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Using the second conjecture in the paper [Guillera 06b] and
inspired by the theory of modular functions, we find a method
that allows us to obtain explicit formulas, involving eta or theta
functions, for the parameters of a class of series for 1/7. As
in [Guillera 06b], the series considered in this paper include
Ramanujan’s series as well as those associated with the Domb
numbers and Apéry numbers.

1. A SPECIAL TYPE OF RECURRENCE

The sequence of integers

(2n)!3

B p—
" nl6

satisfies the following recurrence:
n3B, —8(2n —1)*B,_; = 0.

Other sequences of integers satisfying a first-order recur-
rence whose coefficients are third degree-polynomials,

and (6n)!

satisfy the recurrences
n*B, —8(2n —1)(4n — 3)(4n — 1)B,,_; = 0,
n*B, —6(2n — 1)(3n — 2)(3n — 1)B,,_; = 0,
and
n®B,, —24(2n — 1)(6n — 5)(6n — 1)B,_1 = 0,

respectively. Examples of sequences of integers that sat-
isfy a second-order recurrence with third-degree polyno-
mials as coefficients are [Almkvist and Zudilin 03] the
sequence of Domb numbers [Chan et al. 04]

n 2 . .
2 2n — 2
Bn = Z n j " J ; (1*5)
J J n—17
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which satisfy

n3B, —2(2n—1)(5n*—5n+2)B,_1+64(n—1)>B,,_5 = 0;

(1-6)
the sequence of Apéry numbers
n 2 -\ 2
n\ " (n+ j)
B, = . . , 1-7
() ("] 0-1)

which satisfy
n*B, —(2n—3)(17n* = 1Tn+5)B, 1+ (n—1)*B,_5 = 0;

and the sequences

n=3.(;)
and
N OIGUE T

Our interest in se-
quences of integers B,, satisfying a recurrence with third-
degree polynomials as coefficients comes from the fact
that for certain of them [Almkvist and Zudilin 03] there
exist algebraic numbers z, a, and b such that

which satisfy similar recurrences.

E 1

E B,z"(a+bn) = —. (1-10)
7r

n=0

Series for 1/m associated with the sequences in (1-1),
(1-2), (1-3), and (1-4) were first discovered by Ramanu-
jan and were extensively studied later.
found in [Berndt and Chan 01, Borwein and Borwein
87, Chan et al. 01, Chudnovsky and Chudnovsky 87, Ra-
manujan 14]. In [Guillera 06a] the author gave simpler
proofs of some identities of the form (1-10) using the WZ
method. Series for 1/7 using the Apéry numbers (1-7)
were presented in a talk of T. Sato [Sato 02]. Motivated
by them, similar series for 1/7 associated with the Domb
numbers (1-5) have been studied and proved in [Chan et
al. 04]. H. H. Chan [Chan 05], also gives some examples
of series for 1/ associated with several sequences, one
of them with the numbers (1-9). Y. Yang has proved
similar evaluations [Yang 05] using the numbers (1-8)
and following a technique explained in [Yang 04]. Other
sequences satisfying recurrences with third-degree poly-
nomials as coefficients [Almkvist and Zudilin 03] will be

Proofs can be

used in the examples of Section 4.

2. A COMPANION SEQUENCE
To each B,,, we associate a companion D,, defined by

dB,,
D, = ,
dn

where d/dn means that we differentiate as if n were a
continuous variable. From the recurrence of B,, we can
obtain a recurrence for D,,. For example, the recurrence
(1-6) for the Domb numbers (1-5) can be written in the
form

B, =2

o2n — 1)(5n% — 5n + 2 n—1)3
(20— 1)( s —sa®= g,

n3 n

and differentiating with respect to n as if n were a con-
tinuous variable, we obtain

o2n — 1)(5n? — 5n + 2 —1)3
D, == s nt )DH,I—M%DH,2
n
5n2 — 6n + 2 —1)2
+ 6%371,1 _ 192MB”*2'
n n

From the initial conditions By = 1 and Dy = 0, we get

By =4By+0B_; =4, (2-1)
Dy =4Dy+0D_1 + 6By + 0B_1 = 6, (2-2)

and with those values and using the recurrences, we can
determine By, Bs,... and Dy, D3, . ...

3. TWO CONJECTURES

In this section we give a method and two conjectures
that will allow us to obtain explicit formulas involving
eta or theta functions for the parameters of a class of
series for 1/.

Motivated by the theory of modular functions we be-
gin by introducing the variable

(3-1)

Now, inspired by the paper [Guillera 06b], we define the
functions

S(z) = Z B,z"

(3-2)
n=0
and - -
dBn n n
W(z)zz In > =ZDnz
n=0 n=0
and consider the following equation relating z and g:
W
q = zexp (2) (3-3)

S(z)°
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If we write z as a series of powers of ¢,

2= ai1q+ g’ +azg’ +aagt + o (3-4)
then the coefficients are given by
z
a1 = lim—,
z—>0q
.. & —a1q
= 1 —,
az = lim =—5—, (3-5)
z—ong — axq’
az = lim ———————

z—0 q3

In the same way, if we write S as a series of powers of ¢,

S =1+ g+ g+ Bs3¢° + Pag* +---, (36
the coefficients are given by
= ;:%Tl
b = lim > T S (38-7)
8 = ll_r% g?l)q — Bag?

Conjecture 3.1. The coefficients of (3-4) and (3-6),
given by (3-5) and (3-7), are all integers, and z and
S are the products of a finite number of Dedekind n func-

tions:
_ q1/24 H o n+1

Furthermore, for some mtzonal values of N, z is an al-
gebraic number.

We define the function

o0

V(z)=> %(ann) = W(z) + In(2)S(z).

n=0

From (3-1) and (3-3), we get the equation

(3-8)

Inspired by the paper [Guillera 06b], we consider the
equations

ds 1
P .
aS + = (3-9)
av
bz— -1
aV 4 bz =0, (3-10)

From (3-8) and (3-10) we get
d
a(lng)S + bzd— [(Ing)S] =0, (3-11)

and using (3—-11) we obtain

1 /dz\ " ds
6 (dq) S + (lnq)dzl =0. (3-12)

From (3-12) and (3-9) we obtain the following formula,
which allows us to determine the parameter b:

a(lng)S + bz

b q dz
_ 49z 1
VN ~ 25 dg (3-13)

Using (3-9), we get the following formula for the param-
eter a:

a1 sy _1[1 o s (i
“Te\x %) T 5| dg \ dq ’

, (3-14)

which allows us to determine the parameter a.

Conjecture 3.2. Substituting the values of z and S in
(8-13) and (3-14) we obtain values for a and b such that
the following identity holds:

Z B,z"(a+bn) = —
n=0

Moreover, for the rational values of N for which z is an
algebraic number (see Conjecture 3.1), the parameters a
and b are also algebraic numbers.

(3-15)

4. EXAMPLES

Example 4.1. We take the sequence of numbers

n 95 2 M — 94 2
-3 (5) (057
o \J n—j
The numbers B,, are obtained recursively by setting By =
1 and
2n —1)(2n® —2n +1 —1)3
(2n — 1)( n3 n + )Bn71_256g
n n

B, =38

Bp_o.
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Although this is a second-order recurrence, we can obtain
Bj asin (2-1). The companions D,, satisfy the recurrence
Do =0 and

2n—1)(2n® —2n +1 —1)3
p, =Nt Dy =W,
n
6n? — 8n +3 — 1)

and again, we obtain D; as in (2-2).
method described in Section 3, we get

Following the

2z =q—8¢% + 44¢® — 192¢* 4 718¢° — 2400¢° 4 73524"
—20992¢% + - -+,
S =1+ 8q + 24¢* + 32¢® + 24¢* + 48¢° + 96¢° + 644"
+28¢% +---.
Searching the sequences of the coefficients of these series

in the On-Line Encyclopedia of Integer Sequences [Sloane
06], we find that

L_ Bale) Mg

T 160%(q) 16 (4-1)

and

S =03(q), (4-2)

where 02(q) and 65(¢q) are Jacobi theta functions and
A*(q) is the elliptic lambda modulus function, defined
by

03(q)
N(q) = 2.
= 5)
Substituting in (3-2) the values given in (4-1) and (4-2),
we obtain the formula

5. (40)”

n=0

Substituting (4-1) and (4-2) in (3-13) and expanding in
a power series of g, we get

b
—— =1—16¢ + 128¢% — 704¢> + 3072¢* — 11488¢°

VN

+38400¢° — - - - .

Again using the On-Line Encyclopedia of Integer Se-
quences [Sloane 06], we are lucky and find that

=1 () =

Substituting (4-2) in (3-14), we obtain

1 1 dbz(q)
x - WNag T

a= ) = a(—q)[1 - X (q)%], (4-4)

where «(q) is the elliptic alpha function, defined by
1 1 dfa(q)
alq) = T 4\/Nq%(q) sqq
05(q)
Substituting in (3—15) the values of the parameters given

in (4-1), (4-3), and (4-4), we obtain the following for-
mula:

— =[1-\(q)? B, = VN
- [1—\(q) ]nE:O < 16 [a( q) +VNn|,
where ¢ = e ™VN or g = —e "V,

Example 4.2. We take the numbers defined recursively
by By =1 and

(2n —1)(3n? = 3n+1)

—1)3
B, =4 . By, — 16%3%2.
n

The companions D,, satisfy the recurrence Dy = 0 and

2n —1)(3n2 -3 1 —1)3
p, =aZn =B 8t )y, gD,
n
9n? — 10 3 —1)2
+424;;E;BW4_%Q%?LBW$

Following the method described in Section 3, we get

2z =q—8¢% +28¢° — 64¢* + 142¢° — 352¢° + 792¢" — 1536¢°

+2917¢° — 5744¢*° + - -

and

S =1+4q+8¢> +16¢> + 24¢* + 24¢° + 32¢° + 32¢" + 244°

+52¢° +48¢' - .

With the On-Line Encyclopedia of Integer Sequences, we
find that

S = 03(¢)63(¢*).
Using the Maple package g¢-series [Garvan 05], more

specifically the functions prodmake and etamake, we find
that

I () - [20 29T

(4-5)

From the identities [Garvan 05]

L nP(gY)
%la) =2 n(q?)’
() -
%00 = 3 ey 47
7°(q)
fala) = n(g?)’
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we can get

1 1/6

o) = [gr0s@eia) @
which allows us to convert formulas using the Dedekind
eta function into formulas using the Jacobi theta func-
tions 0o, 03, and 64. From (4-6) and using (4-8), we can
express z with 0 functions. A more simplified formula is

- [92(q2) 0a(q) r
02(q) 04(¢°)

which can be obtained using the first and third identities
of (4-7). Substituting (4-5) and (4-9) in (3-2), we obtain
the formula

oo 02(q2) 94((1) 4n7 , L,
%Bn {92 ) 6 } = 03(q)03(q7).

(4-9)

Taking the logarithm of (4-6) and differentiating with

respect to g, we get

q dz B (2n + 1)g**! 1 (8n 4 4)g®n
SZ 2n+1 _82 1 — gdntd
n=0
(4-10)

From the formula (3.2.24) of [Borwein and Borwein 87]

and the identities 04(—q) = 03(q) and 05(—q) = —05(q),
we get
(2n + 1)g>"*?
05(q) + 05 (q )_1+24Z%3

n=0
which allows us to write (4-10) using 6 functions:
qdz _ 405(q") +405(q") — 03(q) — 05(q)
z dq 3 ’
Substituting (4-5) and (4-11) in (3-13), we obtain

(4-11)

b 465(q") +405(q") — 03(q) — 05(a) (4-12)
VN 303(¢)05(q%)
Substituting (4-5) in (3-14), we obtain
1_ 2\/Nq 1 d93(Q) 4+ d0s(q*)
o= (sty e ) (4-13)

03(q )93( %)
Substituting in (3-15) the values of the parameters z, b,
and a given by (4-9), (4-12), and (4-13), we obtain a
family of series for 1/7.

Example 4.3. We take the numbers defined recursively
by By =1 and

(2n —1)(3n? —3n+1)
n3

B, =3 By 427 B_s.

(n—1)°
n3

The companions D,, satisfy the recurrence Dy = 0 and

2n —1)(3n? — 1 -1)3
D, = 3" )(3"3 St pgrn= 1S 3) Dy_s
n n
9n% —10n + 3 —1)2
gty g,

Following the method in Section 3, we get

z=q—6¢%+9¢> + 22¢* — 102¢° + 108¢° + 2214
+ 7802¢"% — 858¢% + 810¢" + 1476¢'° — 5262¢*!
+4572¢"2 — 26112¢'* + 21519¢*° + - - -

and

S =1+43q+9¢% + 12¢° + 21¢* + 18¢° + 364° + 244"
+45¢° +12¢° + - -

Using the Maple package g¢-series [Garvan 05], more
specifically the functions prodmake and etamake, we find

that

— "1 — ¢ Ti(g) n(¢°)]°
Z*ano — ) { (¢) }
(4-14)
and
0 3n+3) - 7710(q3)
1;[ _ n+1 (1= ¢t — 13(q) 1*(¢°)

(4-15)
The expressions of z and S allow us to write the formula

= [0(@ 0@ 0
;Bn[ (q%) } (@) 1P (e%)

And substituting in

> L1 (1 ¢/NdS qfdz 1
S g | L (Lo avNdS) _ L
= S\7 S dq zS dq T

the values of z and S given in (4-14) and (4-15), we
obtain another family of series for 1/m.

Example 4.4. It seems that Conjecture 3.1 (but not
Conjecture 3.2) remains true when we consider certain
sequences of integers satisfying recurrences whose co-
efficients are second-degree polynomials [Almkvist and
Zudilin 03]. As an example we take the sequence of inte-
gers [Almkvist and Zudilin 03]

n-2 ()
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This sequence satisfies the recurrence By = 1 and

4(3n% —3n+1)
n2

32(n —1)?

B, = B, 11— 2 B, .
n

The companion numbers D,, satisfy the recurrence Dy =
0 and

4(3n —2 64(n —1
p,= -2y Hn-Dp
n n
4(3n% —3n+1 32(n — 1)2
+ %Dn—l - %Dn—z

Following the procedure in Section 3, we get

z=q—4¢> +12¢% — 32¢* + 78¢° — 1764° + 3764"
— 768¢% 4+ 1509¢° — 28724 + - .-

and
S=1+4q+4¢* +4¢* +8¢° +4¢° +4¢° + 8¢ +--- .

Searching the sequences of the coefficients of these series
in the On-Line Encyclopedia of Integer Sequences [Sloane
06], we are lucky and find that

o [fquf))r [‘

S =03(a),

and
which allows us to write the formula

- 03(¢*) ni 2
7;]3" {492((1)} = 03(q).

3
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