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Using the second conjecture in the paper [Guillera 06b] and
inspired by the theory of modular functions, we find a method
that allows us to obtain explicit formulas, involving eta or theta
functions, for the parameters of a class of series for 1/π. As
in [Guillera 06b], the series considered in this paper include
Ramanujan’s series as well as those associated with the Domb
numbers and Apéry numbers.

1. A SPECIAL TYPE OF RECURRENCE

The sequence of integers

Bn =
(2n)!3

n!6
(1–1)

satisfies the following recurrence:

n3Bn − 8(2n− 1)3Bn−1 = 0.

Other sequences of integers satisfying a first-order recur-
rence whose coefficients are third degree-polynomials,

Bn =
(4n)!
n!4

, (1–2)

Bn =
(2n)!(3n)!

n!5
, (1–3)

and

Bn =
(6n)!

(3n)!n!3
, (1–4)

satisfy the recurrences

n3Bn − 8(2n− 1)(4n− 3)(4n− 1)Bn−1 = 0,

n3Bn − 6(2n− 1)(3n− 2)(3n− 1)Bn−1 = 0,

and

n3Bn − 24(2n− 1)(6n− 5)(6n− 1)Bn−1 = 0,

respectively. Examples of sequences of integers that sat-
isfy a second-order recurrence with third-degree polyno-
mials as coefficients are [Almkvist and Zudilin 03] the
sequence of Domb numbers [Chan et al. 04]

Bn =
n∑

j=0

(
n

j

)2(2j
j

)(
2n− 2j
n− j

)
, (1–5)
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which satisfy

n3Bn−2(2n−1)(5n2−5n+2)Bn−1+64(n−1)3Bn−2 = 0;
(1–6)

the sequence of Apéry numbers

Bn =
n∑

j=0

(
n

j

)2(
n+ j

j

)2

, (1–7)

which satisfy

n3Bn−(2n−3)(17n2−17n+5)Bn−1 +(n−1)3Bn−2 = 0;

and the sequences

Bn =
n∑

j=0

(
n

j

)4

(1–8)

and

Bn =
�n/3�∑
j=0

3n−3j

(
n

3j

)(
n+ j

j

)
(3j)!
j!3

, (1–9)

which satisfy similar recurrences. Our interest in se-
quences of integers Bn satisfying a recurrence with third-
degree polynomials as coefficients comes from the fact
that for certain of them [Almkvist and Zudilin 03] there
exist algebraic numbers z, a, and b such that

∞∑
n=0

Bnz
n(a+ bn) =

1
π
. (1–10)

Series for 1/π associated with the sequences in (1–1),
(1–2), (1–3), and (1–4) were first discovered by Ramanu-
jan and were extensively studied later. Proofs can be
found in [Berndt and Chan 01, Borwein and Borwein
87, Chan et al. 01, Chudnovsky and Chudnovsky 87, Ra-
manujan 14]. In [Guillera 06a] the author gave simpler
proofs of some identities of the form (1–10) using the WZ
method. Series for 1/π using the Apéry numbers (1–7)
were presented in a talk of T. Sato [Sato 02]. Motivated
by them, similar series for 1/π associated with the Domb
numbers (1–5) have been studied and proved in [Chan et
al. 04]. H. H. Chan [Chan 05], also gives some examples
of series for 1/π associated with several sequences, one
of them with the numbers (1–9). Y. Yang has proved
similar evaluations [Yang 05] using the numbers (1–8)
and following a technique explained in [Yang 04]. Other
sequences satisfying recurrences with third-degree poly-
nomials as coefficients [Almkvist and Zudilin 03] will be
used in the examples of Section 4.

2. A COMPANION SEQUENCE

To each Bn, we associate a companion Dn defined by

Dn =
dBn

dn
,

where d/dn means that we differentiate as if n were a
continuous variable. From the recurrence of Bn we can
obtain a recurrence for Dn. For example, the recurrence
(1–6) for the Domb numbers (1–5) can be written in the
form

Bn = 2
(2n− 1)(5n2 − 5n+ 2)

n3
Bn−1 − 64

(n− 1)3

n3
Bn−2,

and differentiating with respect to n as if n were a con-
tinuous variable, we obtain

Dn = 2
(2n− 1)(5n2 − 5n+ 2)

n3
Dn−1 − 64

(n− 1)3

n3
Dn−2

+ 6
5n2 − 6n+ 2

n4
Bn−1 − 192

(n− 1)2

n4
Bn−2.

From the initial conditions B0 = 1 and D0 = 0, we get

B1 = 4B0 + 0B−1 = 4, (2–1)

D1 = 4D0 + 0D−1 + 6B0 + 0B−1 = 6, (2–2)

and with those values and using the recurrences, we can
determine B2, B3, . . . and D2,D3, . . . .

3. TWO CONJECTURES

In this section we give a method and two conjectures
that will allow us to obtain explicit formulas involving
eta or theta functions for the parameters of a class of
series for 1/π.

Motivated by the theory of modular functions we be-
gin by introducing the variable

q = e−π
√

N . (3–1)

Now, inspired by the paper [Guillera 06b], we define the
functions

S(z) =
∞∑

n=0

Bnz
n (3–2)

and

W (z) =
∞∑

n=0

dBn

dn
zn =

∞∑
n=0

Dnz
n

and consider the following equation relating z and q:

q = z exp
W (z)
S(z)

. (3–3)
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If we write z as a series of powers of q,

z = α1q + α2q
2 + α3q

3 + α4q
4 + · · · , (3–4)

then the coefficients are given by

α1 = lim
z→0

z

q
,

α2 = lim
z→0

z − α1q

q2
, (3–5)

α3 = lim
z→0

z − α1q − α2q
2

q3

...

In the same way, if we write S as a series of powers of q,

S = 1 + β1q + β2q
2 + β3q

3 + β4q
4 + · · · , (3–6)

the coefficients are given by

β1 = lim
z→0

S − 1
q

,

β2 = lim
z→0

S − 1 − β1q

q2
, (3–7)

β3 = lim
z→0

S − 1 − β1q − β2q
2

q3

...

Conjecture 3.1. The coefficients of (3–4) and (3–6),
given by (3–5) and (3–7), are all integers, and z and
S are the products of a finite number of Dedekind η func-
tions:

η(q) = q1/24
∞∏

n=0

(1 − qn+1).

Furthermore, for some rational values of N , z is an al-
gebraic number.

We define the function

V (z) =
∞∑

n=0

d

dn
(Bnz

n) = W (z) + ln(z)S(z).

From (3–1) and (3–3), we get the equation

V (z)
S(z)

= −π
√
N. (3–8)

Inspired by the paper [Guillera 06b], we consider the
equations

aS + bz
dS

dz
=

1
π
, (3–9)

aV + bz
dV

dz
= 0. (3–10)

From (3–8) and (3–10) we get

a(ln q)S + bz
d

dz
[(ln q)S] = 0, (3–11)

and using (3–11) we obtain

a(ln q)S + bz

[
1
q

(
dz

dq

)−1

S + (ln q)
dS

dz

]
= 0. (3–12)

From (3–12) and (3–9) we obtain the following formula,
which allows us to determine the parameter b:

b√
N

=
q

zS

dz

dq
. (3–13)

Using (3–9), we get the following formula for the param-
eter a:

a =
1
S

(
1
π
− bz

dS

dz

)
=

1
S

[
1
π
− bz

dS

dq

(
dz

dq

)−1
]
,

which, with the use of (3–13), gives

a =
1
S

[
1
π
− q

√
N

S

dS

dq

]
, (3–14)

which allows us to determine the parameter a.

Conjecture 3.2. Substituting the values of z and S in
(3–13) and (3–14) we obtain values for a and b such that
the following identity holds:

∞∑
n=0

Bnz
n(a+ bn) =

1
π
. (3–15)

Moreover, for the rational values of N for which z is an
algebraic number (see Conjecture 3.1), the parameters a
and b are also algebraic numbers.

4. EXAMPLES

Example 4.1. We take the sequence of numbers

Bn =
n∑

j=0

(
2j
j

)2(2n− 2j
n− j

)2

.

The numbers Bn are obtained recursively by setting B0 =
1 and

Bn = 8
(2n− 1)(2n2 − 2n+ 1)

n3
Bn−1−256

(n− 1)3

n3
Bn−2.
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Although this is a second-order recurrence, we can obtain
B1 as in (2–1). The companionsDn satisfy the recurrence
D0 = 0 and

Dn = 8
(2n− 1)(2n2 − 2n+ 1)

n3
Dn−1 − 256

(n− 1)3

n3
Dn−2

+ 8
6n2 − 8n+ 3

n4
Bn−1 − 768

(n− 1)2

n4
Bn−2,

and again, we obtain D1 as in (2–2). Following the
method described in Section 3, we get

z = q − 8q2 + 44q3 − 192q4 + 718q5 − 2400q6 + 7352q7

− 20992q8 + · · · ,
S = 1 + 8q + 24q2 + 32q3 + 24q4 + 48q5 + 96q6 + 64q7

+ 28q8 + · · · .

Searching the sequences of the coefficients of these series
in the On-Line Encyclopedia of Integer Sequences [Sloane
06], we find that

z =
θ42(q)

16θ43(q)
=
λ∗(q)2

16
(4–1)

and
S = θ43(q), (4–2)

where θ2(q) and θ3(q) are Jacobi theta functions and
λ∗(q) is the elliptic lambda modulus function, defined
by

λ∗(q) =
θ22(q)
θ23(q)

.

Substituting in (3–2) the values given in (4–1) and (4–2),
we obtain the formula

θ43(q) =
∞∑

n=0

Bn

(
θ42(q)

16θ43(q)

)n

.

Substituting (4–1) and (4–2) in (3–13) and expanding in
a power series of q, we get

b√
N

= 1 − 16q + 128q2 − 704q3 + 3072q4 − 11488q5

+ 38400q6 − · · · .

Again using the On-Line Encyclopedia of Integer Se-
quences [Sloane 06], we are lucky and find that

b√
N

= 1 − θ42(q)
θ43(q)

= 1 − λ∗(q)2 =
θ44(q)
θ43(q)

. (4–3)

Substituting (4–2) in (3–14), we obtain

a =
1
π − 4

√
Nq 1

θ3(q)
dθ3(q)

dq

θ43(q)
= α(−q)[1 − λ∗(q)2], (4–4)

where α(q) is the elliptic alpha function, defined by

α(q) =
1
π − 4

√
Nq 1

θ4(q)
dθ4(q)

dq

θ43(q)
.

Substituting in (3–15) the values of the parameters given
in (4–1), (4–3), and (4–4), we obtain the following for-
mula:

1
π

= [1 − λ∗(q)2]
∞∑

n=0

Bn

(
λ∗(q)2

16

)n [
α(−q) +

√
Nn
]
,

where q = e−π
√

N or q = −e−π
√

N .

Example 4.2. We take the numbers defined recursively
by B0 = 1 and

Bn = 4
(2n− 1)(3n2 − 3n+ 1)

n3
Bn−1 − 16

(n− 1)3

n3
Bn−2.

The companions Dn satisfy the recurrence D0 = 0 and

Dn = 4
(2n− 1)(3n2 − 3n+ 1)

n3
Dn−1 − 16

(n− 1)3

n3
Dn−2

+ 4
9n2 − 10n+ 3

n4
Bn−1 − 48

(n− 1)2

n4
Bn−2.

Following the method described in Section 3, we get

z = q − 8q2 + 28q3 − 64q4 + 142q5 − 352q6 + 792q7 − 1536q8

+ 2917q9 − 5744q10 + · · ·
and

S = 1 + 4q + 8q2 + 16q3 + 24q4 + 24q5 + 32q6 + 32q7 + 24q8

+ 52q9 + 48q10 · · · .
With the On-Line Encyclopedia of Integer Sequences, we
find that

S = θ23(q)θ
2
3(q

2). (4–5)

Using the Maple package q-series [Garvan 05], more
specifically the functions prodmake and etamake, we find
that

z = q

∞∏
n=0

(
1 − q2n+1

1 − q8n+4

)8

=
[
η(q8)
η(q2)

η(q)
η(q4)

]8
. (4–6)

From the identities [Garvan 05]

θ2(q) = 2
η2(q4)
η(q2)

,

θ3(q) =
η5(q2)

η2(q4) η2(q)
, (4–7)

θ4(q) =
η2(q)
η(q2)

,
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we can get

η(q) =
[
1
2
θ2(q)θ3(q)θ44(q)

]1/6

, (4–8)

which allows us to convert formulas using the Dedekind
eta function into formulas using the Jacobi theta func-
tions θ2, θ3, and θ4. From (4–6) and using (4–8), we can
express z with θ functions. A more simplified formula is

z =
[
θ2(q2)
θ2(q)

θ4(q)
θ4(q2)

]4
, (4–9)

which can be obtained using the first and third identities
of (4–7). Substituting (4–5) and (4–9) in (3–2), we obtain
the formula

∞∑
n=0

Bn

[
θ2(q2)
θ2(q)

θ4(q)
θ4(q2)

]4n

= θ23(q)θ
2
3(q

2).

Taking the logarithm of (4–6) and differentiating with
respect to q, we get

q

z

dz

dq
= 1 + 8

∞∑
n=0

(2n+ 1)q2n+1

1 − q2n+1
− 8

∞∑
n=0

(8n+ 4)q8n+4

1 − q8n+4
.

(4–10)
From the formula (3.2.24) of [Borwein and Borwein 87]
and the identities θ4(−q) = θ3(q) and θ42(−q) = −θ42(q),
we get

θ42(q) + θ43(q) = 1 + 24
∞∑

n=0

(2n+ 1)q2n+1

1 − q2n+1
,

which allows us to write (4–10) using θ functions:

q

z

dz

dq
=

4θ42(q
4) + 4θ43(q

4) − θ42(q) − θ43(q)
3

. (4–11)

Substituting (4–5) and (4–11) in (3–13), we obtain

b√
N

=
4θ42(q

4) + 4θ43(q
4) − θ42(q) − θ43(q)

3θ23(q)θ
2
3(q2)

. (4–12)

Substituting (4–5) in (3–14), we obtain

a =
1
π − 2

√
Nq
(

1
θ3(q)

dθ3(q)
dq + 1

θ3(q2)
dθ3(q

2)
dq

)
θ23(q)θ

2
3(q2)

. (4–13)

Substituting in (3–15) the values of the parameters z, b,
and a given by (4–9), (4–12), and (4–13), we obtain a
family of series for 1/π.

Example 4.3. We take the numbers defined recursively
by B0 = 1 and

Bn = 3
(2n− 1)(3n2 − 3n+ 1)

n3
Bn−1 + 27

(n− 1)3

n3
Bn−2.

The companions Dn satisfy the recurrence D0 = 0 and

Dn = 3
(2n− 1)(3n2 − 3n+ 1)

n3
Dn−1 + 27

(n− 1)3

n3
Dn−2

+ 3
9n2 − 10n+ 3

n4
Bn−1 + 81

(n− 1)2

n4
Bn−2.

Following the method in Section 3, we get

z = q − 6q2 + 9q3 + 22q4 − 102q5 + 108q6 + 221q7

+ 7802q13 − 858q8 + 810q9 + 1476q10 − 5262q11

+ 4572q12 − 26112q14 + 21519q15 + · · ·

and

S = 1 + 3q + 9q2 + 12q3 + 21q4 + 18q5 + 36q6 + 24q7

+ 45q8 + 12q9 + · · · .

Using the Maple package q-series [Garvan 05], more
specifically the functions prodmake and etamake, we find
that

z = q

∞∏
n=0

(1 − qn+1)6(1 − q9n+9)6

(1 − q3n+3)12
=
[
η(q) η(q9)
η2(q3)

]6
(4–14)

and

S =
∞∏

n=0

(1 − q3n+3)10

(1 − qn+1)3(1 − q9n+9)3
=

η10(q3)
η3(q) η3(q9)

.

(4–15)
The expressions of z and S allow us to write the formula

∞∑
n=0

Bn

[
η(q) η(q9)
η2(q3)

]6n

=
η10(q3)

η3(q) η3(q9)
.

And substituting in

∞∑
n=0

Bnz
n

[
1
S

(
1
π
− q

√
N

S

dS

dq

)
+
q
√
N

zS

dz

dq
n

]
=

1
π

the values of z and S given in (4–14) and (4–15), we
obtain another family of series for 1/π.

Example 4.4. It seems that Conjecture 3.1 (but not
Conjecture 3.2) remains true when we consider certain
sequences of integers satisfying recurrences whose co-
efficients are second-degree polynomials [Almkvist and
Zudilin 03]. As an example we take the sequence of inte-
gers [Almkvist and Zudilin 03]

Bn =
n∑

k=0

(
n

k

)(
2k
k

)(
2n− 2k
n− k

)
.
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This sequence satisfies the recurrence B0 = 1 and

Bn =
4(3n2 − 3n+ 1)

n2
Bn−1 − 32(n− 1)2

n2
Bn−2.

The companion numbers Dn satisfy the recurrence D0 =
0 and

Dn =
4(3n− 2)

n3
Bn−1 − 64(n− 1)

n3
Bn−2

+
4(3n2 − 3n+ 1)

n2
Dn−1 − 32(n− 1)2

n2
Dn−2.

Following the procedure in Section 3, we get

z = q − 4q2 + 12q3 − 32q4 + 78q5 − 176q6 + 376q7

− 768q8 + 1509q9 − 2872q10 + · · ·

and

S = 1 + 4q + 4q2 + 4q4 + 8q5 + 4q8 + 4q9 + 8q10 + · · · .

Searching the sequences of the coefficients of these series
in the On-Line Encyclopedia of Integer Sequences [Sloane
06], we are lucky and find that

z =
[
η2(q8)
η(q4)

]2 [
− η(q2)
η2(−q)

]−2

=
θ22(q

2)
4θ23(q)

and
S = θ23(q),

which allows us to write the formula
∞∑

n=0

Bn

[
θ22(q

2)
4θ23(q)

]n

= θ23(q).
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