3}{n^{4}} B_{n-1}+81 \frac{(n-1)^{2}}{n^{4}} B_{n-2} .
\end{aligned}
$$

Following the method in Section 3, we get

$$
\begin{aligned}
z= & q-6 q^{2}+9 q^{3}+22 q^{4}-102 q^{5}+108 q^{6}+221 q^{7} \\
& +7802 q^{13}-858 q^{8}+810 q^{9}+1476 q^{10}-5262 q^{11} \\
& +4572 q^{12}-26112 q^{14}+21519 q^{15}+\cdots
\end{aligned}
$$

and

$$
\begin{aligned}
S= & 1+3 q+9 q^{2}+12 q^{3}+21 q^{4}+18 q^{5}+36 q^{6}+24 q^{7} \\
& +45 q^{8}+12 q^{9}+\cdots
\end{aligned}
$$

Using the Maple package q-series [Garvan 05], more specifically the functions prodmake and etamake, we find that

$$
\begin{equation*}
z=q \prod_{n=0}^{\infty} \frac{\left(1-q^{n+1}\right)^{6}\left(1-q^{9 n+9}\right)^{6}}{\left(1-q^{3 n+3}\right)^{12}}=\left[\frac{\eta(q) \eta\left(q^{9}\right)}{\eta^{2}\left(q^{3}\right)}\right]^{6} \tag{4-14}
\end{equation*}
$$

and

$$
\begin{equation*}
S=\prod_{n=0}^{\infty} \frac{\left(1-q^{3 n+3}\right)^{10}}{\left(1-q^{n+1}\right)^{3}\left(1-q^{9 n+9}\right)^{3}}=\frac{\eta^{10}\left(q^{3}\right)}{\eta^{3}(q) \eta^{3}\left(q^{9}\right)} \tag{4-15}
\end{equation*}
$$

The expressions of z and S allow us to write the formula

$$
\sum_{n=0}^{\infty} B_{n}\left[\frac{\eta(q) \eta\left(q^{9}\right)}{\eta^{2}\left(q^{3}\right)}\right]^{6 n}=\frac{\eta^{10}\left(q^{3}\right)}{\eta^{3}(q) \eta^{3}\left(q^{9}\right)}
$$

And substituting in

$$
\sum_{n=0}^{\infty} B_{n} z^{n}\left[\frac{1}{S}\left(\frac{1}{\pi}-\frac{q \sqrt{N}}{S} \frac{d S}{d q}\right)+\frac{q \sqrt{N}}{z S} \frac{d z}{d q} n\right]=\frac{1}{\pi}
$$

the values of z and S given in (4-14) and (4-15), we obtain another family of series for $1 / \pi$.

Example 4.4. It seems that Conjecture 3.1 (but not Conjecture 3.2) remains true when we consider certain sequences of integers satisfying recurrences whose coefficients are second-degree polynomials [Almkvist and Zudilin 03]. As an example we take the sequence of integers [Almkvist and Zudilin 03]

$$
B_{n}=\sum_{k=0}^{n}\binom{n}{k}\binom{2 k}{k}\binom{2 n-2 k}{n-k}
$$

This sequence satisfies the recurrence $B_{0}=1$ and

$$
B_{n}=\frac{4\left(3 n^{2}-3 n+1\right)}{n^{2}} B_{n-1}-\frac{32(n-1)^{2}}{n^{2}} B_{n-2}
$$

The companion numbers D_{n} satisfy the recurrence $D_{0}=$ 0 and

$$
\begin{aligned}
D_{n}= & \frac{4(3 n-2)}{n^{3}} B_{n-1}-\frac{64(n-1)}{n^{3}} B_{n-2} \\
& +\frac{4\left(3 n^{2}-3 n+1\right)}{n^{2}} D_{n-1}-\frac{32(n-1)^{2}}{n^{2}} D_{n-2}
\end{aligned}
$$

Following the procedure in Section 3, we get

$$
\begin{aligned}
z= & q-4 q^{2}+12 q^{3}-32 q^{4}+78 q^{5}-176 q^{6}+376 q^{7} \\
& -768 q^{8}+1509 q^{9}-2872 q^{10}+\cdots
\end{aligned}
$$

and

$$
S=1+4 q+4 q^{2}+4 q^{4}+8 q^{5}+4 q^{8}+4 q^{9}+8 q^{10}+\cdots
$$

Searching the sequences of the coefficients of these series in the On-Line Encyclopedia of Integer Sequences [Sloane 06], we are lucky and find that

$$
z=\left[\frac{\eta^{2}\left(q^{8}\right)}{\eta\left(q^{4}\right)}\right]^{2}\left[-\frac{\eta\left(q^{2}\right)}{\eta^{2}(-q)}\right]^{-2}=\frac{\theta_{2}^{2}\left(q^{2}\right)}{4 \theta_{3}^{2}(q)}
$$

and

$$
S=\theta_{3}^{2}(q)
$$

which allows us to write the formula

$$
\sum_{n=0}^{\infty} B_{n}\left[\frac{\theta_{2}^{2}\left(q^{2}\right)}{4 \theta_{3}^{2}(q)}\right]^{n}=\theta_{3}^{2}(q)
$$

REFERENCES

[Almkvist and Zudilin 03] G. Almkvist and W. Zudilin. "Differential Equations, Mirror Maps and Zeta Values." To appear in Proceedings of the BIRS Workshop Calabi-Yau Varieties and Mirror Symmetry (Banff, December 6-11, 2003), edited by J. Lewis, S.-T. Yau, and N. Yui. Boston: International Press.
[Berndt and Chan 01] B. C. Berndt and H. H. Chan. "Eisenstein Series and Aproximation to π." Illinois Journal of Mathematics 45 (2001), 75-90.
[Borwein and Borwein 87] J. M. Borwein, P. B. Borwein. Pi and the AGM. New York:Wiley-Interscience, 1987.
[Chan 05] H. H. Chan. "Some New Identities Involving $\pi, 1 / \pi$ and $1 / \pi^{2}$." Invited paper at the Asian Mathematical Conference 20-23 July 2005. Available online (http://ww1.math.nus.edu.sg/AMC/ papers-invited/Chan-HengHuat.pdf), 2005.
[Chan et al. 01] H. H. Chan, W. C. Liaw, and V. Tan. "Ramanujan's Class Invariant λ_{n} and a New Class of Series for $1 / \pi$." Journal of the London Mathematical Society 64 (2001), 93-106.
[Chan et al. 04] H. H. Chan, S. H. Chan, and Z. Liu. "Domb's Numbers and Ramanujan-Sato Type Series for $1 / \pi$." Advances in Mathematics 186 (2004), 396-410.
[Chudnovsky and Chudnovsky 87] D. V. Chudnovsky and G. V. Chudnovsky. "Approximations and Complex Multiplication According to Ramanujan." In Ramanujan Revisited: Proceedings of the Centenary Conference, University of Illinois at Urbana-Champaign, June 1-5, 1987, edited by G. E. Andrews, B. C. Berndt, and R. A. Rankin, pp. 375-472. Boston: Academic Press, 1987.
[Garvan 05] F. Garvan. "A q-Product Tutorial for a q Series Maple Package." Available online (http://www. mat.univie.ac.at/~slc/wpapers/s42garvan.pdf), 2005.
[Guillera 06a] J. Guillera. "Generators of Some Ramanujan Formulas." Ramanujan Journal 11 (2006), 41-48.
[Guillera 06b] J. Guillera. "A New Method to Obtain Series for $1 / \pi$ and $1 / \pi^{2}$." Experimental Mathematics 15:1 (2006), 83-89.
[Ramanujan 14] S. Ramanujan. "Modular Equations and Approximations to π." Quarterly Journal of Mathematics 45 (1914), 350-372.
[Sato 02] T. Sato. "Apéry Numbers and Ramanujan's Series for $1 / \pi$." Abstract of a talk presented at the annual meeting of the Mathematical Society of Japan, March 28-31, 2002.
[Sloane 06] N. Sloane. "The On-Line Encyclopedia of Integer Sequences." Available online (http://www.research.att. com/~njas/sequences/), 2006.
[Yang 04] Y. Yang. "On Differential Equations Satisfied by Modular Forms." Mathematische Zeitschrift 246 (2004), 1-19.
[Yang 05] Y. Yang. Personal communication, 2005.

Jesús Guillera, Av. Cesáreo Alierta, 31 esc. izda $4^{\circ}-\mathrm{A}$, Zaragoza, Spain (jguillera@able.es)
Received December 22, 2005; accepted in revised form March 31, 2006.

