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We propose a cipher similar to the one-time pad and McEliece
cipher based on a subband coding scheme. The encoding
process is an approximation to the one-time pad encryption
scheme. We present results of numerical experiments that sug-
gest that a brute force attack on the proposed scheme does not
result in all possible plaintexts, as the one-time pad does, but
the brute force attack does not compromise the system. How-
ever, we demonstrate that the cipher is vulnerable to a chosen-
plaintext attack.

1. INTRODUCTION

In this paper, we propose a private key cipher, the idea
for which comes from frame theory and multiple ac-
cess communications. The cipher has similarities to the
Hill cipher, the one-time pad, and the McEliece cipher
[Menezes et al. 97, Chabaud 95]. Indeed, one of the de-
sign goals for our cipher is to approximate the one-time
pad.

Other design goals include the following:

1. include randomness in the encryption process;

2. require that the key be shared only once;

3. use a relatively small key size;

4. make it computationally fast;

5. be robust against brute force attacks.

Our proposed cipher satisfies items (1)–(4) above; the
purpose of the present paper is to study the cipher’s ro-
bustness against brute force attacks. We remark here
that (5) is not sufficient for the cipher to be a good one,
but certainly is necessary. We will demonstrate that this
cipher is vulnerable to a chosen-plaintext attack. It is un-
known if this cipher is robust against a known-plaintext
attack.
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Our cipher can be described as follows: consider a
communications channel; we divide the channel into two
subbands, one which will carry the message and the other
which will carry noise, or as we call it in this paper,
garbage. The message, along with the garbage, is trans-
mitted over the channel; the recipient then filters out
the garbage, leaving only the message. This procedure
is carried out using orthogonal frames and requires their
construction; the easiest way to do this is using Fourier
frames (also called harmonic frames). However, as will
be described, these frames are not good for our purposes
here, and so we present several alternative methods for
constructing orthogonal frames.

In Section 2, we give a short introduction to frames
and, in particular, orthogonal frames. In Section 3,
we give an account of several methods for constructing
orthogonal frames, with remarks regarding our design
goals. In Section 4, we present the results and conclusions
of our numerical experiments and the chosen-plaintext
attack. In Section 5, we provide pseudocode to describe
the experiments. Finally, in Section 6, we present the
graphs displaying the results of our experiments.

2. INTRODUCTION TO FRAMES

Frames for Hilbert spaces are used in many signal pro-
cessing applications, such as sampling theory, multiple
access communications, etc. Frames provide redundancy
via overcompleteness, where bases do not, and it is this
redundancy that makes them advantageous to use in
these settings. In this paper, we will utilize this redun-
dancy of frames for the purpose of encryption.

Let H be a Hilbert space over the field F with scalar
product 〈·, ·〉 and norm ‖ · ‖, where F denotes either R or
C. A frame for H is a sequence X := {xn}n∈Z such that
there exist constants 0 < A ≤ B < ∞ such that for all
v ∈ H,

A‖v‖2 ≤
∑
n∈Z

|〈v, xn〉|2 ≤ B‖v‖2. (2–1)

Clearly, a frame spans the Hilbert space. Moreover, {xn}
defines the following frame operator :

SX : H → H : v �→
∑
n∈Z

〈v, xn〉xn,

which is positive and invertible. Define {x̃n} ⊂ H, the
standard dual of {xn}, by x̃n := S−1

X xn; then, for all
v ∈ H,

v =
∑
n∈Z

〈v, xn〉x̃n =
∑
n∈Z

〈v, x̃n〉xn.

If A = B = 1, the frame is said to be Parseval, and then
for all v ∈ H,

v =
∑
n∈Z

〈v, xn〉xn.

For elementary frame theory, see [Han and Larson 00,
Casazza 00].

If H is finite-dimensional (H will always be assumed
to be so from here on, unless specifically stated), then a
frame sequence (possibly finite) is any spanning set {xn}
such that

∑
n∈Z ‖xn‖2 < ∞. If only a finite number

of the xn are nonzero, then {xn} is a finite frame, and
we will discard those that are zero. See [Casazza and
Kovacević 01, Dykema et al. 04, Benedetto et al. 03] for
more on finite frames.

For convenience of notation, we make the following
definition:

Definition 2.1. An n×n real matrix, M , is an orthogonal
matrix if MTM = kIn for some constant k.

The (finite) Parseval frames in H are characterized in
Proposition 2.2.

Proposition 2.2. Let {xn}Mn=1 ⊂ H, where H has dimen-
sion N . The following are equivalent:

1. {xn} is a Parseval frame for H;

2. the M × N matrix whose ith row is xi (as a row
vector) has columns which are orthonormal;

3. there exists a Hilbert space K of dimension M −
N and vectors {yn}Mn=1 ⊂ K such that the M ×M
matrix formed by

⎛
⎜⎝

x1 y1
...

...
xM yM

⎞
⎟⎠

is a unitary matrix.

Here, we write the vectors xi and yi as row vectors
with respect to any orthonormal bases for H and K, re-
spectively.

Proof: The proof of the equivalence of (1) and (2) can be
found in [Benedetto et al. 03]. The proof of the equiv-
alence of (1) and (2) for infinite frames can be found in
[Han and Larson 00, Corollary 1.3, Theorem 1.7]. The
case for finite frames is analogous.
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Remark 2.3. Another way to view Proposition 2.2 is that
{xn} is a Parseval frame for H if and only if {xn} is the
inner direct summand of an orthonormal basis {xn⊕yn}
for some superspace H ⊕K of H.

Definition 2.4. Two frames {xn}Mn=1 ⊂ H and {yn}Mn=1 ⊂
K are orthogonal if for all v ∈ H,

∑M
n=1〈v, xn〉yn = 0.

Proposition 2.5. Suppose {xn}Mn=1 ⊂ H and {yn}Mn=1 ⊂
K are Parseval frames; they are orthogonal if and only if

⎛
⎜⎝

x1 y1
...

...
xM yM

⎞
⎟⎠ := (P |Q)

has columns which form an orthonormal set.

Proof: (⇐) Consider the two matrices P and Q whose
rows are {xn} and {yn}, respectively. A straightforward
computation demonstrates that for v ∈ H,

M∑
n=1

〈v, xn〉yn = Q∗Pv, (2–2)

where Q∗ is the conjugate transpose of Q. It follows
that if the above matrix has orthonormal columns, then
Q∗P = 0, and thus the frames {xn} and {yn} are orthog-
onal.

(⇒) Conversely, suppose the Parseval frames are or-
thogonal. Note that by Proposition 2.2, the left part P of
the above matrix has orthonormal columns; likewise, the
right part of the matrix Q also has orthonormal columns.
By Equation (2–2), we must have that the columns of the
left part of the matrix are orthogonal to the columns of
the right part of the matrix. Hence, the columns of the
matrix form an orthonormal set.

Note that if {xn} is orthogonal to {yn}, then {yn} is
orthogonal to {xn}.

Let X := {xn}Mn=1 ⊂ H; the analysis operator ΘX of
{xn} is given by

ΘX : H → FM : v �→ (〈v, x1〉, 〈v, x2〉, . . . , 〈v, xM 〉).

The matrix representation of ΘX is given as the matrix
P in Proposition 2.5. The proof of Proposition 2.5 shows
that two frames {xn} and {yn} are orthogonal if and only
if their analysis operators ΘX and ΘY have orthogonal
ranges in FM .

2.1 Encryption Using Orthogonal Frames

We present here an overview of our proposed private key
encryption scheme using orthogonal frames. For motiva-
tion, consider that the one-time pad is an uncondition-
ally secure cipher, which is optimal among all uncondi-
tionally secure ciphers in terms of key length [Menezes
et al. 97]. Our encryption scheme, which is similar to
a subband coding scheme, is an effort to approximate
the one-time pad. The (private) key for this encryption
scheme is two orthogonal Parseval frames {xn}Mn=1 ⊂ H

and {yn}Mn=1 ⊂ K. Let ΘX and ΘY, respectively, denote
their analysis operators. Suppose m ∈ H is a message;
let g ∈ K be a nonzero vector chosen at random. The
ciphertext c ∈ FM is given as follows:

c := ΘXm+ ΘYg.

To recover the message, we apply Θ∗
X:

Θ∗
Xc = Θ∗

XΘXm+ Θ∗
XΘYg

=
M∑

n=1

〈m,xn〉xn +
M∑

n=1

〈m, yn〉xn

= m+ 0 = m.

There are several things to note about our scheme:

1. The frame {xn} need not be Parseval, but Parseval
frames are, in general, easier to work with. Since
the Parseval frames form only a small subset of all
possible frames, using general frames would allow a
much greater choice of specific encryption keys.

2. The frame {yn} need not be Parseval; it need not
even be a frame, though again Parseval frames sim-
plify matters. If {yn} is not a frame, then ΘY has
a nontrivial kernel, and ΘYg could be 0 if g is cho-
sen to be in the kernel. (Below, we will actually use
scalar multiples of Parseval frames for both {xn} and
{yn}.)

3. Just as with the one-time pad, when done properly,
encoding a message twice results in two different ci-
phertexts.

4. Unlike the one-time pad, in which a brute force at-
tack results in all possible plaintexts, it appears un-
likely that a brute force attack on our system would
result in the same. Our simulations indicate that an
attack produces either a text which is very close to
the original plaintext or is gibberish. (See the graphs
in Section 6 for more.) However, at this time, we
cannot prove why this is so.
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Proposition 2.6. If {xn}Mn=1 ⊂ H and {yn}Mn=1 ⊂ K are
orthogonal frames, then M ≥ dim(H) + dim(K).

Proof: Let ΘX and ΘY be the respective analysis op-
erators. Note that by the (lower) frame inequality in
Equation (2–1), both ΘX and ΘY are one-to-one. More-
over, the orthogonality of the frames is equivalent to the
orthogonality of the ranges of ΘX and ΘY. Combining
these two observations establishes the proposition.

For convenience, we will assume that M = dim(H) +
dim(K). The ciphertext is

c = ΘXm+ ΘYg,

where {xn} and {yn} are orthogonal Parseval frames.
Since they are orthogonal, we write

c = (ΘX|ΘY)m⊕ g,
where the matrix (ΘX|ΘY) is an isometry. Therefore, our
encryption procedure involves generating a large orthog-
onal matrix.

The next section discusses several ways to construct
such matrices. Since the encryption scheme is a private
key system, we wish to have a relatively small key size;
the entire matrix is too much information to be used as
the key. We discuss below some of the strengths and
weaknesses of the various construction techniques.

3. FIVE ENCRYPTION SCHEMES

The cipher algorithm depends upon generating a pair of
random orthogonal frames, each of which is the size of
the message. This is equivalent to producing a random
orthogonal matrix of twice the size of the message. We
investigate here several methods for doing so. The first
method takes the view of producing orthogonal frames
using Fourier frames. The remaining methods take the
view of producing orthogonal matrices.

Once the orthogonal frames or orthogonal matrices,
are determined, the encryption and decryption process
is the same. If the frames are given by X and Y, then
we write the matrix (ΘX|ΘY); if, on the other hand, the
matrix is A, we think of A = (ΘX|ΘY). Given a message
m, choose at random a vector g, called the “garbage”
or “noise,” and compute (ΘX|ΘY)m⊕ g = c to yield the
cipher text c. The recipient computes

ΘT
Xc = ΘT

X (ΘX|ΘY)m⊕ g = Km⊕ 0 = Km,

where K is the square of the norm of any column of the
matrix ΘX. Dividing by K then reproduces the message.

3.1 Scheme 1

The first algorithm utilizes the discrete cosine transform.
The original idea came from using the discrete Fourier
transform, which involves complex exponentials. The dis-
crete cosine transform, in matrix form, is given by

C = [ckn] =

[
λk

√
2
M

cos
{
kπ

M
(n+ 1/2)

}]
,

where n = 1, . . . ,M , λ1 = 1/
√

2, and λk = 1 for all
k = 2, . . . , N . Note that this is normalized to be a unitary
matrix. Assuming that M = 2N , one can permute the
columns of C to yield C ′ and divide the resulting matrix
in half vertically:

C ′ = (ΘX|ΘY).

The resulting divided matrix can then be viewed as the
analysis operators for two orthogonal frames, each for
RN , consisting of cosine bases projected onto smaller
subspaces (Proposition 2.5, see also [Aldroubi et al. 04]).
Moreover, the frame vectors can be weighted, which is
accomplished by a diagonal invertible matrix D. Let P
denote a permutation matrix.

The (private) key for the cipher then consists of the
matrix D (or simply its diagonal entries) and the per-
mutation corresponding to P . The encryption algorithm
of a message m of length N then consists of randomly
generating a garbage vector g ∈ RN and computing the
ciphertext

c = CDP (m⊕ g).

To decrypt the message, we apply the matrix
QPTD−1CT to the ciphertext, where Q is the projec-
tion of RM onto the first N coordinates:

QPTD−1CTCDP (m⊕ g) = Q(m⊕ g) = m.

Remark 3.1. We note that the only knowledge unknown
to an adversary is D and P ; the adversary will know C.
Hence, C is irrelevant to the cipher algorithm. Because of
this, the algorithm reduces to rearrangement followed by
weighting of the entries of the message and the garbage.
We conclude that our first algorithm is a poor one.

3.2 Scheme 2

The second scheme involves using Hadamard arrays to
generate orthogonal matrices. We first start with the
definition of Hadamard arrays. We remark here that
this scheme is related to linear codes [Delsarte and
Goethals 69].
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Definition 3.2. [Wallis 72] A Hadamard array H[h, k, λ]
based on the indeterminates x1, x2, . . . , xk, with k ≤ h,
is an h × h matrix with entries chosen from {±x1, ±
x2, . . . ,±xk} in such a way that:

1. in any row there are λ entries ±x1, λ entries ±x2,
. . . , λ entries ±xk, and similarly for the columns;

2. the rows and columns are (formally) pairwise orthog-
onal, respectively.

The matrices we use for our encryption scheme have
h = k and λ = 1. The only possible Hadamard arrays of
this type are for h = 1, 2, 4, 8 [Agaian 85]. For indeter-
minants A through H, we have the Hadamard array

H[8, 8, 1] =
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A B C D E F G H
−B A D −C F −E −H G
−C −D A B G H −E −F
−D C −B A H −G F −E
−E −F −G −H A B C D
−F E −H G −B A −D C
−G H E −F −C D A −B
−H −G F E −D −C B A

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For Θ = H[8, 8, 1], ΘT Θ = KI8 where K = A2 +B2 +
· · ·+H2.

The Hadamard arrays allow easy construction of ma-
trices (and hence tight frames) needed in our encryption
schemes. For the encryption process, we now have only
Θ to construct, instead of computing the matrices C, D,
and P .

The encryption process starts with a message m of ar-
bitrary length and then divides m into blocks m1, . . . ,mq

of length 4 (padding the last block with 0s if necessary).
Then, random vectors g1, . . . , gq of length 4 are chosen,
and the matrix Θ is applied successively to mi⊕ gi. The
ciphertext is then

c = Θ(m1 ⊕ g1)⊕ · · · ⊕Θ(mq ⊕ gq).

The message is then decrypted by dividing c into
blocks c1, . . . , cq of size 8, computing KΘT ci for i =
1, . . . , q, and reconstructing the message using the first
four entries of these resulting blocks.

Remark 3.3. Because of the ease of construction of the
Hadamard arrays, the system is quite easy to implement.
Unlike the first scheme, the key for the recipient has now
been reduced to knowing the chosen entries for Θ; hence,

in this case, the key is the entries A,B, . . . ,H of the
matrix Θ. Since Hadamard arrays are small, however, we
wish to find an algorithm to generate larger orthogonal
matrices.

3.3 Scheme 3

This scheme is an attempt to produce larger orthogonal
matrices. Starting with Hadamard arrays A and M with
ATA = kI8 and MTM = pI8 for constants k and p, we
construct a new 16× 16 orthogonal matrix

S =
[

A MA
−MTA A

]
.

Repeat this procedure with Hadamard arrays B and N

to get

T =
[

B NB
−NTB B

]
.

The matrices S and T are then used to construct a 32×32
orthogonal matrix

U =
[

S TS
−TTS S

]
.

This “blow up” construction is iterated to get the appro-
priate size matrix for our plain text.

Remark 3.4. In this encryption scheme, the key is the
entries of the matrices A, B, M , N , etc., and their po-
sitions in the construction. This method, however, is
computationally inefficient.

3.4 Scheme 4

We first define the tensor product, ⊗, of two matrices, A
and B. The sizes of the matrices are irrelevant.

Definition 3.5. [van Lint 92] Let

A =

⎡
⎢⎣
a11 a12 · · · a1n

...
. . .

am1 am2 · · · amn

⎤
⎥⎦ .

Then

A⊗B :=

⎡
⎢⎣
a11B a12B · · · a1nB

...
. . .

am1B am2B · · · amnB

⎤
⎥⎦ .

If A is an m× n matrix and B is a p× q matrix, then
A⊗B is an mp× nq matrix. The tensor product will be
the critical element of construction in this and the next
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C =

�
H ⊗ A (H ⊗ B)(H ⊗ A)

−(H ⊗ B)T (H ⊗ A) H ⊗ A

�
=

�
�������������

A A A A 4BA 0 0 0
A −A A −A 0 4BA 0 0
A A −A −A 0 0 4BA 0
A −A −A A 0 0 0 4BA

−4BT A 0 0 0 A A A A
0 −4BT A 0 0 A −A A −A
0 0 −4BT A 0 A A −A −A
0 0 0 −4BT A A −A −A A

�
�������������

FIGURE 1.

scheme. Note that if A and B are orthogonal matrices,
then A⊗B is also an orthogonal matrix.

Definition 3.6. A Hadamard matrix is a square orthogo-
nal matrix with entries consisting of ±1s.

We start with an Hadamard matrix (not an array),
H, of a chosen size 2p, and then two Hadamard arrays,
A and B of chosen sizes 2, 4, or 8. We then construct
the new matrix via the tensor products,

C =
[

H ⊗A (H ⊗B)(H ⊗A)
−(H ⊗B)T (H ⊗A) H ⊗A

]
.

C is now an orthogonal matrix. This matrix is size adap-
tive with respect to powers of 2, since each matrix is of
some order of 2, and the size of H can be chosen.

However, the Hadamard matrix property that HTH =
In is actually a disadvantage. Let

H =

⎡
⎢⎢⎣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤
⎥⎥⎦ .

The resulting matrix (see Figure 1) is relatively sparse,
which is undesirable for maintaining secrecy.

3.5 Scheme 5

We choose p Hadamard arrays H1,H2, . . . , Hp. Each ar-
ray can have its own size, say ei × ei for 1 ≤ i ≤ p,
where each ei is either 2, 4, or 8. We then construct our
e1e2 · · · ep-sized matrix M by the tensor product of these
p matrices:

M =
p⊗

i=1

Hi := H1 ⊗H2 ⊗ · · · ⊗Hp.

The ciphertext is c = M(m⊕g). With this construction,
we eliminate the sparsity that was shown in Scheme 4.

Note that the key in this case consists of the entries of the
first rows of H1 to Hp; hence, it is an array of numbers
of size e1 + e2 + · · ·+ ep and is relatively small.

We ran some numerical experiments, using Scheme 5
to obtain information regarding several things:

1. We wanted to see if a brute force attack would be
a feasible way of defeating the cipher. The results
of the experiments and also the computations below
suggest that the answer is no.

2. One advantage of the one-time pad is that a brute
force attack results in all possible plaintext mes-
sages, forcing an adversary to choose which was the
original message. We wanted to determine if this
was also true of our proposed cipher. The results of
our experiments indicate that the answer to this is
also no.

3. Finally, we wanted to determine if the size of the
entries of the garbage vector g mattered. The ex-
periments and the computations below suggest that
the answer is yes.

The results of our experiments, in the form of graphs, are
given in Section 6.

4. EXPERIMENTAL RESULTS AND CONCLUSIONS

We want to know how accurate a guess has to be in order
to break the cipher. We suppose that an adversary knows
that we are using Scheme 5; that is, the adversary knows
the structure of the matrix M , but not the entries. We let
M be the original matrix of size n, M̃ be the adversary’s
guess, and w be the original plaintext m concatenated
with the garbage g (i.e., w = m⊕ g). Then, we consider
w̃ := (1/k̃)M̃TMw where k̃ = ‖M̃‖2. Since we assume
that the structure of M is known by the adversary, we
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consider M̃ = M+P , where P is a matrix with the same
structure as M .

Our first question is whether an adversary can figure
out how small the perturbation P must be in order to get
a “good guess.” The adversary knows the size of M and
||Mw||; we assume additionally that the adversary knows
the structure of M . For convenience, assume that the
encryption matrix M = A⊗ B ⊗ C for three Hadamard
arrays, A, B, and C. We then let M̃ = (A+a)⊗(B+b)⊗
(C+c) for (small norm) perturbation matrices a, b, and c.
We reformulate our question: how big can ||a||, ||b||, and
||c|| be such that ||MTMw − M̃TMw|| < ε, where ε is
some acceptable tolerance for error? (Here, for a matrix
A, ‖A‖ denotes the operator norm of A. Below, ‖·‖ shall
denote both Hilbert space norm for vectors and operator
norm for matrices.)

We let ||a|| ≈ ||b|| ≈ ||c|| ≈ β and ||A|| ≈ ||B|| ≈
||C|| ≈ γ. We may assume that γ � β. If we write out
M̃ in terms of the tensor products, we get

M̃ = A⊗B ⊗ C +A⊗B ⊗ c+ · · ·+ a⊗ b⊗ c

and
||M̃ || ≤ γ3 + 3γ2β + 3γβ2 + β3.

Given any ε > 0, we choose δ = ε/||Mw||. If |3γ2β| < δ,
then

||MTMw − M̃TMw|| ≤ ||MT − M̃T ||||Mw||
≤ (3γ2β + 3γβ2 + β3)||Mw||
≈ 3(γ2β)||Mw|| < δ||Mw|| = ε.

These computations suggest that the larger the entries
of the garbage vector g are, the closer a guess must be
in order to reasonably recover the message. This is cor-
roborated by the experiments we ran (see the graphs in
Section 6). Thus, we can control the accuracy an adver-
sary would need in order to break the cipher.

4.1 Chosen-Plaintext Attack

We will demonstrate here a chosen-plaintext attack on
the cipher which will break the system. A chosen-
plaintext attack is an attack mounted by an adversary
that chooses a plaintext and is then given the correspond-
ing ciphertext.

Theorem 4.1. The encryption algorithm proposed above
is vulnerable to a chosen-plaintext attack.

Proof: We assume that the adversary knows the length
of the message band and, subsequently, the length of the

noise band. Let the length of the message band be Nm

and the length of the noise band be Nn. The attack
proceeds as follows:

1. Determine the range of the noise band K of Θ; that
is, determine (ΘX|ΘY)(0⊕RNn). Choose any plain-
text m of size Nm. Encode the plaintext twice,
with output, say e0 and e1. Compute e1 − e0 =
Θ(m⊕ g1)−Θ(m⊕ g0) = Θ(0⊕ g1− 0⊕ g0). Notice
that this yields a vector f1 = Θ(0 ⊕ g1 − 0 ⊕ g0)
in the range of the noise band of Θ. Encode the
plaintext a third time, with output e2, and compute
f2 = e2−e0. Compute f3, . . . , fm until the collection
{f1, . . . , fm} contains a linearly independent subset
of size Nn. This determines the range of the noise
band K of Θ.

2. Determine the range of the message band T of Θ;
that is, determine (ΘX|ΘY)(RNm ⊕ 0). Choose any
plaintext m1 of size Nm; encode the plaintext with
output e1; then project e1 onto the orthogonal com-
plement of K. This yields a vector x1 in T . Choose
another plaintext m2 and repeat, yielding vector
x2 ∈ T . Repeat until the collection {x1, . . . , xq}
contains a linearly independent subset of size Nm.
This set determines T .

3. Determine the message part of Θ; that is, determine
ΘX. Suppose in Step 2, {m1, . . . ,mNm

} is such that
{x1, . . . , xNm

} is linearly independent. If we write
Θ = (ΘX|ΘY), we have the following system of equa-
tions:

(ΘX|ΘY)mk ⊕ 0 = xk for k = 1, . . . Nm.

Given this system of equations, solve for ΘX.

4. Decode ciphertexts. Given any ciphertext e, the ad-
versary computes the following:

α−1(ΘX|0)T e = α−1(ΘX|0)T (ΘX|ΘY)m⊕ g
= α−1ΘT

X ΘXm

= m

where α is the square of the norm of any column
of ΘX.

4.2 Concluding Remarks

The proposed cipher appears to be robust against brute
force attacks, but is not robust against a chosen-plaintext
attack. We mention, however, that we do not know if
the scheme is robust against a known-plaintext attack.
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Moreover, this is a private symmetric key cipher; it would
be desirable if this method could be altered to be used
as a public key cipher. We reiterate that the McEliece
cipher is a public key system and is similar in flavor to
the cipher presented here.

The ultimate downfall of the cipher is the linearity.
We suggest that perhaps there is a way to introduce non-
linearity into the algorithm to defeat a chosen-plaintext
attack. However, at this point, we know of no methods
to accomplish this.

After submission of this paper, we learned of a similar
idea using frames for data hiding in [Miotke and Rebollo-
Neira 04].

5. PSEUDOCODE
5.1 Encoder.cpp

1. Calculate Matrix.

(a) Input the possible range of entries for A, B, C.

(b) Make A, B, C either 4 × 4 or 8 × 8 Hadamard
arrays with entries chosen randomly from the
range (for simplicity, we are using the 4 × 4
Hadamard array).

(c) Compute tensor product A⊕B ⊕ C.

2. Encode Message.

(a) Compute m ⊕ g by converting the message to
ASCII and filling g with random numbers.

(b) Compute (A⊗B ⊗ C)(m⊕ g).

5.2 Hacker.cpp

This code attempts a brute force method on a cypher
text.

1. Input min, max, range of key guesses.

2. Input ciphertext.

3. For all possible values of the twelve variables in use:

(a) fill the matrices with the possible values;

(b) tensor matrices together;

(c) calculate possible text messages;

(d) output text to file for later examination.

5.3 Analyzer.cpp

This code takes the output of Hacker.cpp and calculates
the frequency of occurrence of every ASCII symbol.

1. For each line of text, count number of appearances
of each ASCII value.

2. Output information to text file.

6. GRAPHS

We carried out the following computations to simulate a
brute force attack on the cipher:

1. for a sample plaintext, encode the plaintext us-
ing Scheme 5, choosing the approximate entry size
for the matrices and the approximate size for the
garbage entries;

2. decode the ciphertext using every combination of key
entry and key entry ±1;

3. convert the decoded ciphertext in the previous step
to ASCII values;

4. count the appearance of each value in the resulting
combinations.

The graphs represent the number of appearances
within all possible key guesses from Step (2) above. The
plaintext is given above the graph; the ASCII values are
on the x-axis, and the approximate key sizes and garbage
sizes are given in the captions.
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FIGURE 2. Key: 5–7; Garbage: 128.
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FIGURE 3. Key: 25–27; Garbage: 128.
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FIGURE 4. Key: 100–102; Garbage: 128.
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FIGURE 5. Key: 5–7; Garbage: 1,000.
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FIGURE 6. Key: 25–27; Garbage: 1,000.
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FIGURE 7. Key: 100–102; Garbage: 1,000.
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FIGURE 8. Key: 1,000–1,002; Garbage: 1,000.
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FIGURE 9. Key: 5–7; Garbage: 100,000.
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FIGURE 10. Key: 25–27; Garbage: 100,000.

FIGURE 11. Key: 100–102; Garbage: 100,000.

FIGURE 12. Key: 1,000–1,002; Garbage: 100,000.

Note that in Figures 4 and 8, the key size and garbage
size are the same. The graphs show that most of the
characters that appear in the simulated brute force attack
are those that are in the original message.
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