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We describe an experimental method for studying the combi-
natorics of Dirichlet domains in the complex hyperbolic plane
based on numerical and graphical techniques. We apply our
techniques to the complex reflection groups that appear in
Mostow’s seminal paper on the subject and list a number of cor-
rections to the combinatorics of the Dirichlet domains.

1. INTRODUCTION

Very few explicit fundamental domains for lattices acting
on spaces of nonconstant curvature have been worked
out, the main difficulty being the nonexistence of totally
geodesic hypersurfaces. There is, of course, a general
construction, due to Dirichlet, but in concrete examples
the combinatorics of such domains remain elusive.

In this paper, we study this problem in the sim-
plest symmetric space of nonconstant negative curvature,
namely the complex hyperbolic plane. It is a Hermitian
symmetric space, and its study involves a beautiful inter-
play between ideas from hyperbolic geometry and com-
plex analysis. It is also a particularly interesting space
to consider, because some lattices in its isometry group
are not super-rigid (even though only a very small num-
ber of examples are known). Indeed, nonarithmetic lat-
tices were first constructed by Mostow in [Mostow 80],
and the list was expanded in [Deligne and Mostow 86]
and [Mostow 86].

Mostow’s original approach was to construct explicit
fundamental domains for a certain class of groups gener-
ated by complex reflections (see Section 2.3). The corre-
sponding Dirichlet domains and their combinatorics turn
out to be extremely difficult to analyze, especially with
the computer technology that was available in the late
1970s. In fact, using the techniques of this paper on a
modern computer, it becomes relatively easy to see that
some of the domains in [Mostow 80] are incorrect (we
explain the main difficulties in Section 11). We point
out that Mostow’s main results that give a criterion for
discreteness and arithmeticity (see Section 2.5), remain
correct. Indeed, a number of proofs have appeared in the
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literature, see [Deligne and Mostow 86] or [Thurston 98],
for instance. However, the proof in [Mostow 80] has a
serious gap.

We find it worthwhile to list the known mistakes
in [Mostow 80], as an illustration of the possible pitfalls
of experimental methods in this area of mathematics.
More importantly, we give detailed techniques for test-
ing claims about the combinatorics of Dirichlet domains.
For the sake of concreteness, we shall focus mainly on
Mostow’s examples of lattices, but our techniques clearly
apply to any group given by a set of generators. An-
other application of our experimental methods will be
presented in a subsequent paper [Deraux 05].

The use of computers is crucial throughout the anal-
ysis, and we shall not attempt to make our claims in-
dependent of the computer (even though it could quite
reasonably be done). The latter was a recurrent theme
in [Mostow 80], but it now seems somewhat artificial,
the use of computers being much more widely accepted.
Note that an intricate combination of numerical analysis
and formal computations is needed in order to justify our
experimental results, and we do not concentrate on that
aspect in the present paper.

In order to prove discreteness rigorously, Dirichlet do-
mains seem too rigid to be convenient. Most proofs of
discreteness in the literature rely on the construction
of polyhedra bounded by other kinds of hypersurfaces,
avoiding the use of bisectors (see [Schwartz 01, Falbel and
Koseleff 02], for instance). However, Dirichlet domains
provide an important tool during the first encounter with
a given complex hyperbolic group. On the one hand, if
the group is not discrete, our techniques usually produce
an explicit sequence that accumulates to the identity (the
powers of an elliptic element of infinite order). On the
other hand, assuming that the group is indeed discrete,
the conjectural Dirichlet domain points to key geometric
features of the group—it suggests a way to find important
conjugacy classes (by finding the stabilizers of the vari-
ous faces) and to determine whether or not the quotient
has finite volume [Deraux 05].

In the case of the Mostow lattices, the information
gathered from the Dirichlet construction can be used
quite naturally to build slightly simpler fundamental do-
mains and to prove discreteness using the Poincaré poly-
hedron theorem [Deraux et al. 05]. Other fundamen-
tal polyhedra in the complex hyperbolic plane, not ob-
tained by the Dirichlet construction, have been worked
out in [Falbel and Parker 05, Parker 05].

Finally, we mention that our experimental methods
give invaluable insight into the very intricate properties

of bisector intersections, as studied already in [Goldman
99] (see also [Phillips 92, Goldman and Parker 92]).

2. COMPLEX HYPERBOLIC GEOMETRY

It is a difficult problem to construct lattices in the isom-
etry groups of symmetric spaces without using arith-
metics. In spaces of constant curvature, a fairly sim-
ple class of groups is provided by reflection groups (i.e.,
groups generated by reflections). If the group is discrete,
then the symmetric space is tiled by the connected com-
ponents of the complement of the union of the mirrors
of reflections in the group, each such component giving
a fundamental domain for the action.

In complex hyperbolic space, the situation is much
more complicated, since the mirrors of reflections have
real codimension at least 2 (in fact, there are no real to-
tally geodesic hypersurfaces). There are many isometric
involutions that can play the role of reflections, but their
fixed point sets have real codimension at least 2, hence
their complement is connected.

2.1 The Complex Hyperbolic Plane

We review some basic material on the complex hyperbolic
plane (for more details, we refer the reader to [Epstein
87] or [Goldman 99]). Consider a Hermitian form 〈·, ·〉
of signature (2, 1) on C3, linear in the first variable and
antilinear in the second. We write H for its matrix in the
standard basis {ej}, so that Hij = 〈ei, ej〉. We refer to
a vector v as being positive, null, or negative if 〈v, v〉 <
0,= 0, or > 0, respectively.

The group of linear isometries preserving H is a non-
compact group isomorphic to U(2, 1), and we consider its
action on P 2

C, the set of complex lines in C3. The group
acting effectively is then PU(2, 1), and it acts transitively
on the set of negative lines, i.e., the set of complex lines
spanned by vectors v with 〈v, v〉 < 0, with the stabilizer
of a given line isomorphic to U(2).

As a set, the complex hyperbolic plane H2
C is the set

of lines in C3 negative with respect to the Hermitian
form (by the last paragraph, it is a homogeneous space
PU(2, 1)/U(2)). There is a natural metric, unique up
to scaling, that makes the action of PU(2, 1) isometric.
Endowed with such a metric, H2

C becomes a symmetric
space of 1

4 -pinched negative sectional curvature.
It is clear that the spaces obtained from different ma-

trices H of signature (2, 1) are naturally isometric (up
to scaling of the metric). In an orthonormal basis, the
Hermitian form can be described as

〈v, w〉 = −v0w0 + v1w1 + v2w2. (2–1)
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Denoting by (x0, x1, x2) the corresponding homogeneous
coordinates, H2

C is contained in the affine chart x0 �= 0,
and in the coordinates yj = xj/x0, it is simply given by
the unit ball

|y1|2 + |y2|2 < 1.

The Hermitian form (2–1) is called standard. It is con-
venient, however, to allow for nonstandard coordinates,
as we often do in this paper.

For the metric with curvature between −1 and −1/4,
the distance between two points is given by the formula

cosh
(

1
2
d(x, y)

)
=

|〈x, y〉|√〈x, x〉〈y, y〉 . (2–2)

Here and in what follows, with a slight abuse of notation,
we denote by the same symbol a vector in C3 and the
complex line that it spans (note that the right-hand side
of (2–2) does not change under scaling of the vectors).

2.2 Totally Geodesic Subspaces

Given a positive vector v, its orthogonal complement v⊥

(with respect to H) is a two-dimensional subspace on
which the Hermitian form restricts to a form with signa-
ture (1, 1). The set of negative lines in v⊥ is then a copy
of H1

C, naturally isometric to the Poincaré disk. It is eas-
ily seen to be totally geodesic by exhibiting it as the fixed
point set of an isometry (in fact, there is a 1-parameter
family of isometries fixing it; see (2–3)).

Definition 2.1. The submanifolds of H2
C given by v⊥ are

called complex geodesics. The vector v is called polar to
the complex geodesic v⊥.

Here, we abuse notation once again, denoting by v⊥

the set of negative lines in C3 spanned by vectors or-
thogonal to v with respect to H. Let ζ be any complex
number of absolute value 1, and consider the linear map

Rv,ζ : x �→ x+ (ζ − 1)
〈x, v〉
〈v, v〉 v. (2–3)

It is easy to check that it preserves the Hermitian inner
product, that it fixes the vectors in v⊥, and that v gets
multiplied by ζ. Geometrically, Rv,ζ fixes v⊥ and rotates
about it by the angle given by the argument of ζ.

Definition 2.2. The transformation Rv,ζ is called a com-
plex reflection with mirror v⊥.

It is apparent from Equation (2–3) that the reflection
remains unchanged under scaling of the vector v. In par-
ticular, we may assume that 〈v, v〉 = 1 (in what follows,
we will always use this normalization).

Observe also that we may compose the above linear
transformation by multiplication by a fixed scalar, with-
out changing the corresponding isometry (scalar matri-
ces act as the identity on projective space). A complex
reflection is an isometry that can be lifted to a linear
transformation of the form in (2–3).

Another type of totally geodesic subspace is given in
the standard ball model as the set of points with real
coordinates, which is the fixed point set of the isometry
(y1, y2) �→ (y1, y2). In general, for a Hermitian form that
is not necessarily standard, one gets such a subspace by
taking three independent vectors v1, v2, v3 with 〈vi, vj〉 ∈
R for any i, j. The restriction of the Hermitian form to
the real span of these vectors is then a quadratic form of
signature (2, 1), and the image in projective space of the
set of negative vectors in the real span is simply a copy
of H2

R. There is a unique isometry that fixes it, given in
the basis of the vj by

∑
λjvj �→

∑
λjvj . (2–4)

Such a subspace is called a totally real totally geodesic
subspace, or simply a Lagrangian.

It is a fact that all totally geodesic submanifolds of
H2

C are points, real geodesics, complex geodesics, or La-
grangians (for a sketch of the proof, see [Goldman 99]).
It can also be checked that the above two types of sub-
manifolds realize the extrema of sectional curvature (the
complex geodesics being four times more curved than the
totally real planes).

Finally, we mention that PU(2, 1) is the group of holo-
morphic isometries of H2

C and has index 2 in the full
group P̂U(2, 1) of isometries. The latter is generated by
PU(2, 1) and one antiholomorphic involution as in (2–4).

2.3 Complex Reflection Groups

A natural way to describe a reflection group is to give a
Coxeter diagram having one node for each generator and
joining two nodes to mean that these generators should
satisfy some braid relation [Coxeter 67].

The main difference from the real hyperbolic case
is that such a diagram does not determine the group
uniquely—there is one degree of freedom attached to
each loop in the diagram (the so-called phase shift). A
slightly more general discussion of Coxeter diagrams is
given in [Mostow 80]; here, we simply review Mostow’s
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examples, given by the following diagram (the meaning
of the phase shift ϕ will be explained below).

ϕ3

p p

p

Here, there are three generators of order p that satisfy
the braid relation

RiRjRi = RjRiRj .

We leave it to the reader to verify the following important
result.

Proposition 2.3. Let R1 = Rv1,ζ1 and R2 = Rv2,ζ2 be dis-
tinct complex reflections as in (2–3). Then, R1R2R1 =
R2R1R2 if and only if ζ1 = ζ2 and

|〈v1, v2〉|√〈v1, v1〉〈v2, v2〉 =
1

|ζj − 1| . (2–5)

Note that the left-hand side of (2–5) is the cosine of the
angle between the mirrors v⊥1 and v⊥2 . When ζ = e2πi/p,
the right-hand side can be written as

1
2 sin π

p

. (2–6)

We see that there is a one parameter family of possible
configurations of mirrors of the generators by the follow-
ing rough dimension count: the space of triples of vectors
has dimension 12, the group PU(2, 1) has dimension 8, so
the configuration space of polar vectors has dimension 4.
The braiding of the generators imposes the three angles
between the mirrors of the generators, so we get only one
free parameter. More precisely, we have Proposition 2.4.

Proposition 2.4. The space of configurations of triples of
(distinct) braiding complex reflections of order p, up to
conjugation by an element of PU(2, 1), is an interval.

Proof: Let Rj = Rvj ,ζ (where ζ = e2πi/p) be the three
braiding reflections. By scaling the vectors vj , we may
assume that 〈vi, vi〉 = 1.

The braiding imposes |〈vi, vj〉|, but we are still free to
choose the argument of 〈vi, vj〉. By adjusting v1 and v3
(scaling them by a complex number of norm 1), we may
assume that 〈v1, v2〉 = 〈v2, v3〉 = 1.

There is one parameter left, namely the argument of
the complex number 〈v3, v1〉. Two configurations are
equivalent under conjugation by PU(2, 1) if and only if,
after the above normalizations, we get the same argument
for 〈v3, v1〉.

In particular, if the configurations are equivalent, then
they have the same Hermitian triple product

〈v1, v2〉〈v2, v3〉〈v3, v1〉,
and it is easily checked that this is also a sufficient
condition.

Definition 2.5. The quantity 〈v1, v2〉〈v2, v3〉〈v3, v1〉 is
called the Hermitian triple product of v1, v2, and v3,
and it is denoted by 〈v1, v2, v3〉.

A more symmetric way to normalize the inner prod-
ucts is to take 〈v1, v2〉 = 〈v2, v3〉 = 〈v3, v1〉. We
then denote their common value by −αϕ, where α =
1/(2 sinπ/p).

Definition 2.6. The complex number ϕ3 such that
〈v1, v2〉〈v2, v3〉〈v3, v1〉 = −α3ϕ3 is called the phase shift
of the configuration.

Since ϕ3 is a complex number of norm 1, we refer to
it only by its argument, and when it causes no confusion
we call argϕ3 the phase shift as well.

It turns out that the phase shift cannot be chosen ar-
bitrarily. To see this, let us first assume that the vectors
vj are linearly independent in C3. Consider the matrix of
the Hermitian form in the basis {v1, v2, v3}, normalized
in a symmetric fashion as above:

H =

⎡
⎣ 1 −αϕ −αϕ
−αϕ 1 −αϕ
−αϕ −αϕ 1

⎤
⎦ . (2–7)

There exists a configuration with phase shift ϕ if and
only if H has signature (2, 1). In turn, this is equivalent
to det(H) < 0 (H is clearly not negative-definite).

We have

det(H) = 1− 3α2 − α3(ϕ3 + ϕ3),

which is negative for 1
π arg(ϕ3) ∈ ]−t0, t0 [, where t0 =

3(1
2 − 1

p ).
The case when the vectors vj are dependent is slightly

more complicated. It can be seen that it corresponds to
the endpoints of the above intervals, namely to t = ±t0.

Recall that we assume that the generators are distinct,
so the span of any two vectors vj is two-dimensional. We
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may choose v1 and v2 so that 〈v1, v2〉 = α, and take the
third vector to be of the form v3 = λ(v1 + θv2) for λ ∈ R
and |θ| = 1. The braid relation can then be checked to
impose λ = 1 and θ = iη or θ = −iη, where we write

η = eiπ/p. (2–8)

Then, the triple Hermitian product 〈v1, v2, v3〉 is checked
to be either α3iη3 or its complex conjugate −α3iη3 (to
verify this, it is useful to note that 1/α = −i(η − η)).
The last two values correspond to the phase shift at the
points where t = ±t0.

Note that in this case, the mirrors or the three gen-
erators all fix a common point represented by a vector
orthogonal to any two of the vectors vj .

In Mostow’s notation, the group Γ(p, t) is generated by
three reflections as in Proposition 2.4, with phase shift

ϕ3 = eπit.

We shall always assume that the phase shift satisfies the
condition

|t| < 3
(

1
2
− 1
p

)
,

for the reasons stated in the proof of Proposition 2.4.
Moreover, in order to keep the notation as symmet-

ric as possible, we shall use as homogeneous coordinates
the ones given in the basis v1, v2, v3 of vectors polar to
the mirrors of the generating reflections. In particular,
the Hermitian form is given by the matrix (2–7). Note
also that in these coordinates, the symmetry of order 3
conjugating Ri into Ri+1 (indices taken mod 3) is simply
given by

J =

⎡
⎣ 0 0 1

1 0 0
0 1 0

⎤
⎦ .

As above, we write η = eπi/p, so that the reflections
Rj = Rvj ,η2 .

The matrix of R1 is given by

R1 =

⎡
⎣ η2 −ηiϕ −ηiϕ

0 1 0
0 0 1

⎤
⎦ , (2–9)

and the other generators are easily obtained, since R2 =
JR1J

−1 and R3 = J−1R2J .

2.4 Finite Groups

Two of the generators Ri and Rj have common fixed
point in the ball

⇔ ∃ v ∈ e⊥i ∩ e⊥j , 〈v, v〉 < 0

⇔ SpanC{ei, ej} is a positive definite subspace

⇔ det
[ 〈ei, ei〉 〈ei, ej〉
〈ej , ei〉 〈ej , ej〉

]
< 0

⇔ |〈ei, ej〉| < 1

⇔ p < 6,

where in the last equivalence we use (2–6). Here, we focus
on the case p < 6, and denote by pij the point common
to the mirrors of Ri and Rj (coordinates for that point
are given in Section 9).

If p < 6, the group Γij generated by Ri and Rj can
be seen as a subgroup of U(2). A nice description of the
group is obtained by studying its action on the complex
projective line P 1

C 
 S2 of complex lines through pij (in
homogeneous coordinates this corresponds to the action
on the positive definite subspace p⊥ij of C3).

The generating reflections act as rotations by an an-
gle 2π/p with centers at the vertices of an equilateral tri-
angle with angles 2π/p. These two spherical isometries
are readily seen to generate the spherical triangle group
T2,3,p. For integers p, q, r ≥ 2 with 1/p + 1/q + 1/r > 1,
we denote by Tp,q,r the triangle group generated by ro-
tations around the vertices of the spherical triangle with
angles π/p, π/q, and π/r. For p = 3, 4, or 5, T2,3,p is
the group of orientation preserving autorphisms of the
regular tetrahedron, cube, or dodecahedron, which have
order 12, 24, and 60, respectively.

Finally, the group Γij is a central extension of the tri-
angle group T2,3,p (which is obtained by projectivization
of the action on p⊥ij). The center of Γij is generated by
the appropriate power of RiRj and has order 2, 4, and
10 in the cases p = 3, p = 4, and p = 5, respectively. In
particular, Γij has order 24, 96 or 600 for p = 3, 4, or 5
respectively.

We shall see in Section 8 that the obvious relations
(i.e., the order of the reflections and the braid relation)
actually give a presentation for the finite group.

Finally, we mention that the center of mass of the
three mirrors of the generating reflections, which is also
the center of mass of the fixed points pij , is given by the
point

p0 = [1, 1, 1]T . (2–10)

Note that this is the isolated fixed point of the symme-
try J .
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p |t| < 1
2
− 1

p
|t| = 1

2
− 1

p
|t| > 1

2
− 1

p

3 0, 1
30

, 1
18

, 1
12

, 5
42

1
6

7
30

, 1
3

4 0, 1
12

, 3
20

1
4

5
12

5 1
10

, 1
5

11
30

, 7
10

TABLE 1. Pairs (p, t) for which the conditions of the
Poincaré theorem hold. Numbers in boldface yield nonar-
ithmetic lattices.

2.5 Mostow’s Main Results

We review the two main results of [Mostow 80].

Theorem 2.7. If ( 1
4 − 1

2p ± t
2 )−1 ∈ Z∪{±∞}, then Γ(p, t)

is a lattice in PU(2, 1).

The above conditions come out naturally by studying
the cycles of 2-faces of the Dirichlet domains, in the ter-
minology of the Poincaré polyhedron theorem (see Sec-
tion 7). Indeed, certain cycle transformations are com-
plex reflections that rotate around the appropriate 2-face
by angles 2π( 1

4 − 1
2p ± t

2 ) (see Section 10).
There are only finitely many values of (p, t) that satisfy

the condition in Theorem 2.7 (see Table 1). The condi-
tion of Theorem 2.7 is almost necessary for discreteness,
and, in fact, it follows from the work in [Mostow 88]
that there is only one more discrete group among the
groups Γ(p, t) with p = 3, 4, or 5, namely Γ(5, 1

2 ). In
that case, the Dirichlet polyhedron can be divided as a
union of fundamental domains by considering the finite
group that fixes p0 (we shall not discuss this issue).

One gets more groups (but still finitely many) by al-
lowing p > 5, but for the sake of brevity, we shall not
discuss this here (that issue and much more is treated in
the various papers by Mostow and coauthors given in the
bibliography, where the groups are described in terms of
monodromy groups of hypergeometric functions). Some
of the groups for p > 5 are also studied in [Parker 05].

As mentioned before, the lattices of Theorem 2.7 are
particularly interesting because of the following:

Theorem 2.8. The lattices Γ(p, t) are nonarithmetic for
(p, t) = (3, 1

30 ), (3, 1
12 ), (3, 5

42 ), (4, 1
12 ), (4, 3

20 ), or (5, 1
5 ).

For the definition of arithmeticity, see [Mostow 80,
Deligne and Mostow 86].

3. DIRICHLET FUNDAMENTAL DOMAINS

Given any group Γ acting on H2
C, the Dirichlet domain

centered at p0 is by definition

F = {x ∈ H2
C : d(x, p0) ≤ d(x, γp0), ∀γ ∈ Γ}. (3–1)

The group Γ acts discretely if and only if F has nonempty
interior, and, in that case, F is a fundamental domain for
Γ as long as no element of the group fixes the point p0.
If p0 is fixed, then one only gets a fundamental domain
modulo the action of the finite group that fixes it.

Note that F is bounded by a number of hypersurfaces
of equidistance, also called bisectors. Even though their
definition makes sense in any metric space, it is easy to
imagine that these hypersurfaces can be quite pathologi-
cal, in particular, they need not be smooth or connected
in general. Here, we focus on the case of H2

C, where
Dirichlet domains were already considered in [Giraud 21]
(see also [Mostow 80, Goldman 99]).

In practice, it is quite difficult to verify whether or not
F is nonempty and, if so, to determine its combinatorics.
It is not even clear whether it has finitely many faces
(in fact, this is not true in general, even for some very
elementary groups, see [Goldman and Parker 92]).

We wish to study cases where F only has finitely many
faces, so that we can actually write the polyhedron as

F = FW = {x ∈ H2
C : d(x, p0) ≤ d(x, γp0), ∀γ ∈W},

(3–2)
for some finite subset W ⊂ Γ.

The main difficulties can be summarized as follows:

1. How do we find an appropriate set W?

2. Given a finite set W ⊂ Γ, how do we determine the
combinatorics of FW ?

3. Does FW have side pairings, and does it satisfy the
cycle conditions of the Poincaré polyhedron theorem
(see Section 7)?

Part (1) is usually very tedious, but it can be done by
computer experimentation (a detailed procedure is given
in [Deraux 05]).

For the Mostow groups, one easily obtains a guess for
reasonable candidates for the sets W (but one needs to
be very cautious, the guess taken in [Mostow 80] seems
reasonable, but it is not always correct, as we shall discuss
in Section 11).

Part (2) is the most difficult. We shall describe exper-
imental methods for doing this with a computer, but it
turns out that it is extremely difficult to prove the results
rigorously.

Assuming Part (2) has been done correctly, Part (3)
is very straightforward (most of the verifications follow
automatically from the fact that FW is obtained by a
Dirichlet construction).
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4. ELEMENTARY PROPERTIES OF BISECTORS

Dirichlet polyhedra are bounded by hypersurfaces
equidistant between two points in complex hyperbolic
space. These are not totally geodesic and can have fairly
complicated intersection patterns. We review some of the
results in [Mostow 80] and [Goldman 99].

Definition 4.1. The bisector between two distinct points
p0 and p1 in H2

C is the set of points that are equidistant
from p0 and p1:

B(p0, p1) = {x ∈ H2
C : d(x, p0) = d(x, p1)}. (4–1)

The formula for the distance between two points was
given in Equation (2–2). We shall always rescale the
vectors pj so that 〈p0, p0〉 = 〈p1, p1〉, and the equation of
the bisector then becomes simply

|〈x, p0〉| = |〈x, p1〉|. (4–2)

In order to get points inside complex hyperbolic space,
we consider only negative vectors x ∈ C3, 〈x, x〉 < 0.
It is sometimes useful, however, to study the solution
set in all of C3, or rather in projective space P 2

C. The
corresponding solution set is then (a special case of) an
extor (see [Goldman 99] for the definition).

4.1 Slice Decomposition

The solution set of the equation |〈x, p0〉| = |〈x, p1〉| is
obviously foliated by complex lines 〈x, p0〉 = µ〈x, p1〉, for
complex numbers µ with |µ| = 1.

Equivalently, each solution in C3 is on a unique com-
plex plane of the form v⊥µ , where

vµ = p0 − µp1, |µ| = 1. (4–3)

Equation (4–3) parametrizes a circle σ, which splits into
two arcs σ− and σ+ consisting of vectors of negative or
positive norm, respectively.

The v⊥µ , for vµ ∈ σ+, yield a foliation of the bisector
by complex geodesics in the ball, called the slice decom-
position. It is easy to check that any complex geodesic
contained in the bisector must be a leaf of that foliation.

For each vector vµ, there is a unique vector vν that is
orthogonal to it (it is clear that the only ν that works
is given by ν = 〈p0, p0 − µp1〉/〈p1, p0 − µp1〉). In partic-
ular, the arc σ− is itself contained in the bisector, and
by construction it is contained in the complex geodesic Σ
spanned by p0 and p1. Now, the intersection of Σ with B
is obviously a real geodesic, equidistant from p0 and p1.

Definition 4.2. The geodesic σ− is called the spine of the
bisector. The complex geodesic spanned by p0 and p1 is
called its complex spine.

With a little abuse of language, we sometimes refer
to the whole circle σ as the spine and to the complex
projective line containing it as the complex spine. When
this causes any confusion, we refer to them as extended
(real or complex) spines.

It is clear from the above description that the slices
of the bisector are orthogonal to its spine (and to its
complex spine). The slice decomposition is usually stated
as in Proposition 4.3.

Proposition 4.3. Every bisector is the inverse image of its
real spine under orthogonal projection onto its complex
spine. The fibers of the projection are called the complex
slices of the bisector.

Definition 4.4. A bisector B is equidistant from a point
x if there is a point y such that B = B(x, y).

We leave the proof of the following lemma as an exer-
cise for the reader.

Lemma 4.5. Let B be a bisector with real spine σ and
complex spine Σ. Then B is equidistant from x if and
only if x ∈ Σ \ σ.

There is another natural decomposition of bisectors
into totally real geodesic subspaces; such a subspace is
contained in the bisector if and only if it contains its real
spine. Following [Goldman 99], we shall call these totally
real subspaces the meridians of the bisector.

4.2 Ball Coordinates

The equation of a general bisector in ball coordinates is
quadratic in the real and imaginary parts of the coordi-
nates, as can easily be seen from (4–2).

Lemma 4.6. The equation of any bisector B in ball coor-
dinates is a polynomial of degree at most two in the real
and imaginary parts of the coordinates. It is linear if and
only if the origin of the coordinates lies on the real spine
of B.

From the meridian decomposition, Lemma 4.6 fol-
lows from the well-known fact that a Lagrangian is lin-
ear if and only if it contains the origin (think of the
one-dimensional analogue, saying that geodesics in the
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Poincaré disk are straight lines if and only if they go
through the origin).

Hence, given a pair of bisectors, there is no system
of coordinates where they both have a linear equation
(unless their real spines intersect).

4.3 Bisectors in Dirichlet Domains

In view of the discussion in Section 4.2, in order to find
the combinatorics of a Dirichlet domain, one must de-
scribe the solution set of a number of quadratic inequal-
ities. We shall only consider the cases where we have a
finite number of such inequalities. Our approach reduces
this problem to a two-dimensional problem, by determin-
ing the combinatorics of the various 2-faces of the domain
separately. Such 2-faces lie on the intersection of two
bisectors—we will describe a way to obtain convenient
coordinates on the intersection in Section 5.

The bisectors bounding a Dirichlet domain FW (see
Section 3) form a very special family of bisectors; namely,
they are all equidistant from a given point p0. In view
of Lemma 4.5, this means that all their complex spines
intersect (Goldman calls such bisectors coequidistant;
see [Goldman 99]).

Another important property is the following:

Lemma 4.7. Let B1 and B2 be two coequidistant bisec-
tors. Then B1∩B2 cannot contain any totally real totally
geodesic subspace.

Proof: Let Bj = B(p0, pj). Suppose L is a totally real
totally geodesic subspace in the intersection. Then, it
contains both real spines; hence, the antiholomorphic in-
volution in L preserves both bisectors, but would have to
interchange p0 and pj , hence, p1 = p2.

The intersection of coequidistant bisectors can certainly
contain a complex geodesic, however.

Lemma 4.8. Let B1 and B2 be two coequidistant bisectors,
whose intersection contains a complex geodesic. Then,
their complex spines are equal, and their real spines in-
tersect.

Proof: The only complex geodesics contained in a bisec-
tor are its slices [Goldman 99]. Suppose the two bisectors
contain a complex geodesic S. By the slice decomposi-
tion, S is orthogonal to both complex spines. Since the
complex spines have a point in common, they must coin-
cide (otherwise one would get a geodesic triangle whose
angles add up to more than π). The fact that the real

spines intersect follows immediately from the slice de-
composition (see Proposition 4.3).

The following result is crucial to the study of Dirichlet
domains.

Theorem 4.9. Let B1 and B2 be two coequidistant bisec-
tors with distinct complex spines. Then their intersection
is a smooth nontotally geodesic disk that is contained in
precisely three bisectors.

If Bj = B(p0, pj), j = 1, 2, then the third bisector is
of course B(p1, p2). The fact that there are no other bi-
sectors containing B1 ∩B2 is due to Giraud, and the fact
that the intersection is connected was proved by Gold-
man [Goldman 99].

Definition 4.10. The intersection of two coequidistant
bisectors with distinct complex spines is called a Giraud
disk. We also say that the two bisectors have Giraud
intersection.

We summarize the previous result as follows. The in-
tersection of two coequidistant bisectors, if nonempty, is
either a complex totally geodesic disk or a Giraud disk.

As we shall see in the next section by exhibiting ex-
plicit coordinates, if the intersection is Giraud, then the
equations |〈x, p0〉| = |〈x, p1〉| = |〈x, p2〉| define a torus in
projective space, referred to as a Clifford torus in [Gold-
man 99]. We sometimes call it a Giraud torus, since it
extends a Giraud disk. Note that it is the intersection in
projective space of the two extors that extend the bisec-
tors Bj (see [Goldman 99] for more on extors).

The following result refines the statement that bisec-
tors in complex hyperbolic space are not totally geodesic
(for a proof see [Mostow 80] or [Goldman 99]).

Lemma 4.11. Let q1 and q2 be two distinct points on the
bisector B = B(p0, p1). The geodesic between q1 and q2
is contained in B if and only if these points are in some
slice or meridian of B.

In fact, Dirichlet domains, which are intersections of
half spaces bounded by bisectors, are not convex (even
though they are clearly star-shaped with respect to the
center of the domain).

Definition 4.12. For γ ∈ Γ, we write γ̂ for the bisector

γ̂ = B(p0, γ
−1p0).
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Remark 4.13. Note that we use the same definition as
Mostow, in order to make it easier to compare with the
original text [Mostow 80]. Most references mentioning
Dirichlet domains would probably call this bisector γ̂−1

instead.

It is obvious from the definition that α sends α̂ to α̂−1,
and more generally

α(α̂ ∩ β̂) = α̂−1 ∩ β̂α−1. (4–4)

Note that this relation becomes much more natural when
naming the bisectors in the usual way; see Remark 4.13.

Consider a Dirichlet domain FW as in (3–2). For a
given γ ∈W , note that γ̂∩FW need not be a topological
ball in general (see [Deraux 05] for examples).

As a consequence, one needs to define faces carefully,
namely, by taking the open faces to be the connected
components of the interior of γ̂ ∩ FW in γ̂.

With “faces” interpreted in that manner, one proves
just as in Lemma 3.3.2 of [Mostow 80] that the faces
are topological balls. Note, however, that Mostow’s
Lemma 3.3.1 (which claims that for any γ ∈ W , the in-
tersection of any complex slice of the bisector γ̂ intersects
FW in a convex polygon) is incorrect.

5. EXPERIMENTAL METHODS

5.1 Spinal Coordinates on Bisector Intersections

5.1.1 Cospinal bisectors. The bisectors B(p0, p1) and
B(p0, p2) have the same complex spine if and only if p0,
p1, and p2 are represented by linearly dependent vectors
in C3.

It follows from the slice decomposition (see Propo-
sition 4.3) that two cospinal bisectors intersect if and
only if their real spines intersect, in a point p. In that
case, their intersection consists of a complex geodesic S,
which is perpendicular to their common complex spine
through p.

We then choose a basis {v1, v2} for (the lift to C3 of)
S, with 〈v1, v2〉 = 0, 〈v1, v1〉 = −1, and 〈v2, v2〉 = 1,
so that a nice coordinate on S is obtained by writing its
vectors as v1 +zv2, |z| < 1. The intersection S∩B(p0, p3)
with a third bisector has an equation of the form

|〈v1 + zv2, p0〉| = |〈v1 + zv2, p3〉|,

which is a (possibly degenerate) circle in the z-plane. In
particular, the intersection of S with a number of half
spaces is bounded by circles or lines in the plane, which
we consider an easy problem (even though one needs to

be careful with issues of precision). One should be aware
that such an intersection need not be connected in gen-
eral, since the arcs of circles bounding it are not neces-
sarily geodesics.

5.1.2 Giraud disks. We now explain a convenient way
to parameterize Giraud intersections. Consider two co-
equidistant bisectors B(p0, p1) and B(p0, p2), which we
assume not to be cospinal (i.e., the three points pj are
represented by linearly independent vectors in C3).

We dehomogenize the coordinates on the affine chart
given by the complement of p⊥0 . In other words, we use
y = x/〈x, p0〉 as coordinates, and these three coordinates
satisfy 〈y, p0〉 = 1.

The bisector intersection is then given by

|〈y, p1〉| = 1,
|〈y, p2〉| = 1. (5–1)

We simply take u1, u2 as complex coordinates on the
ball, where uj = 〈y, pj〉, so that the Giraud disk is the
intersection with the ball of the torus

|u1| = |u2| = 1 (5–2)

in projective space. We refer to u1 and u2 as spinal
coordinates.

Note that complex hyperbolic space will not be given
by the unit ball in the coordinates (u1, u2). In fact, the
intersection of the torus with H2

C can be obtained as fol-
lows. Let P be the matrix whose columns are the coor-
dinates of the vectors pj , so that we have

yTHP = [1, u1, u2] = UT ,

〈y, y〉 = UT (PTHP )−1U.

The last expression can be rewritten in the form

a0 + 2Re{a1u1 + (a2 + a3u1)u2},

where the aj are easily obtained from the Hermitian ma-
trix (PTHP )−1. Observe that a0 is real (it comes from
the diagonal entries of the Hermitian matrix PTHP ),
whereas the other aj are complex, in general.

The trace on the torus |u1| = |u2| = 1 of the boundary
of the ball can obtained by solving a family of quadratic
equations {

2Re{αz} = β,
|z| = 1, (5–3)

where
α = α(u1) = a2 + a3u1,
β = β(u1) = −a0 − 2Re{a1u1}. (5–4)
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It is not obvious, a priori, that the intersection with
the ball is connected, but this was proved by Goldman
in [Goldman 99]. In other words, there is a unique arc on
the circle |u1| = 1 for which the equations in (5–3) have
a solution (and there are two solutions in the interior of
the interval).

It is elementary to see that (5–3) has a solution if and
only if

|β| ≤ 2|α|. (5–5)

In fact, there is a unique solution if |β| = 2|α|, two
solutions if |β| < 2|α|, and infinitely many solutions if
α = β = 0.

In particular, the image of the Giraud disk under pro-
jection onto the complex spine of β(p0, p1) corresponds
to the set of values u1 satisfying

|a0 + a1u1 + a1u1| < 2|a2 + a3u1|.

After squaring both sides, we obtain expressions of de-
gree 4 in the real and imaginary parts of u1. This imme-
diately implies that there can be at most two connected
components in the intersection of the bisectors, but co-
equidistance implies that there is only one [Goldman 99].

It is clear from the description that the circles u1 =
const correspond to the intersection of the slices of the
first bisector with the second, and u2 = const to the
intersection of the slices of the second bisector with the
first bisector. The slices of the third bisector B(p1, p2)
are easily seen to intersect the torus in “lines of slope
one,” namely, u2 = µu1, |µ| = 1.

Remark 5.1. The above three families of curves, given by
the intersection with the ball of the horizontal, vertical,
and slope 1 slices of the Clifford torus, can be proved
to be hypercycles in the Poincaré disk of the appropri-
ate slice of the respective bisectors (see [Mostow 80] or
[Goldman 99, Section 7.3]). We shall not need this fact
in the present paper; all we need is the fact that they are
arcs of circles.

5.2 Exploring the 2-Faces

In order to understand the combinatorics of intersections
of half-spaces bounded by bisectors, we want to study all
of its 2-faces separately. Given the intersection S of two
given bisectors, we want to determine the intersection of
S with a number of half spaces bounded by finitely many
other bisectors.

Our strategy is to plot on S the trace of all the other
bisectors and to consider the connected components of
the complement of the union of these curves. We shall

give some explicit examples in Section 6, but for now we
start with some general considerations. We focus on the
case where S is a Giraud disk, the cospinal case being
much easier to handle (see Section 5.1.1).

Using spinal coordinates u1 and u2 on S = B(p0, p1)∩
B(p0, p2), we write the equation of another bisector
B(p0, p3) as

|δ0 + δ1u1 + δ2u2| = 1. (5–6)

The coefficients δj are obtained as follows. Remembering
that we normalize our coordinates so that 〈y, p0〉 = 1, the
coefficients δj are simply defined by the relation

p3 = δ0p0 + δ1p1 + δ2p2. (5–7)

This makes sense because we assumed that the vectors
p0, p1, and p2 are independent and have the same norm.
Note that there is some ambiguity since we could multi-
ply p1, p2, or p3 by complex numbers of absolute value 1,
but this simply results in shifting the coordinates uj by
multiplication by a complex number of absolute value 1.

Along each slice where u1 is constant, the correspond-
ing values of u2 are obtained by solving equations exactly
as in (5–3), now with

α = (δ0 + δ1u1)δ2,
β = 1− |δ0 + δ1u1|2 − |δ2|2. (5–8)

Once again, for a given u1, such an equation has 0, 1, 2,
or infinitely many solutions.

Away from the degenerate cases, one obtains an ex-
plicit parameterization for the intersection S ∩B(p0, p3),
of the form

u2 =
β ±√β2 − 4|α|2

2α
, (5–9)

with α and β depending on u1 as in (5–8). This parame-
terization is only valid on the locus of |u1| = 1, where the
discriminant ∆ = β2 − 4|α|2 in (5–9) is strictly negative
(which could consist of up to two arcs on the circle).

The locus where ∆ > 0 is irrelevant, and the behav-
ior of the curve S ∩ B(p0, p3) on the locus ∆ = 0 is
readily analyzed (there is either a unique solution for
u2 or u2 is arbitrary). In the next section, we shall de-
scribe one possible computer program that plots these
curves, for instance, by using log coordinates tj , where
uj = e2πitj . The only difficulty is to handle the degen-
erate situations—note that the only problem with our
parameterization is the presence of “vertical lines” in the
graphs. The cases where u2 is arbitrary for a given value
of u1 are easy to detect in Equation (5–6). They corre-
spond to having either δ2 = 0 or |δ2| = 1 and u1 = −δ0/δ1
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(a geometric interpretation of these two cases is given
in [Deraux 05]).

Remark 5.2.

1. There is, of course, a similar parameterization cor-
responding to solving for u1 in terms of u2. This
gives another way to handle the vertical lines that
could possibly appear in the u1-parameterization. It
is easy to understand when there are horizontal or
vertical lines on the graph in terms of the coefficients
δj of (5–6).

2. Consider a case where a vertical line occurs at some
u1, but there are two distinct values of u2 for nearby
values of u1. It can be checked (see [Deraux 05]) that
the parameterizations (5–9) have a limit on both
sides, so that dividing by numbers close to 0 does
not cause too much trouble in the results.

5.3 Description of a Computer Program

The java applet [Deraux 04a] provides a convenient way
to explore the combinatorics of the 2-faces of Dirichlet
domains for the Mostow groups (or for any group given
by an explicit set of generators). From there, one can
deduce the combinatorics of the whole Dirichlet domain,
at least conjecturally.

There are, of course, two cases, depending on whether
the 2-face is totally geodesic or not. This is done by
computing the determinant of P = [p0, p1, p2], and if the
determinant is close to zero, we consider the bisectors as
being cospinal (in [Deraux 04a] we use double precision
and consider the bisectors cospinal if |detP |2 < 10−10).

If the bisectors are (at least close to being) cospinal,
we draw a number of circles on the unit disk, which is an
easy task—we shall not worry about issues of precision
here, and consequently we give no claim of rigor in the
combinatorics of our Dirichlet domain.

If the bisectors have Giraud intersection, we use spinal
coordinates and produce a plot in log coordinates—recall
that we write uj = e2πitj . In our program [Deraux 04a],
we split the interval of values of t1 ∈ [a, b] into 500 equal
pieces, and for each value of t1 in the grid, we check
whether ∆(u1) < 0, and, if it is, we use Equation (5–9)
to plot the corresponding two points on the graph.

The main problem with the above is that we might
be missing some vertical lines in the graph. The sim-
plest way to handle this (which is implemented in
[Deraux 04a]) is to plot the graph a second time, using
u2 as the parameter instead of u1.
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FIGURE 1. The trace of four bisectors on some generic
bisector intersection.

Figure 1 shows five curves traced on a torus (iden-
tified with a square with real coordinates t1 and t2, so
that uj = e2πitj ). The picture was drawn using Maple,
for greater precision than in [Deraux 04a] (in fact, the
pictures obtained by both methods are practically iden-
tical). The thick oval is the intersection with the bound-
ary of the ball, the interior of the ball corresponding to
the interior of the oval. The other curves correspond to
intersections with four bisectors, two of them having two
irreducible components.

6. DIRICHLET DOMAINS FOR THE FINITE GROUPS

Recall from Section 2.4 that the groups Γ(p, t) contain
natural finite subgroups Γij generated by Ri and Rj . For
convenience of notation, we consider the group Γ12 (the
other ones are obtained by conjugation by the isome-
try J).

Natural fundamental domains can be obtained from
the description in terms of triangle groups given in Sec-
tion 2.4, by lifting the sides of the triangle on P1

C to totally
real planes in H2

C (this is the approach taken in [Falbel
and Paupert 04]). Such domains will not be Dirichlet
domains, however. In fact, we will see that the Dirich-
let domains for Γ12 are much more complicated, and, in
particular, they are far from being cones over the fixed
point p12.

Indeed, recall that the equation for a bisector in non-
homogeneous ball coordinates is, in general, a quadratic
equation in the real and imaginary parts of the coordi-
nates (see Section 4.2). The equation reduces to a lin-
ear one if and only if the real spine of the bisector goes
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through the origin of the system of nonhomogeneous co-
ordinates.

In particular, if we center the coordinates at the fixed
point p12 and take a point p0 �= p12, none of the bisec-
tors bounding the Dirichlet domain centered at p0 will be
linear! This explains the perhaps unexpected complexity
of the results of this section. We mention that the re-
sults stated here differ quite significantly from the claims
in [Mostow 80].

Specifically, Mostow claims that for any p, t, the fun-
damental domain F12 has only ten faces (which sounds
surprising since the groups Γij have very different orders
for different values of p). The specific set W12 of group
elements that Mostow uses is

W12 = {R±1
i , (RiRj)±1, (RiRjRi)±1, i �= j = 1, 2}.

(6–1)

Recall that the generating reflections braid, i.e.,
R1R2R1 = R2R1R2 (see Section 2), so that the above
set really consists of only ten elements, and not 12, as
might appear at first sight.

It might sound surprising that (6–1) does not vary
with p since the orders of the corresponding groups Γij
are different. It is also unclear whether the set of rele-
vant words should remain the same when t changes (the
groups Γij for various values of t are of course isomor-
phic, but the position of the mirrors of generating reflec-
tions with respect to the center of the Dirichlet domain
changes).

Proposition 6.1. For p = 3, the polyhedron F12 has
at least 18 faces, and the group elements of the form
(RiRjR−1

i )±1 and RiR
−1
j need to be included in order

to obtain a fundamental domain.

The conjectural combinatorics of F12, for small phase
shift, i.e., |t| < 1

2 − 1
p , are given in Figures 6 and 7

(compare with the pictures on page 220 of [Mostow 80]).
Note that the precise combinatorics are conjectural, even
though the fact that a certain face is nonempty can eas-
ily be proved rigorously. We only list the case p = 3 and
small phase shift for the sake of brevity, and because we
are interested not so much in the finite groups but rather
in the corresponding lattices.

Our pictures are obtained using the experimental
method sketched in Section 5, without worrying about
the dependence on the phase shift parameter (we fix a
particular set of braiding reflections by fixing a value of
the phase shift ϕ).

6.1 Examples of 2-Faces

We now describe some examples of α̂1 ∩ α̂2 ∩ F12, where
F12 is the Dirichlet domain for the finite group Γ12 cen-
tered at the barycenter of the mirrors of the three reflec-
tions R1, R2, and R3, namely, p0 = [1, 1, 1]T .

These sets can be fairly complicated, and, in particu-
lar, it is not clear whether or not they are connected.

Definition 6.2. The connected components of the set
∗(α̂1 ∩ α̂2) =

{x ∈ α̂1 ∩ α̂2 : d(x, p0) < d(x, γp0),

∀γ ∈ Γ12, γ �= 1, α−1
1 , α−1

2 } (6–2)

are called open 2-faces of the polyhedron F12.

It turns out that all sets in (6–2) in the Dirichlet do-
mains for the groups that appear in [Mostow 80] are con-
nected, so we shall not bother giving different names to
the connected components. Note that, in general, how-
ever, these sets are not connected (for examples, see [De-
raux 05]).

As we shall see in the examples below, the closure of
that open 2-face is not necessarily equal to

α̂1 ∩ α̂2 ∩ F12 = {x ∈ α̂1 ∩ α̂2 : d(x, p0) ≤ d(x, γp0),

∀γ ∈ Γ12}, (6–3)

which can have lower-dimensional components.

6.1.1 A cospinal example. We start with the easier
case, where the two bisectors α̂1 and α̂2 are cospinal (in
which case their intersection is simply a complex line L).
Recall that this is equivalent to saying that p0, p1 =
α−1

1 p0, and p2 = α−1
2 p0 are linearly dependent.

Recall from the discussion in Section 5 that the inter-
section of a bisector γ̂ with the complex line L is an arc
of a circle (except for degenerate situations, where L is
a complex slice of γ̂). Once again, we mention that it
can be proved that this arc is actually a hypercycle (see
Remark 5.1 and [Goldman 99]).

We discuss the example R̂1∩R̂−1
1 in some detail. Since

R1 is a complex reflection, this intersection is simply the
mirror of R1. The corresponding 2-face R̂1∩ R̂−1

1 ∩F12 is
a sector bounded by two geodesics for small phase shift,
and it is slightly more complicated for large phase shift
(see Figures 2 and 3).

The point p12 is fixed by the whole group Γ12, so that
all the corresponding bisectors go through a given point,
which we take to be the origin of the disk coordinates.
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FIGURE 2. The 2-face of F12 on the mirror of R1, for
p = 3 and t = 1/18.
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FIGURE 3. The 2-face of F12 on the mirror of R1, for
p = 3 and t = 11/30.

Remark 6.3. The pictures given here can be obtained
with the applet [Deraux 04a], but the reader should be
aware that the notation for bisectors is opposite from the
one used in the present paper (see Remark 4.13). In the
applet, γ̂ stands for B(p0, γp0) rather than B(p0, γ

−1p0).

6.1.2 2-faces on Giraud disks. If p0, p1 = α−1
1 p0, and

p2 = α−1
2 p0 are linearly independent, then the intersec-

tion α̂1 ∩ α̂2 is not totally geodesic, but, as discussed
in Section 4, it has natural coordinates and we can eas-
ily plot the various intersections α̂1 ∩ α̂2 ∩ F12 using a
computer.

We discuss a couple of examples of 2-faces that illus-
trate the main difficulties. The shaded region in Figure 4
is the open 2-face ∗(R̂1 ∩ R̂1R2R1). In order to obtain
such a picture, we start by plotting all intersections with
γ̂ in spinal coordinates u1, u2 (in the picture we actually
use t1 and t2, where uj = e2πitj ). This cuts the disk
R̂1 ∩ R̂1R2R1 into a number of regions, and it is a bit te-
dious, but not particularly difficult, to test which ones are
in the intersection of all the appropriate half-spaces γ+.
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FIGURE 4. The open 2-face ∗(�R1 ∩ ̂R1R2R1), for p = 3,
t = 1/18.

One striking point is that R̂1 ∩ R̂1R2R1 ∩F12 consists
of the closure of the open face ∗(R̂1 ∩ R̂1R2R1), together
with an edge. Indeed, the whole ray from the origin down
along the vertical axis in the picture is contained in F12,
which is, in fact, contained in the intersection of the five
bisectors corresponding to R1, R−1

1 , R1R2, R1R2R1, and
R1R2R

−1
1 .

This should be only partly surprising, since we already
analyzed the intersection of these bisectors in R̂1∩R̂−1

1 =
e⊥1 and found that it was indeed a ray that goes all the
way to the boundary of the ball (see Figure 2).

We draw one more neighboring face, namely, ∗(R̂1 ∩
R̂1R2). Once again, R̂1 ∩ R̂1R2 ∩F12 contains a segment
that is not in the closure of the open face (but that is
actually part of the closure of the previous open face
∗(R̂1 ∩ R̂1R2R1)).
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1,121

2

FIGURE 5. The open 2-face ∗(�R1 ∩ R̂1R2), for p = 3,
t = 1/18.

6.2 Description of all the 2-Faces

It is quite clear that the methods from the previous para-
graph allow one to describe all the possible 2-faces of the
fundamental domain, by repeating the above procedure
for all possible pairs of bisectors α̂1 ∩ α̂2 in the group (or
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1 2 1 2
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s̃32

2 1 p12
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1 2 1
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t23

2 t32
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1

1 2

(a) �R1

s̃32

1

2 1 2 2

(b) R̃1R−1
2

FIGURE 6. The combinatorics of some faces of F12, for
small phase shift (t = 1/18). On each 2-face, we write a
shortcut notation for the neighboring face �γ, using i and
i for Ri and R−1

i , respectively.

rather in a well-chosen finite set of elements in the group).
In this manner, one gets a proof of Proposition 6.1.

There are of course issues of precision, and we do not
attempt to prove the results rigorously. The main point
is that it is fairly easy to prove that a given 2-face is
nonempty, but it is tedious to prove that the precise com-
binatorics are as they seem from experimentation.

Figures 6 and 7 describe the results for p = 3 and
t = 1/18. It is not clear that the same combinatorics

1
2

1

p12

1

2

t32
1 2 1

1

s̃13s12

(a) R̃1R2

t31

2

12
1

s̃32
2 1

(b) ˜R2R1R−1
2

12

21

2

s12

t31

t32

p12

1

(c) ˜R1R2R1

FIGURE 7. The combinatorics of some faces of F12, for
small phase shift (t = 1/18). The dotted lines are con-
tained in the boundary of the ball, whereas the dashed
ones have a different meaning. One edge is dashed in (c)
simply to indicate that it is hidden behind another 2-face.

hold for any small phase shift, i.e., whenever −(1
2 − 1

p ) <
t < ( 1

2 − 1
p ), or for different values of p. In fact, one can

see (cf. Section 11) that, for p = 5, the combinatorics are
not stable on the intervals corresponding to large phase
shift, |t| > 1

2 − 1
p .

For the sake of saving space, we only show some faces
that are representative of all the combinatorial possibili-
ties. It is easy to deduce the combinatorics of the other
faces by symmetry (see Section 8).

Finally, we mention that these figures correct the pic-
tures given on page 220 of [Mostow 80], and that the
domains are not cones over the point p12.

7. THE POINCARÉ POLYHEDRON THEOREM

The most convenient way to transform our experimental
results into rigorous proofs would be to use the appropri-
ate version of the Poincaré polyhedron theorem.

Let F = FW be the polyhedron in H2
C bounded by

the bisectors ŵ = B(p0, w
−1p0), w ∈ W . Suppose W

is symmetric (i.e., w−1 ∈ W whenever w ∈ W ), and w

yields a side pairing transformation

w : F ∩ ŵ → F ∩ ŵ−1, (7–1)

so that the image of the polyhedron F , under the side
pairing w, intersects F along one face precisely, with no
further intersection.

In what follows, we shall sometimes write w̃ for the
face of F on the bisector ŵ, i.e.,

w̃ = F ∩ ŵ, (7–2)

although the notation is somewhat ambiguous since w̃

depends on the poolyhedron F .
Since the side pairing w sends w̃ to w̃−1, we write this

condition as
F ∩ w(F ) = w̃−1. (7–3)

The following construction gives the cycle transforma-
tion attached to each codimension 2 face, usually referred
to as “edges.” Let e0 be such an edge. It is contained in
the intersection ṽ0 ∩ w̃0 of two faces for a unique choice
of v0, w0 ∈W . Consider the image of the edge under the
side pairing corresponding to one of these two transfor-
mations, say v0. Since it is a codimension 2 face of F , we
can write it as

e1 = v0(e0) = ṽ1 ∩ w̃1,

for some group elements v1, w1 ∈ W . Note that one of
these two, say w1, is simply v−1

0 .
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Consider the image of e1 under v1 and write

e2 = v1(e1) = ṽ2 ∩ w̃2, (7–4)

for w2 = v−1
1 and v2 uniquely determined by Equa-

tion (7–4). Repeat this process to define a sequence of
group elements vk, wk, k = 1, . . . , r + 1, until we come
back to the edge we started with, i.e.,

er+1 = e0. (7–5)

Note that we are certain that this process terminates
since our set W is finite.

Definition 7.1. The group element g0 = vrvr−1 . . . v1v0
is called the cycle transformation associated to the edge
e0 = ṽ0 ∩ w̃0.

Here, we require that g0 be the identity on e0 (i.e.,
this is part of the requirement (7–5)).

The element g0 is not quite well defined; in fact, it
depends on the choice we made for the first side pairing
(we could have chosen w1 instead of v1). It is readily
checked that the other choice would simply yield the in-
verse cycle g−1

0 .
Let ge denote the cycle transformation associated to

the edge e of F . Suppose that for each edge e, the cycle ge
has finite order re and the successive images of F under
the transformation ge tile a neighborhood of the edge
e, overlapping only along faces of the images of F (in
particular, the interiors of the images of F should be
disjoint).

Theorem 7.2. Under the above assumptions, the group
Γ generated by W in PU(2, 1) is discrete, and F is a
fundamental domain for Γ modulo the action of the finite
subgroup of Γ that fixes p0.

If no element of Γ fixes p0, a presentation for Γ is
given by

〈W |gre
e = 1〉, (7–6)

where the ge are the words defining the cycle transforma-
tions as in Definition 7.1.

A proof of this result is sketched in [Mostow 80]; see
also [Falbel and Parker 05]. Note that the fact that our
faces are not totally geodesic complicates matters quite a
bit, not only in proving the theorem but also in verifying
whether its hypotheses are satisfied. It is very difficult

to prove that two given polyhedra (bounded by bisectors,
which are not totally geodesic) intersect precisely along
one of their faces, even though, as we mentioned before,
it can easily be tested experimentally.

We mention that Giraud’s result (Theorem 4.9) is a
very useful tool for verifying (7–1). Indeed, it implies that
most of the edges (here, we regard totally geodesic edges
as being exceptional) are contained in precisely three bi-
sectors, of which only two are equidistant from the center
of our Dirichlet domain. Indeed, suppose e = α̃ ∩ β̃ is
a generic edge (i.e., the coequidistant bisectors α̃ and β̃

are not cospinal, or, in other words, p0, p1 = α−1p0,
and p2 = β−1p0 are not on a common complex line).
Then e is on precisely three bisectors, namely, B(p0, p1),
B(p0, p2), and B(p1, p2). Now, α(e) is also a generic
edge, and it is equidistant from α(p0), α(p1) = p0, and
α(p2) = αβ−1(p0).

If the polyhedron is to have side pairings, then, by
Theorem 4.9, we need one of its faces to be on the bi-
sector β̂α−1. Assuming no group element fixes p0, the
corresponding side pairing can only be βα−1, and we can
easily check that this maps α(e) to β(e). Hence, the cycle
for e has length 3, and its cycle transformation is given
by β−1(βα−1)α, which is the identity.

We emphasize one implication of the above discus-
sion: if a generic face α̃∩ β̃ appears in the polyhedron F ,
then the face α̃−1 ∩ β̃α−1 must appear as well (provided
that none of these group elements fixes p0). In par-
ticular, this gives a necessary condition for the poly-
hedron FW corresponding to a set W of group elements
to have side pairings, which we refer to as being Giraud-
closed.

Definition 7.3. We say that the set W is Giraud-closed if
whenever α, β ∈ W and the open 2-face of FW in α̂ ∩ β̂
is generic and nonempty, we have βα−1 ∈W .

This also gives a procedure for finding an appropriate
set W , by including more and more group elements if
necessary until W becomes Giraud-closed (but this pro-
cedure might never terminate). For more details on this,
see [Deraux 05].

If W is indeed Giraud-closed (this is difficult to verify
rigourously), then the verification of the hypotheses of
the Poincaré polyhedron theorem can be reduced to ver-
ifications about complex geodesic 2-faces, which is much
easier (the corresponding cycle transformations are then
complex reflections, and one simply needs to study their
angles of rotation).
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8. SYMMETRIES IN THE FUNDAMENTAL DOMAIN

8.1 Basic Symmetry

The basic symmetry in the fundamental domain comes
from the fact that the map

⎡
⎣ x1

x2

x3

⎤
⎦ �→

⎡
⎣ x2

x1

x3

⎤
⎦ (8–1)

is an (antiholomorphic) isometry of complex hyperbolic
space. It is readily checked that it conjugates R1 into
R−1

2 and R2 into R−1
1 . This shows that we only need to

consider half of the faces of the fundamental domain.
As in Section 7, we write γ̃ for the face F12 ∩ γ̂ on

the bisector γ. Now, for any γ ∈ Γ12, the isometry γ

takes the face γ̃ isometrically into γ̃−1. Once we have the
combinatorics of R̃1, we can deduce the combinatorics
of R̃−1

1 . These are also isometric to R̃2 and R̃−1
2 , by

applying the isometry σ12.
From R̃1R2, we can also deduce ˜(R1R2)−1, but this

face is not isometric with R̃2R1, unless t = 0. It turns
out that the combinatorics of R̃1R2 and R̃2R1 are the
same only when |t| ≤ t1.

8.2 Codimension 2 Faces and Cycles

There are, of course, many isometries between the 2-
faces, obtained by analyzing the cycles, in the terminol-
ogy of the Poincaré polyhedron theorem (see Section 7).
Since we have introduced some new faces to the list given
in [Mostow 80], we include a list of these cycles (valid only
for small phase shift).

The face R̃i ∩ R̃−1
i is fixed by Ri, since it is simply

the mirror of that complex reflection. The cycle trans-
formation is, of course, the reflection Ri, and it rotates
complex hyperbolic space in the direction normal to its
mirror by an angle 2π/p. The copies of F12 under powers
of Ri tile a neighborhood of that edge by construction,
since the bisector R̂−1

i is obtained from R̂i by applying
Ri. In the finite groups Γij , no other pairs of elements
yield cospinal bisectors.

The other cycles correspond to Giraud 2-faces. Recall
that such an edge is contained in precisely three bisectors
because of Giraud’s theorem (see Theorem 4.9, and also
the discussion in Section 7); hence, the corresponding
cycles will have length 3.

The cycles yield the following presentation for the fi-
nite group:

Γij = 〈Ri, Rj | Rpi , RiRjRi = RjRiRj〉.

Indeed, the relation stating that Ri has order p comes
from the 2-face on the mirror of Ri, and the braid relation
is deduced from certain Giraud 2-faces. For instance,
Figure 11 implies that the cycle transformation for the
edge R̃−1

2 ∩ ˜(R1R2R1)−1 is given by

(R1R2R1)(R1R2)−1R−1
2 .

This transformation is the identity because it fixes a Gi-
raud disk, so we get

R1R2R1 = R2R1R2.

One verifies that all relations obtained from the cycles in
Figures 8–11 are trivial, except for the second and fourth
cycles in Figure 8 (both yield a relation equivalent to the
braid relation).

The four cycles in Figure 8 correspond to triangular
faces with one vertex at p12 (having the same combina-
torics as in Figure 4). The first two cycles in Figure 8
consist of isometric 2-faces, and so do the last two cycles,
but the first and third cycle are not isometric, (unless
t = 0).

�R1 ∩ ̂(R2R1)−1
(R2R1)−1

�� ̂R1R2R1 ∩ R̂2R1

R1R2R1����
��

��
�
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1

R
−1
1

���������

�

R−1
2 ∩ R̂2R1

R2R1�� ̂(R1R2R1)−1 ∩ ̂(R2R1)−1
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�����������
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�
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		��������

FIGURE 8.

The four cycles in Figure 9 correpond to faces that do
not contain p12, and have the same combinatorics as in
Figure 5. Once again there are two isometry types among
them, unless t = 0.
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FIGURE 10.

The six cycles in Figure 10 come in isometric pairs.
They have one vertex and two (nongeodesic) edges that
go off to the boundary.

The 2-faces in the two cycles In Figure 11 have three
vertices (one of which is p12). They are not isometric,
unless t = 0.
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1 ∩ ̂(R1R2)−1

(R1R2)−1
����
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�

�R2 ∩ R̂1R2

R2

���������

FIGURE 11.

9. LIST OF THE MAIN VERTICES

We now give the useful list of formulas for the vertices
of the fundamental domain that appear in [Mostow 80].
As we shall discuss in Section 11, in some cases there

are extra vertices (this happens only for p = 5 and large
phase shift).

For large phase shift, our notation differs slightly
from [Mostow 80]; we have chosen to keep the same no-
tation for the vertices for arbitrary phase shift, whereas
Mostow describes the vertices sij by two different formu-
las (compare with Lemma 12.3 in [Mostow 80]). This
should not cause any confusion, since the formulas given
below define the points unambiguously, for arbitrary
phase shift.

p12 = [ξ, ξ, 1− α2]T ,

p23 = Jp12 = [1− α2, ξ, ξ]T ,

p31 = Jp23 = [ξ, 1− α2, ξ]T ,

where ξ = αϕ(1 + αϕ3).

s12 = [ηiϕ, ηiϕ, 1]T ,

s23 = Js12 = [1, ηiϕ, ηiϕ]T ,

s31 = Js23 = [ηiϕ, 1, ηiϕ]T ,
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s̃21 = [−ηiϕ,−ηiϕ, 1]T ,

s̃32 = Js̃21 = [1,−ηiϕ,−ηiϕ]T ,

s̃13 = Js̃32 = [−ηiϕ, 1,−ηiϕ]T ,

t12 = [a(ϕ), a(ϕ), α|a(ϕ)|2]T ,

t21 = [a(ϕ), a(ϕ), α|a(ϕ)|2]T ,

t23 = Jt12 = [α|a(ϕ)|2, a(ϕ), a(ϕ)]T ,

t32 = Jt21 = [α|a(ϕ)|2, a(ϕ), a(ϕ)]T ,

t31 = Jt23 = [a(ϕ), α|a(ϕ)|2, a(ϕ)]T ,

t13 = Jt32 = [a(ϕ), α|a(ϕ)|2, a(ϕ)]T ,

where a(x) = x(1− ηix3).

v123 = [−ηiϕ, 1, ηiϕ]T ,

v231 = [ηiϕ,−ηiϕ, 1]T ,

v312 = [1, ηiϕ,−ηiϕ]T ,

v321 = [ηiϕ, 1,−ηiϕ]T ,

v132 = [−ηiϕ, ηiϕ, 1]T ,

v213 = [1,−ηiϕ, ηiϕ]T .

For small phase shift (i.e., |t| < 1/2− 1/p), the funda-
mental domain for the finite group Γ12 has 11 vertices,
given by the p12, sij , s̃ij , t13, t31, t23, t32. When the hy-
potheses of the Poincaré theorem hold, the fundamental
domain for Γ is the intersection of the three fundamen-
tal domains for the finite groups Γij and has 15 vertices
given by the first 15 of the above formulas.

The following formulas are quite useful, as they give
a partial explanation of the change of behavior in the
fundamental domains for the groups as the phase shift is
increased beyond its critical value, namely, |t| = 1

2 − 1
p .

〈s12, s12〉 = 1− cos(πt)
sin(πp )

, (9–1)

〈v312, v312〉 = 1 +
cos( 2π

p − πt)
sin(πp )

, (9–2)

〈v321, v321〉 = 1 +
cos( 2π

p + πt)

sin(πp )
. (9–3)

One checks directly that s12 is a negative vector if and
only if |t| < 1

2 − 1
p , v312 is negative for t < −( 1

2 − 1
p ), and

v321 is negative for t > 1
2 − 1

p [Mostow 80, page 228].
For completeness we mention that

〈t32, t32〉 = 2
(

1− cos(
π

p
+
π

2
+ πt)

)

×
{

1−
sin2( π2p + π

4 + π
2 t)

sin2(πp )

}
. (9–4)

This implies that t32 is a negative vector if and only if
t > −( 1

2 − 1
p ). Similarly, t23 is negative if and only if

t < 1
2 − 1

p .

10. THE PICARD INTEGRALITY CONDITIONS

In this section, we review how the cycles of 2-faces of
the Dirichlet domains yield the integrality conditions in
Theorem 2.7. These are sometimes called the Picard in-
tegrality conditions (they appear in [Picard 81]).

Strictly speaking, the results of this section are valid
only for p = 3 and 4, since for p = 5 the Dirichlet domain
has additional faces (see Section 11). Note, however, that
the analysis of the cycles for complex geodesic 2-faces re-
mains the same for p = 5, and all differences arise from
generic 2-faces only (for which the only discreteness con-
dition is that W be Giraud-closed, see Section 7).

The figures in this section are included mainly for com-
pleteness, most of them being already in [Mostow 80]
(except for Figure 12(d), which turns out to be crucial
in [Deraux et al. 05]). There are several difficulties about
proving the results, but the numerical methods above
give an easy way to test the claims experimentally.

Remark 10.1. The Dirichlet domains for the groups Γ =
Γ(p, t) turn out to be the intersection of the Dirichlet
domains for the three finite groups Γij generated by any
two of the three generators

F = F12 ∩ F23 ∩ F31.

We have seen in Section 6 that the Dirichlet domains for
the finite groups have many more faces than was stated
in [Mostow 80], and it is perhaps surprising that the do-
mains for the full lattices end up differing very little from
Mostow’s. This is explained by the fact that many of the
extra faces for the finite groups are far from the fixed
point of the corresponding finite group (see Figures 6
and 7).

Since the group G generated by the reflections Ri to-
gether with the symmetry J is slightly more natural than
Γ itself, we describe a fundamental domain FG for G.
This involves decomposing the domain F into three cells,
images under J of one another. A natural fundamental
domain for the action of J is the sector in complex hyper-
bolic space bounded by two bisectors B1 = B(p12, p13)
and B2 = B(p12, p23). Their complex spines are given by
the mirrors of R1 and R2, respectively.

Some of the faces of the resulting polyhedron are il-
lustrated in Figure 12, whose pictures are drawn in co-
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FIGURE 12. The combinatorics of some faces of the fundamental domain FG for G, for p = 3 and small phase shift
(t = 1/12).

ordinates adapted to each bisector, i.e., so that the spine
is along the vertical axis, horizontal planes correspond to
complex slices and vertical planes containing the vertical
axis yield the meridians. The polyhedron has a total of
12 faces, lying on the bisectors

R±1
1 , R±1

2 , (R1R2)±1, (R2R1)±1, (R1R2R1)±1, B1, B2.

(10–1)
The side pairings are, of course, given by

R1 : R̂1 → R̂−1
1 ,

R2 : R̂2 → R̂−1
2 ,

R1R2 : R̂1R2 → ̂(R1R2)−1,

R2R1 : R̂2R1 → ̂(R2R1)−1,

R1R2R1 : R̂1R2R1 → ̂(R1R2R1)−1,

J : B1 → B2.

There are three types of totally geodesic 2-faces,
namely, triangles contained in the mirrors of the Rj (the
bottom face in Figure 12(a)) and triangles contained in
slices of the bisectors R̂1R2 and R̂2R1 (the top and bot-
tom faces in Figure 12(d)).

The cycle transformation fixing the mirror of Rj is,
of course, simply Rj , and this trivially satisfies the con-
ditions of the Poincaré theorem, since Rj rotates by an
angle of 2π/p in the normal direction (see also the dis-
cussion in Section 8).

We now consider the cycles for the geodesic face
R̂1R2 ∩ B1 ∩ FG. The discussion below is valid for

t > −( 1
2 − 1

p ) (otherwise, there is no such 2-face in the
fundamental domain).

Lemma 10.2. R̃1R2 ∩B1 is a geodesic triangle on a com-
plex geodesic that is the slice through t32 of any of the
three bisectors R̂1R2, B1, and ̂(R3R1)−1 (that complex
geodesic can also be described as v⊥312).

Proof: One checks explicitly that J−1R1R2 = R3R1J
−1

is a complex reflection with mirror v⊥312. Its mirror is,
by definition, contained in ̂J−1R1R2 = R̂1R2 and in

̂J(R3R1)−1 = ̂(R3R1)−1. The last two equalities follow
from the fact that p0 is fixed by J .

One verifies directly that v312 is on the extended real
spine of B1, specifically,

p31 + ηiϕp12 = α2(η2ϕ2 + ηiϕ)v312, (10–2)

so that v⊥312 is indeed also a slice of B1. The fact that t32
is on the relevant complex geodesic follows from verify-
ing directly that 〈t32, v312〉 = 0, using the formulas from
Section 9.

Lemma 10.3. R1R2 maps R̃1R2 ∩B1 to ˜(R1R2)−1 ∩B2.
The cycle transformation for the edge R̃1R2 ∩ B1 is
J−1R1R2.

Proof: One verifies by direct calculation that R1R2

maps t32 to t13. It follows that it maps the slice of
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2-face relation type

�Ri ∩ �R−1
i Rp

i = 1 complex
�R2 ∩ ̂R1R2R1 R1R2R1 = R2R1R2 generic

B̂1 ∩ B2 J3 = 1 generic

R̂1R2 ∩ B1 (J−1R1R2)
k = 1 complex

R̂2R1 ∩ B2 (R2R1J)l = 1 complex

TABLE 2. The relations obtained from the cycles of 2-
faces. The integers k and l are defined by (10–3).

R̂1R2 through t32 to the slice of ̂(R1R2)−1 through t13,
which are precisely the complex lines that appear in
Lemma 10.3.

Lemma 10.3 gives a natural necessary condition for
FW to be a fundamental domain, by examining the angle
of rotation of the reflection J−1R1R2.

Lemma 10.4. The reflection J−1R1R2 rotates by an an-
gle 2π(1

4 − 1
2p + t

2 ) about its mirror and maps R̂1R2 to
̂(R3R1)−1.

This is done by a direct calculation (computing the
eigenvalues of that matrix and multiplying by the appro-
priate scalar matrix to give it the form in (2–3)). The
statement about sending one bisector to the other follows
from Lemma 10.3 and the fact that J−1 maps ̂(R1R2)−1

to ̂(R3R1)−1.
In order for the conditions of the Poincaré polyhedron

theorem to hold, one requires the angle in Lemma 10.4
to be of the form π/k for some integer k ∈ Z (see Sec-
tion 7). This gives one of the integrality conditions in
Theorem 2.7.

The second integrality condition comes from the anal-
ysis of the cycle transformation for the face R̃2R1 ∩ B2

(there is such a face in the domain only if t < ( 1
2 − 1

p )).
One verifies that this cycle transformation is given by the
complex reflection R2R1J and that it rotates about its
mirror by an angle 2π(1

4 − 1
2p − t

2 ).
Finally, we mention that from the above analysis, one

obtains a presentation for the Mostow lattices, by fol-
lowing the various cycles and cycle transformations. The
relations are given in Table 2, where we only list some
2-faces (the relations coming from other faces are all con-
sequences of the ones given in Table 2). Here, we write k
and l for the integers that appear in Theorem 2.7, namely,

1
4 − 1

2p + t
2 = 1

k

1
4 − 1

2p − t
2 = 1

l

. (10–3)

11. VARYING THE PARAMETERS

As was mentioned above, it is quite difficult to analyze
how the combinatorics of the Dirichlet domains change
as the parameters p and t vary. We now summarize the
results of our experimental observations and show that
some modifications are needed in the domains described
in [Mostow 80].

11.1 Summary of Experimental Observations

We shall write

WM = {R±1
i , (RiRj)±1, (RiRjRi)±1}, (11–1)

for the set of words that appears in [Mostow 80]. Our
experimental observations suggest the following:

1. for any p and small phase shift, i.e., |t| ≤ 1
2 − 1

p ,
F = FW for W = WM and Mostow’s combinatorics
are correct;

2. for p < 5 and large phase shift, i.e., |t| > 1
2 − 1

p ,
F = FW for W = WM with combinatorics described
in Figure 13;

3. for p = 5 and large phase shift, F = FW for

W = WM ∪ {(RiRj)±2}

with different combinatorics for the two relevant val-
ues of t (see Figures 14 and 15).

We do not state the preceding results as a theorem, since,
in principle, it is conceivable that more faces will be dis-
covered by using a more precise computer program (in
the same way that we have found errors in Mostow’s
analysis by using much more sophisticated computers).

We emphasize the fact that the Dirichlet domains for
the groups Γ(5, 11/30) and Γ(5, 7/10) do not have the
same combinatorics, even though they both correspond
to large phase shift. This differs once again with the
analysis given in [Mostow 80], and, in particular, one
needs to be extremely cautious about the behavior of
Dirichlet polyhedra as parameters vary.

In fact, our experimental methods apply to studying
the combinatorics of FW only for a fixed value of t, and
we shall not attempt to study the stability of the com-
binatorics as t varies. This is not a big restriction if
we want to study the finite number of lattices that arise
from this construction (we focus only on the values in Ta-
ble 1). Note, however, that in order to use these meth-
ods for polyhedra corresponding to nondiscrete groups
(to construct nonlocally symmetric Kähler manifolds as
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t32p12

1 2 1

1
1 2

B12

2 1

v213

(a) �R1 ∩ FG

1
2

B1

121

v132

v321

t32

p12

(b) R̂1R2 ∩ FG

1

v321

121

2

p12

(c) R̂2R1 ∩ FG

p12

t32

v321 1

12
21 2

(d) ̂R1R2R1 ∩ FG

1

1

12

B2

t32

v213

v321 v132

(e) B1 ∩ FG

FIGURE 13. The combinatorics of some faces of the fundamental domain FG for G, for p = 3 and large phase shift
(t = 1/3). Note that we write i, i for Ri, R

−1
i , respectively.

in [Mostow and Siu 80]), one would have to study this
stability question more carefully (in fact, for that pur-
pose, it is more convenient to use the algebro-geometric
description of those groups as monodromy groups of hy-
pergeometric functions, see [Deraux 04b] for instance).

When the group satisfies the conditions for discrete-
ness, the Dirichlet polyhedron is only “almost” a funda-
mental domain for the full group Γ generated by R1, R2,
and R3, since in many cases the center p0 is fixed by
nontrivial elements in the group. It can be checked that
the stabilizer of p0 is finite and that it is either trivial
or cyclic of order 3, generated by the transformation J

(which often turns out to be in the group generated by
the reflections Ri).

11.2 The Case p = 5, for Large Phase Shift

In this section, we describe the combinatorics of the
Dirichlet domains for Γ(5, t), t > 3/10 (a similar anal-
ysis holds for t < −3/10). Our domains are “slightly
smaller” than the ones described in [Mostow 80], in the
sense that we include a few more bisectors to define the
Dirichlet polyhedra.

It turns out that the Dirichlet domains for the two
discrete groups with large phase shift (t = 11/30 and
7/10) have significantly different combinatorics (see Fig-
ures 14 and 15). In particular, contrary to what was
stated in [Mostow 80], the combinatorics are not inde-

pendent of p, and there are more cases than simply small
and large phase shift.

We describe one specific place where the analysis
in [Mostow 80] breaks down for the above two groups
and analyze the polyhedron FW , where W is as in
(11–1), namely,

W = {R±1
i , (RiRj)±1, (RiRjRi)±1}. (11–2)

The error can be seen by experimentation, exploring the
combinatorics of 2-face FW ∩ R̂1 ∩ R̂−1

2 . For small phase
shift, it is bounded by R̂3R1, R̂2R1, and ̂(R2R1)−1, the
last two intersecting in p12 (it is obvious that p12 is con-
tained in these bisectors, since it is by definition fixed by
both R1 and R2). It turns out that more bisectors enter
the picture for large phase shift.

Let c21 (respectively, c121) be the curve R̂1 ∩ R̂−1
2 ∩

R̂2R1 (respectively, R̂1 ∩ R̂−1
2 ∩ R̂1R2R1). We shall

not prove the following experimental observations, but
urge the reader to test the claims for themselves, for in-
stance by using the Java application [Deraux 04a] (see
Remark 4.13 about notation).

Proposition 11.1.

1. The curves c21 and c121 intersect at p12 and they are
tangent at that point precisely when t = 3/10.
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FIGURE 14. Combinatorics of the fundamental domain, for p = 5 and t = 11/30.
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(d) ̂(R1R2)2 ∩ FG

FIGURE 15. Combinatorics of the fundamental domain, for p = 5 and t = 7/10. In this case R̂2R3 = ̂(R3R1)−1.

2. For small phase shift, their intersection contains pre-
cisely one other point q12 approaching p12 as t ap-
proaches 3/10.

3. For t = 3/10, the curves intersect in the boundary
of complex hyperbolic space.

4. For large phase shift, the curves intersect in three
points (in the ball)—we still denote by q12 the one

that is closest to p12. The point q12 is a vertex
of FW .

Remark 11.2.

1. Similar conclusions hold for the curves correspond-
ing to (R2R1)−1 and (R1R2R1)−1. If t = −3/10,
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2 , for p = 5 and

large phase shift (t = 6/10).

−0.001

0

0.001

0.002

0.003

0.004

−0.05 −0.04 −0.03 −0.02 −0.01

q12

v213 p12

21

121

3
2

FIGURE 17. Zoomed version of Figure 16.

a similar statement is true for some other 2-face of
FW , corresponding to R−1

1 and R2.

2. The point q12 turns out to be a vertex of the fun-
damental domain for t = 11/30. When t = 7/10, it
coincides with v213, where the two curves are again
tangent.

3. The curves c21 and c121 are very close to each other,
and, in fact, are barely distinguishable near p12 (see
Figures 16 and 17)

We now state some consequences of the above changes
in the combinatorics of FW as t goes through critical
phase shift (the most concrete formulation being Part (2)
of Proposition 11.3.

Proposition 11.3. Let p = 5 and t > 3/10.

1. The polyhedron FW has a nonempty face on the bi-
sector intersection R̂1 ∩ ̂(R1R2R1)−1.

2. R1 maps R̂1 ∩ ̂(R1R2R1)−1 to R̂−1
1 ∩ ̂(R1R2)−2, and

the polyhedron FW , where W is as in (11–2), does
not have side pairings.

Remark 11.4. Part(1) of Proposition 11.3 can be inter-
preted as exhibiting some extra intersections between the
faces of FW , omitted in the description from [Mostow 80].
Note also that both claims in Proposition 11.3 hold only
for p = 5. For p = 3 or 4, Mostow’s polyhedra seem to
be correct.

Proof: Note that (2) follows from (1) together with Gi-
raud’s theorem. Indeed, R1 maps this bisector intersec-
tion to R̂1 ∩ γ̂, where

γ = (R1R2R1)−1R−1
1 = (R2R1R2)−1 ·R−1

1 = (R1R2)−2,

as follows from (4–4). The latter intersection is contained
in precisely three bisectors, only two of which are equidis-
tant from p0 (cf. Theorem 4.9).

We claim that ̂(R1R2)−2 is not among the list of bi-
sectors ŵ, w ∈ W . Rather than proving this for general
phase shift, we simply mention that, for any fixed value
of the phase shift, this claim amounts to verifying that
none of 24 group elements fixes p0 (namely, the elements
(R1R2)2w, w ∈ W ). For p = 5 and large phase shift,
there are two relevant values, |t| = 11/30 and |t| = 7/10.

Part (1) can be checked numerically. For instance,
consider the case t = 11/30. We claim that the point z
on R̂1∩ ̂(R1R2R1)−1 with spinal coordinates uj = e2πitj ,
where t1 = −0.0011 and t2 = 0.0075, is in the interior of
this 2-face of FW . This follows from verifying 22 inequal-
ities of the form

|〈z, p0〉| < |〈z, w−1p0〉|,

where w ∈W is different from R1 and (R1R2R1)−1 (note
that W has 24 elements). This can easily be done with
the computer.

The proof also suggests an extra set of words that need
to be included in order to have side pairings, namely, the
(RiRj)±2 (see the discussion at the end of Section 7). Ex-
perimentation suggests that in both cases Γ(5, 11/30) and
Γ(5, 7/10) no other words need to be included (i.e., that
the corresponding set of words is Giraud-closed). How-
ever, this depends on combinatorics that are obtained
experimentally, and it is conceivable that a more precise
computation would yield extra intersections between the
various relevant bisectors, forcing us to introduce yet an-
other set of words in order for the polyhedron to have
side pairings.

The conjectural combinatorics are summarized in Fig-
ures 14 and 15.
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