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We give bounds on the number of solutions to the Diophantine
equation (X + 1/x)(Y + 1/y) = n as n tends to infinity. These
bounds are related to the number of solutions to congruences of
the form ax + by ≡ 1 modulo xy.

1. INTRODUCTION

Erik Ljungstrand asked the first author about estimates
of the number of solutions to the equation

n =
(
X +

1
x

)(
Y +

1
y

)
, (1–1)

where n,X, x, Y, y are positive integers satisfying n > 1,
x > 1, and y > 1. His computations suggested that
the number of such solutions, when symmetric solutions
obtained by transposing (X,x) and (Y, y) are identified,
is always less than n.

It is easy to see that y divides xX + 1 and x divides
yY + 1. Denoting the corresponding quotients by b and
a, we get the following system:

ax = yY + 1, by = xX + 1,

where ab = n. Thus,

ax ≡ 1 (mod y) and by ≡ 1 (mod x). (1–2)

It is clear that the integers x, y satisfying these congru-
ences are relatively prime, and the system is equivalent
to

ax+ by ≡ 1 (mod xy). (1–3)

It is also clear from the equations above that x �= y,
so when counting the solutions, we may assume x < y.
It is not difficult to see that the problem of finding all
solutions to Equation (1–1) with 1 < x < y is equivalent
to the problem of finding all solutions to the systems of
linear congruences (1–2) for all a, b such that ab = n with
x, y satisfying the same conditions (see Section 2).

One of the aims of the present paper is to prove E.
Ljungstrand’s observation concerning the number f(n)
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of solutions to Equation (1–1). The proof is a combina-
tion of an estimate of f(n) (see Theorem 3.3), proving
the result for relatively large values of n, and a portion
of numerical computations, which together prove the in-
equality f(n) < n for all n. The systems of linear congru-
ences (1–2) or the congruence (1–3) (for fixed a, b) seem
to be interesting in their own right. In this paper, we
study the sets of solutions to these congruences and give
some estimates for their size from both above and below.
We also give a reasonably effective algorithm for finding
all solutions of (1–1) in positive integers and attach some
numerical results. In the last part of the paper, we fur-
ther study the rate of growth of f(n) and present some
numerical data.

2. CONGRUENCES

Our objective is to estimate the number of solutions with
x, y > 1 to the congruence ax + by ≡ 1 (mod xy) when
ab = n is fixed.

Theorem 2.1. Let a, b be fixed positive integers and ab =
n > 1. Let ρ(a, b) denote the number of pairs (x, y) of
integers x, y such that xy | ax+ by−1, 1 < x < y. Then,
for every n ≥ 1 and for every real number 1 ≤ α ≤ √n,

ρ(a, b) <
1
α

√
n log(n) + 2

(
1 +

0.6
α

)√
n+

(2n− 1)α
2
√
n− α .

Before we prove Theorem 2.1, we need two preparatory
results. Let τ(n) denote the number of divisors to n.

Lemma 2.2. Let n ≥ 484 be a natural number and 1 ≤
α ≤ √n a real number. Then,

1
α

√
n∑

k=1

τ(n− k) <
1
α

√
n log(n) + 2

(
1 +

0.6
α

)√
n.

Proof: We have (see, e.g., [Hardy and Wright 79,
page 347])

1
α

√
n∑

k=1

τ(n− k) =

1
α

√
n∑

k=1

∑
d|n−k

1 ≤ 2

1
α

√
n∑

k=1

∑
d|n−k

1≤d≤√
n

1

≤ 2

√
n∑

d=1

( 1
α

√
n

d
+ 1
)

≤ 2
α

√
n(log

√
n+ 0.6) + 2

√
n

=
1
α

√
n log n+ 2(1 +

0.6
α

)
√
n,

where the last inequality follows by noting that (
∑z

1
1
k )−

log z is decreasing and less than 0.6 when z ≥ 22.

Lemma 2.3. Let a, b, x, y be positive integers such that
ab = n, ax ≡ 1 (mod y), by ≡ 1 (mod x), and x, y > 1.
Let ax− 1 = yY , by − 1 = xX, and ax + by − 1 = kxy.
Then,

(a) k = n−XY ,

(b) x = b+Y
k and y = a+X

k ,

(c) max(x, y) ≤ 2n−1
2k−1 ,

(d) k ≤ n+1
3 .

Proof: We have

xyXY = (ax−1)(by−1) = abxy−ax−by+1 = abxy−kxy.

Dividing by xy, we get (a). Now ax − yY = by − xX
gives x(a+X) = y(b+ Y ), so a+X

y = b+Y
x . But

kxy = ax+ by − 1 =
(
ax− 1
y

+ b

)
y = (Y + b)y

shows that both fractions are equal to k, which proves
(b). We have

ky = a+X = a+
ab− k
Y

≤ ab+
ab− k

b+ Y − 1

≤ ab+
ab− k
2k − 1

=
(2ab− 1)k

2k − 1
,

where the last inequality follows from b + Y = kx ≥ 2k,
and the first is equivalent to

ab− a = a(b− 1)

≥ ab− k
Y

− ab− k
b+ Y − 1

=
ab− k
Y

· b− 1
b+ Y − 1

= X
b− 1
kx− 1

,

that is, a(kx − 1) ≥ X, when b �= 1. This is equivalent
to akx ≥ a + X = ky, which immediately follows from
ax = yY +1 > y. By symmetry, we get the corresponding
inequality with y replaced by x, which proves (c).

Since x, y ≥ 2 and, of course, x �= y, we have
max(x, y) ≥ 3. Thus, (c) implies (d).
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Proof of Theorem 2.1: Let 1 < x < y be integers such
that xy | ax+by−1. Notice that given y there is only one
x satisfying the necessary condition ax ≡ 1 (mod y) and
therefore at most one pair (x, y) such that xy | ax+by−1.

Using notation from Lemma 2.3, we have XY = ab−
k = n − k < n. Observe that X and Y are positive,
since x > 1 and y > 1. We consider contributions to the
numbers of solutions in two cases.

First of all, let k ≥ 1
α

√
n, where 1 ≤ α ≤ √n. Then

according to Lemma 2.3(c), we get

y ≤ 2n− 1
2k − 1

≤ 2n− 1
2
α

√
n− 1

=
(2n− 1)α
2
√
n− α .

Since every y gives at most one x, we have less than
(2n−1)α
2
√
n−α possibilities for (x, y) in this case.
Assume now that k < 1

α

√
n is fixed. Then, since X |

n−k, we get at most τ(n−k) possibilities for the choice of
(x, y). But k and X uniquely define y and, consequently,
x. Therefore, the number of possibilities for (x, y) in

this case is at most
∑ 1

α

√
n

k=1 τ(n − k), which according to
Lemma 2.2 is less than

1
α

√
n log(n) + 2

(
1 +

0.6
α

)√
n.

Thus, the total number of possible (x, y) is at most

1
α

√
n log(n) + 2

(
1 +

0.6
α

)√
n+

(2n− 1)α
2
√
n− α .

Notice that if we fix k < 1
α

√
n and choose X as a

divisor of n − k, then x and y are uniquely determined
regardless of whether x < y or x > y. In fact, k and X

uniquely determine y, Y (from XY = n−k), and, conse-
quently, x from Lemma 2.3(b). Thus, if we are interested
in the total number of solutions to (1–3) without the as-
sumption x < y, then we have to count twice the number
of solutions corresponding to k ≥ 1

α

√
n (they may corre-

spond to x < y or x > y) plus the number of solutions
corresponding to k < 1

α

√
n. Thus, we have:

Theorem 2.1′. Let a, b be fixed positive integers and ab =
n. Let ρ′(a, b) denote the number of pairs (x, y) of inte-
gers x, y such that xy | ax + by − 1, x, y > 1. Then, for
every integer n ≥ 1 and every real 1 ≤ α ≤ √n,

ρ′(a, b) <
1
α

√
n log(n) + 2

(
1 +

0.6
α

)√
n+

2(2n− 1)α
2
√
n− α .

For completeness of our discussion of the congruence
(1–3), we note:

Proposition 2.4. The congruence ax + by ≡ 1 (mod xy)
has infinitely many solutions in positive integers x, y if
and only if a = 1 or b = 1.

Proof: As we already know, there are only finitely many
solutions with x, y > 1. Therefore, if we have infinitely
many solutions, then in infinitely many of them x = 1
or y = 1. If for example, x = 1 then infinitely many y

divide a− 1, so a = 1. The converse is trivial.

3. AN UPPER BOUND

In this section, we discuss the number of solutions to
Equation (1–1), give an estimate of it, and prove that for
large values of n it is always less than n.

Theorem 3.1. (a) The solutions (X,x, Y, y) to Equa-
tion (1–1) with 1 < x < y are in a one-to-one correspon-
dence with the quadruples (x, y, a, b) such that ab = n,
1 < x < y, and ax+ by ≡ 1 (mod xy).

(b) The solutions (X,x, Y, y) to Equation (1–1), with
fixed value k = n−XY > 0, x, y > 1, X ≤ Y , and x < y

if X = Y , are in a one-to-one correspondence with the
set of the quadruples (X,Y, a, b) satisfying

n = ab > n− k = XY,

k | gcd(a+X, b+ Y ),
(3–1)

where a + X > k, b + Y > k, X ≤ Y , and a < b

if X = Y . Moreover, for every solution (X,x, Y, y) to
Equation (1–1), x = b+Y

k and y = a+X
k .

Proof: (a) As noted in the introduction, a solution
(X,x, Y, y) to Equation (1–1) with 1 < x < y gives the
congruence ax+ by ≡ 1 (mod xy), where a = yY+1

x and
b = xX+1

y , ab = n. Conversely, if (x, y) is a solution to
ax + by ≡ 1 (mod xy), where ab = n and 1 < x < y,
then we easily check that (X,x, Y, y) with X = by−1

x and
Y = ax−1

y is a solution to Equation (1–1).
(b) Let (X,x, Y, y) be a solution to Equation (1–1)

with k = n−XY , x, y > 1, X ≤ Y , and x < y if X = Y .
Then with a, b as above, we get a quadruple (X,Y, a, b).
According to Lemma 2.3, n = ab > n − k = XY , k |
gcd(a + X, b + Y ), and x = b+Y

k , y = a+X
k . Hence,

x, y > 1 imply a + X > k and b + Y > k. Moreover, if
X = Y , then x < y gives a < b.

Conversely, if (X,Y, a, b) is any quadruple satisfying
the conditions in (b), then we get (X,x, Y, y), where x =
b+Y
k and y = a+X

k , which is easily seen to be a solution
of Equation (1–1) satisfying all the conditions in (b).
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Remark 3.2. Notice that the condition k | gcd(a+X, b+
Y ) is equivalent to gcd(a+X, b+ Y ) = k, since

k = ab−XY = (a+X)b−X(b+ Y )

implies that gcd(a + X, b + Y ) | k. Moreover, if
gcd(n, k) = 1, then the conditions k | a+X and k | b+Y

are equivalent. In fact, gcd(n, k) = 1 implies gcd(X, k) =
gcd(b, k) = 1, so the identity above implies the equiva-
lence of both conditions. Thus, if gcd(n, k) = 1, then in
order to find a solution to Equation (1–1), it is sufficient
to find factors a of n and X of n− k such that k | a+X

with a+X > k and n
a + n−k

X > k. Then,(
X,x =

n
a + n−k

X

k
, Y =

n− k
X

, y =
a+X

k

)

is a solution. In particular, if a = 1, we obtain solutions
for every k,X such that gcd(k, n) = 1,

X | n− k, k | X + 1, and X + 1 > k. (3–2)

On the other hand, if a = n, we get solutions for k,X
such that gcd(k, n) = 1,

X | n− k, k | n+X, and 1 +
n− k
X

> 1. (3–3)

We shall use these observations frequently in Section 6.

Theorem 3.1(a) implies that in order to estimate the
number of solutions to Equation (1–1), we have to esti-
mate the number f(n) =

∑
ab=n ρ(a, b) of solutions with

1 < x < y to all the congruences ax + by ≡ 1 (mod xy)
when ab = n. It is well known that for every ε > 0
there is a constant Cε only depending on ε such that
τ(n) ≤ Cεn

ε. Applying this fact and Theorem 2.1, we
get a bound on f(n) depending on n, α, and ε. How-
ever, we can get a somewhat sharper estimate if we use
only one of the congruences ax + by ≡ 1 (mod xy) and
bx + ay ≡ 1 (mod xy), and instead, count all solutions
with x, y > 1 (that is, we disregard the condition x < y).

In fact, it is clear that (x, y) solves the first congruence
if and only if (y, x) solves the second one. In such a way,
we can use the estimate from Theorem 2.1′, but only for
the pairs a, b with ab = n and a ≤ b. The number of such
pairs is 1

2τ(n) + εn, where εn = 0 if n is not a square and
εn = 1

2 when n is a square. This gives the following
result:

Theorem 3.3. Let f(n) denote the number of solutions to
Equation (1–1) and let

g(n, α) =
1
α

√
n log(n) + 2

(
1 +

0.6
α

)√
n+

2(2n− 1)α
2n− α√n .

Then, for every ε > 0 and any real 1 ≤ α ≤ √n, there is
a constant Cε such that

f(n) ≤ 1
2
τ(n)g(n, α)

≤ Cεnε

⎛
⎜⎜⎝

1
2α
√
n log(n) +

(
1 +

0.6
α

)√
n

+
(2n− 1)α
2
√
n− α

⎞
⎟⎟⎠ ,

when n is not a square, and

f(n) ≤ 1
2

(τ(n) + 1)g(n, α)

≤ (Cεnε + 1)

⎛
⎜⎜⎝

1
2α
√
n log(n) +

(
1 +

0.6
α

)√
n

+
(2n− 1)α
2
√
n− α

⎞
⎟⎟⎠ ,

when n is a square. In particular, if n is sufficiently big
then f(n) < n.

4. AN ALGORITHM

We can now construct a reasonably efficient algorithm for
computing the number of solutions (X,x, Y, y) to Equa-
tion (1–1) following their description in Theorem 3.1(b).

First of all, write down the list of divisors of n. For
each divisor a of n and for all integers X such that 1 ≤
X <

√
n, repeat the following: compute all the divisors

k of a + X; for each k, check whether or not Y = n−k
X

and x = b+Y
k , where b = n

a , are integers, let y = a+X
k ,

x = b+Y
k in the affirmative case. If X = Y and x > y

replace (x, y) by (y, x). Check whether x > 1, y > 1 and
accept the quadruple (X,x, Y, y) as a solution if all these
conditions are satisfied.

Theorem 3.1(b) easily implies that this algorithm gives
all the solutions to Equation (1–1) and every solution
exactly once.

We are now ready for the numerical computations
proving that the number f(n) of solutions to Equa-
tion (1–1) is always less than n.

As we noted before, for each ε > 0 there is a constant
Cε depending only on ε such that τ(n) ≤ Cεn

ε for all
n ≥ 1. For simplicity, let ε = 1

4 and denote by C∗ the
least constant corresponding to this value of ε. It is easy
to show that for the positive integers the quotient

C(n) =
τ(n)
n

1
4

attains its maximum value for n = 21, 621, 600, which
gives C∗ < C0 = 8.44697.
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According to Theorem 3.3, if n is not a square, we
want to decide when

f(n) ≤ 1
2
τ(n)g(n, α)

≤ 1
2α
C∗n

3
4 log(n)

+
(

1 +
0.6
α

)
C∗n

3
4 +

(2n− 1)α
2
√
n− α C∗n

1
4

< n.

Let

h(n, α,C) = n
1
4 − 1

2α
C log(n)

−
(

1 +
0.6
α

)
C − (2n− 1)α

2n− α√nC.

Choose α = 2.95. Then, it is easy to check that
h(n, α,C∗) > h(n, α,C0) > 0 when n ≥ 11, 621, 000.
By the definition of C∗, this shows that f(n) < n for
all n ≥ 11, 621, 000, and it remains to check this inequal-
ity for all n < 11, 621, 000. In order to carry out the
numerical computation, we find all the numbers n for
which 1

2τ(n)g(n, α) ≥ n. This happens when τ(n) is
“big,” which occurs when n has many small prime fac-
tors. The computations give 6,523 numbers in the inter-
val [2 · 104, 11, 621, 000], 3,030 in [2 · 104, 105], 3,482 in
[105, 5 · 106], and 11 in [5 · 106, 11, 621, 000]. The num-
bers in the last interval are 5,045,040 (4,559), 5,266,800
(4,051), 5,405,400 (5,069), 5,569,200 (4,494), 5,654,880
(4,534), 5,765,760 (5,286), 6,126,120 (5,211), 6,320,160
(5,407), 6,486,480 (4,333), 7,207,200 (6,309), 8,648,640
(5,330), where the number in the parenthesis is the cor-
responding value of f(n).

If n is a square, then we repeat the same procedure as
above taking into account the extra term on the right-
hand side in the second inequality in Theorem 3.3. The
bound 11,621,000 works in this case as well, so we have
to consider all squares less than this bound (3,408 num-
bers). Short computations show that there are 118 such
squares for which the expression in the second inequal-
ity in Theorem 3.3 is not less than n (the biggest one is
1,587,600). For these 118 numbers, we check by computer
calculations that f(n) < n.

5. REDUCED SOLUTIONS

In this section, we look at some special solutions to Equa-
tion (1–1), and we also give a direct proof of the inequal-
ity f(n) < n for the case when n = p is a prime number.

Let X,x, Y, y be a solution to Equation (1–1), which
in this section will be denoted by n = [X,x, Y, y]. Recall

that a, b denote integers such that ax = yY + 1 and by =
xX+1. We say that a solution X,x, Y, y is reduced if X <

y and Y < x. The reduced solutions are characterized in
the following way:

Proposition 5.1. Let n = [X,x, Y, y]. Then X,x, Y, y is
reduced if and only if XY = n− 1.

Proof: If X < y and Y < x, then Lemma 2.3 gives
kxy = ax+by−1 = xX+Y y+1 < x(y−1)+y(x−1)+1 =
2xy+1−x−y < 2xy. Thus k = n−XY = 1. Conversely,
if XY = n − 1, then by Lemma 2.3, k = n − XY = 1.
This implies X < y and Y < x, since otherwise, kxy =
xX + yY + 1 > xy, that is, k > 1.

Corollary 5.2. The number of reduced solutions to Equa-
tion (1–1) is 1

2τ(n)τ(n− 1).

Proof: If X, y, Y, y is a reduced solution, then ab = n,
XY = n− 1, and k = 1 according to Lemma 2.3. Thus,
each pair of divisors of n and n−1 defines a solution and
every solution gives such a pair of divisors. Of course,
we have to divide the total number of such pairs by 2
in order to obtain each desymmetrized solution exactly
once.

Proposition 5.3. If p is a prime, then f(p) < p.

Proof: According to Corollary 5.2, the number of reduced
solutions to p = [X,x, Y, y] equals τ(p− 1). Assume that
the solution X,x, Y, y is not reduced. Without loss of
generality, we may assume that

xX + 1 = py and yY + 1 = x.

The second equation gives Y < yY + 1 = x. Since the
solution is not reduced, we have X > y (the equality is,
of course, impossible by the first equation). The second
equation gives y|x−1, so y < x. We also have x < p, since
otherwise py = xX+1 > pX gives a contradiction. Thus
x belongs to the set {3, . . . , p − 1} with p − 3 elements.
Moreover, py ≡ 1 (mod x) and y < x, so the congruence
allows at most one y that gives a solution to the equation.
If now p ≡ 1 (mod x), then y must be equal to 1, which
is impossible. Thus x > 2 can not assume values that
divide p−1. The number of such x is τ(p−1)−2. Thus,
x assumes at most

(p− 3)− (τ(p− 1)− 2) = p− τ(p− 1)− 1

different values that give nonreduced solutions. Accord-
ing to Corollary 5.2, the number of reduced solutions
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is τ(p − 1), so the total number of solutions is at most
p− 1.

Every solution X,x, Y, y to Equation (1–1) has the
corresponding value of k = n−XY . By Proposition 5.3,
k = 1 corresponds to the reduced solutions. For these
solutions, X and Y must be the least positive solutions
to the congruences xX ≡ −1 (mod y) and yY ≡ −1
(mod x) when x, y are fixed. All other positive solutions
to these congruences with x, y fixed are given by X +
ry, Y + sx, where r, s ≥ 0. Thus, starting from n =
[X,x, Y, y] with a fixed pair x, y, we get

N = [X + ry, x, Y + sx, y],

where N = (rx + b)(sy + a). The number n = ab is the
least number for which such a (reduced) solution with
fixed x, y exists. We have N − (X + ry)(Y + sx) = k +
r + s. In particular, if r = 1, s = 0 or r = 0, s = 1, we
get quadruples for which the corresponding parameter k
decreases by 1:

[X,x, Y, y] �→ [X + y, x, Y, y],

[X,x, Y, y] �→ [X,x, Y + x, y].
(5–1)

We shall say that these two transformations are elemen-
tary. Thus we can describe the solutions for a given n in
the following way:

Proposition 5.4. Every solution to n = [X,x, Y, y] with
k = n−XY > 1 can be obtained from a reduced solution
to m = [X0, x, Y0, y], for some m < n, by successive use
of k − 1 elementary transformations (5–1).

Proof: If we have a solution n = [X,x, Y, y] with k =
n − XY and k > 1, then the solution is not reduced,
which means that X > y or Y > x, since Lemma 2.3
implies immediately that the equalities are impossible. If
X > y, then we get n− (yY + 1) = [X − y, x, Y, y], while
Y > x gives n−(xX+1) = [X,x, Y −x, y], both with the
corresponding value of k′ = [n− (xX + 1)]−X(Y −x) =
k − 1. This “reduction process” eventually leads to a
reduced solution for a natural m < n and the same x, y.
Starting from such a reduced solution and reversing the
process, we get the given solution n = [X,x, Y, y] after
k − 1 steps.

By Lemma 2.3(d), k ≤ n+1
3 . Observe, that for t ≥ 1

and n = 3t − 1, we have n = [1, 2, 2t − 1, 3] and in this
case, k = n−XY = n+1

3 .

6. ON THE RATE OF GROWTH OF f(n)

What is the true rate of growth of f(n)? As Figure 1
shows, f(n) oscillates rather wildly.

 50

 100
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 300

 350

 400

 450
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 550

 10000  10100  10200  10300  10400  10500

"f(n)"

FIGURE 1. The numbers of solutions to (1–1) for
10, 000 ≤ n ≤ 10, 500.

There are a number of natural questions regarding the
behavior of f(n). What is the correct upper bound for
f(n)? Does f(n) tend to infinity as n tends to infinity?
If so, how fast? As Figure 2 indicates, not only are the
large values of f quite far from the mean value of f , but
so are the small values.
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FIGURE 2. The x-coordinate for each plotted point cor-
responds to a window of the form [100l + 1, 100l + 100],
and the y-coordinate corresponds to the maximum (re-
spectively, minimum) value taken by f(n) for n in that
window.

6.1 The Average Rate of Growth of f(n)

Figure 2 indicates that the average of f(n) behaves quite
regularly, and we can in fact show that f(n) on average is
of size log3 n. For simplicity, if g, h are positive functions,
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we write g(n) � h(n) if there is a positive constant C
such that g(n) ≤ Ch(n) for all sufficiently big natural n.

Theorem 6.1. There exist positive constants C1, C2 such
that for T ≥ 2,

C1 ≤
∑T
n=1 f(n)
T log3 T

≤ C2.

In the proof we need the following result:

Lemma 6.2.
∑
n≤T τ(n)τ(n− 1) = O(T log2 T ).

Proof: If m ≤ T , we have

τ(m) ≤ 2
∑
l|m
l≤√

T

1,

and thus∑
n≤T

τ(n)τ(n− 1) ≤ 4
∑
n≤T

∑
l|n

l≤√
T

∑
k|(n−1)

k≤√
T

1

= 4
∑

k,l≤√
T

|{n ≤ T : l|n, k|(n− 1)}|

= 4
∑

k,l≤√
T

|{d ≤ T/l : k|(dl − 1)}|

= 4
∑

k,l≤√
T

|{d ≤ T/l : d ≡ l−1 mod k}|

≤ 4
∑

k,l≤√
T

(
T

kl
+ 1
)

= O(T log2 T ) +O(T ) = O(T log2 T ).

Proof of Theorem 6.1: Using the notation in the intro-
duction, given relatively prime x, y, let us choose X0 and
Y0 such that xX0 ≡ −1 (mod y), 0 < X0 < y, yY0 ≡ −1
(mod x), and 0 < Y0 < x. We want to count the number
of integers X,Y ≥ 1 such that X ≡ X0 (mod y), Y ≡ Y0

(mod x), and
(
X +

1
x

)(
Y +

1
y

)
= n ≤ T,

when x, y > 1 are fixed. Noting that

XY <
(Xx+ 1)(Y y + 1)

xy
< 4XY,

we will obtain lower bounds by estimating from below
the number of X,Y such that 4XY ≤ T .

The congruences X ≡ X0 (mod y), Y ≡ Y0 (mod x)
are equivalent to X,Y being of the form

X = X0 + ry, Y = Y0 + sx

for r, s nonnegative integers. Thus, it is enough to esti-
mate

|{r, s ≥ 0 : (X0 + ry)(Y0 + sx) ≤ T/4}|,

which, since X0 < y and Y0 < x, we may bound from
below by

|{r, s ≥ 0 : (r + 1)(s+ 1)xy ≤ T/4}|.

This, in turn, is greater than
∣∣∣∣
{
r, s ≥ 0 : rs ≤ T

16xy

}∣∣∣∣ ∼ T

16xy
log

T

16xy
.

Summing over relatively prime x, y ≤ T 1/3, we then find
that the number of ways of finding x, y,X, Y such that

n =
(Xx+ 1)(Y y + 1)

xy
≤ T

is strictly greater than

∑
x,y≤T 1/3

(x,y)=1

T

16xy
log

T

16xy

 log T

∑
x,y≤T 1/3

(x,y)=1

T

16xy


 T log T
∑

x,y≤T 1/3

(x,y)=1

1
xy


 T log3 T.

In other words, on average, there are at least C1 log3 T

solutions for some C1 > 0.
In order to prove the existence of an upper bound, we

note first that if r = s = 0, then the solution (X0, Y0, x, y)
is reduced. For n ≤ T the number of reduced solutions,
according to Corollary 5.2 and Lemma 6.2, is

1
2

∑
n≤T

τ(n)τ(n− 1) = O(T log2 T ).

Assume now that r ≥ 1 and s = 0. Then, the number
of solutions (X,Y, x, y) to Equation (1–1) such that n ≤
T is less than

|{r, x, y > 0 : XY = (X0 + ry)Y0 ≤ T}| ≤
|{r, x, y > 0 : ryY0 ≤ T}|.
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Since r ≥ 1, we have M := yY0 ≤ T , and since yY0 ≡ −1
(mod x), we have

|{r, x, y > 0 : ryY0 ≤ T}|
≤
∑
M≤T

|{r, x, y > 0 : x |M + 1, y |M, rM ≤ T}|

≤
∑
M≤T

τ(M)τ(M + 1)T/M,

which, by partial summation and Lemma 6.2, is
O(T log3 T ).

The case r = 0, s > 0 follows in a similar way to the
previous one.

Finally, if r, s > 0 and (X,Y, x, y) is a solution to (1–1)
such that n ≤ T , then since XY < T , we get

|{r, s, x, y > 0 : XY = (X0 + ry)(Y0 + sx) ≤ T}|
≤ |{r, s, x, y > 0 : rysx ≤ T}| = O(T log3 T ).

In other words, on average, there are at most C2 log3 T

solutions for some C2 > 0.

Remark 6.3. With a more careful analysis of the cases
r = 0, s > 0 and r > 0, s = 0, it is possible to prove that
limT→∞

�
n≤T f(n)

T log3 T
exists and equals 3

2π2 .

6.2 Large Values of f(n)

Since there are 1
2τ(n)τ(n − 1) reduced solutions (see

Corollary 5.2), it is clear that the order of magnitude
of f(n) is sometimes larger than any power of log n, and
thus f(n) can deviate quite a bit from its average value.
However, there are other sources of large oscillations.
Let M(n, k) denote the number of solutions X,x, Y, y
to Equation (1–1) such that n−XY = k. Then,

f(n) =
(n+1)/3∑
k=1

M(n, k), (6–1)

since k ≤ (n + 1)/3 by Lemma 2.3(d). Taking into ac-
count the contribution to f(n) from the number of so-
lutions with k = 1 and a similar contribution for k = 2
(see Lemma 6.7), one might expect that the most signif-
icant fluctuations of f(n) depend on M(n, k) for small
values of k. However, this is not the case as shown by
the following construction (we thank Andrew Granville
for pointing this out to us). Fix an arbitrary k and let
M > k be a large integer. Choose n = k+

∏
pi, where all

pi are primes such that pi ≡ −1 (mod k) and pi ≤ M .
Denote the number of such primes pi by π(M,k,−1). By

the prime number theorem for arithmetic progressions
(see [Davenport 00, Chapters 20 and 22]),

ckM

φ(k) logM
≤ π(M,k,−1) ≤ CkM

φ(k) logM

for suitable positive constants ck, Ck only depending on
k. Now, half of the divisors of n− k are congruent to −1
modulo k, so taking into account (3–2), we get

f(n) ≥ 2π(M,k,−1)−1.

Hence log f(n)
 π(M,k,−1)
 M
φ(k) logM . On the other

hand, since
∏
pi ≤Mπ(M,k,−1), we get

log n�
∑

log pi � M

φ(k)
,

and similarly, logn 
 M
φ(k) , which implies logM �

log log n. Thus

log f(n)
 M

φ(k) logM

 log n

logM

 log n

log log n
.

Hence

f(n)
 exp
(
c log n

log log n

)

for some constant c > 0 only depending on k.
Thus for each k there exists a suitable n such that

M(n, k) gives a “big” contribution to f(n). It is also
possible to show that the contribution to f(n) may come
from many different values of k. If n + 1 has many dif-
ferent divisors, then according to (3–3), where we choose
X = 1, each such divisor k gives a solution to Equa-
tion (1–1).

However, according to the following heuristic reason-
ing it is reasonable to expect thatM(n, k) will be zero for
most k. We note that each solution to ax+by = 1+kxy,
ab = n, for k fixed, corresponds to divisors a|n and
X|n − k such that a + X ≡ 0 mod k. Since there are
τ(n) possible values for a and τ(n − k) possible values
for X, it is natural to expect that M(n, k) should be
of size τ(n)τ(n − k)/k. In particular, for k 
 nε and
ε > 0, M(n, k) should rarely be nonzero. Thus it seems
reasonable to make the following conjecture:

Conjecture 6.4. For all ε > 0, f(n)�ε n
ε.

6.3 Small Values of f(n)

Given the heuristic that M(n, k) should be of size
τ(n)τ(n − k)/k, one would expect that f(n) tends to
be small when n is a prime number, and Figure 3 seems
to confirm this.
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FIGURE 3. The x-coordinate for each plotted point cor-
responds to a window of the form [100l + 1, 100l + 100],
and the y-coordinate corresponds to the minimum value
taken by f(n) for n integer. In most of the windows, f
assumes its minimum at a prime. In each window, the
difference of the minimum at the primes and the mini-
mum is also graphed.
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FIGURE 4. f(p) for p the first prime in the interval
[10007l, 10007(l + 1)].

Thus, in order to try to understand small values of
f(n), we will concentrate on f(n) for n taking values in a
sparse subset of the primes. (Note that our algorithm for
calculating f(n) is quite a bit faster when τ(n) is small.)

From the data in Figure 4, we are led to make the
following conjecture:

Conjecture 6.5. f(n) tends to infinity when n→∞.

In fact, as Figure 5 indicates, it might be true that
f(n) 
 τ(n)(log n)2−o(1), but the evidence for this is
perhaps not so convincing.
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FIGURE 5. The x-coordinate for each plotted point corre-
sponds to a window of the form [1000l +1, 1000l +1000],
and the y-coordinate corresponds to the minimum value
taken by g(n) = f(n)/(τ(n) log2 n) in that window.
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FIGURE 6. The function f(n) in [5 · 105 +1, 5 · 105 + 500]
smoothed by removing the 10 smallest and 10 largest
values of f(n) for n in the windows [100(l− 1) + 1, 100l],
where l = 5 · 103 + 1, . . . , 5 · 103 + 5.

Following a suggestion by the referee, we tried to in-
vestigate the normal order of f(n) (in the sense of [Hardy
and Wright 79, page 356]), and doing this we looked at
several “windows” of length k · 100 (for small k) plot-
ting the middle 80 examples in each window for n up to
2 · 106. Unfortunately, the oscillation of the values in the
windows is very strong (see Figure 6). We also looked at
the quotient max(f(n))/min(f(n)), where the maximum
and minimum are taken among the 80 middle values in
windows of length 100, for n up to 106. This also shows
considerable oscillation (see Figure 7). Our conclusion is
that f(n) does not have a (reasonably simple) normal or-
der and the same can be said about f(n)/τ(n) Numerics
seem to indicate that log f(n) has normal order log log n
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FIGURE 7. The smoothed quotient max(f(n))
min(f(n))

in each win-

dow [100(l − 1) + 1, 100l] for l = 1, . . . , 10000.

(up to a constant), but the evidence is weak and it is
not computationally feasible to study this for sufficiently
large n.

As for rigorous lower bounds, with “some effort,” we
can prove the following:

Proposition 6.6. If n ≥ 9, then f(n) ≥ 8.

Let τodd(n) denote the number of odd divisors of n.
Then for k = 2, we have the following lemma:

Lemma 6.7. For n ≥ 3, we have

M(n, 2) =

{
1
2τ(n) τ(n− 2)− 1, if n is odd,
τodd(n) τodd(n− 2)− 1, if n is even.

Proof: In fact, if n is odd, then according to Remark 3.2,
we get all solutions to (1–1) taking any divisor a of n
(b = n

a ) and any divisor X of n − 2 (Y = n−2
X ) such

that a + X > 2 and b + Y > 2. The number of pairs of
such divisors giving different quadruples (X,x, Y, y) with
x < y is 1

2τ(n) τ(n−2), and the only case when a+X = 2
or b + Y = 2 corresponds to the choice of a = X = 1 or
a = n, X = n − 2, which gives only one quadruple with
x < y. This proves the first case.

If n is even, let n = 2rm, where m is odd. One of
the numbers n, n − 2 must be divisible by 4, so let us
assume that r ≥ 2 (the case with n − 2 divisible by 4
is considered in similar way with the roles of n, n − 2
interchanged). Thus, n − 2 = 2(2r−1m − 1), and n−2

2 is
odd. If n−2 = XY , then exactly one of the factors X,Y
is even and the other one is odd. Since a+X and b+ Y

are even, exactly one of the factors a, b of n = ab must

be odd. Thus all the possibilities for the sums a+X and
b + Y are given by all the choices of the odd factors of
n and n − 2. Only one such choice gives a + X = 2 or
b+ Y = 2. This proves the second case.

Now we prove that

if n > 11, then M(n, 1) +M(n, 2) ≥ 7. (6–2)

First let n be odd. Then,

M(n, 1) +M(n, 2) =
1
2
τ(n)(τ(n− 1) + τ(n− 2))− 1.

Since n − 1 > 4 is even, τ(n − 1) ≥ 4. Assume that
τ(n) = 2. Then n is a prime. If also τ(n − 2) = 2, then
6 | n − 1. Since n − 1 > 6, we have τ(n − 1) ≥ 6, so
M(n, 1) +M(n, 2) ≥ 7. Assume now that τ(n− 2) = 3,
that is, n − 2 = p2, where p > 3 is a prime. Then
3 | p2 + 2 = n, which is impossible. Thus, τ(n − 2) ≥ 4,
which gives M(n, 1) +M(n, 2) ≥ 7. Notice that if n is
a prime, n − 1 twice a prime, and n − 2 is a product of
two different primes, then M(n, 1) +M(n, 2) = 7. By
Schinzel’s conjecture (see [Schinzel and Sierpiński 58]),
this situation happens for infinitely many n. If τ(n) > 2,
then it is easy to check that M(n, 1) +M(n, 2) ≥ 8.

Assume now that n is even, so

M(n, 1)+M(n, 2) =
1
2
τ(n)τ(n−1)+τodd(n)τodd(n−2)−1.

We have τ(n) > 3, since n > 4. Assume τ(n) =
4. Since n > 8, we have n = 2p, where p is an odd
prime. If n − 1 is a prime, then 3 | n − 2 = 2(p − 1), so
τodd(n)τodd(n − 2) ≥ 4 and M(n, 1) +M(n, 2) ≥ 7. If
τ(n) = 5, then n = 16, and the claim follows by a direct
computation. If τ(n) = 6, then n = 32 or n = p2q for
two different primes p, q. If p = 2, then n− 2 = 2(2q− 1)
has at least two odd factors, so M(n, 1) +M(n, 2) ≥ 7.
If q = 2 and p = 3, we check the claim directly, and
when p > 3, then n − 2 = 2(p2 − 1) is divisible by 3,
so τodd(n)τodd(n − 2) ≥ 6. If finally, τ(n) ≥ 7, then of
course, the inequality holds.

Now we prove that

if n > 12, then M(n, 3) ≥ 1. (6–3)

Assume first that 3 � n (so 3 � n−3) and let n be even.
Then n = 2m and n − 3 = 2m − 3. If for a prime p ≡ 1
(mod 3), p | n − 3, then p ≥ 7, so X = p, Y = n−3

p ,
x = 2+Y

3 > 1, and y = m+X
3 > 1 (see Remark 3.2) give a

solution to Equation 1–1. If for a prime p ≡ 2 (mod 3),
p | n− 3, then p ≥ 5, so X = 1, Y = n−3

p , x = p+Y
3 > 1,
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and y = n+X
3 > 1 give such a solution. If n is odd, then

n− 3 is even, and we repeat the same arguments looking
instead at the prime factors p of n.

Now let 3 | n. Let n be even. Then n = 3s2m, where
3 � m, and n− 3 = 3(3s−12m− 1) = 3r. If r has a prime
divisor p ≡ 1 or 2 (mod 3), we proceed exactly as in the
previous case when 3 � n. Otherwise, 2m − 1 is a power
of 3, so n − 3 = 3s+1 and n = 3(3s + 1). In this case, n
must have a prime factor p > 2 congruent to 2 modulo 3
and we get a solution to Equation (1–1) as before.

If n is odd, then n − 3 is even and divisible by 3, so
the considerations are similar with the role of n and n−3
interchanged.

Now the proof of Proposition 6.6 follows immediately
from (6–1), (6–2), (6–3), and by direct inspection of the
cases n = 9, 10, 11, 12. Still more elaborate arguments
show that f(n) ≥ 12 if n ≥ 20 (we thank Jerzy Browkin
for sending us his proof of this result and, in particular,
for the proof of Lemma 6.7).

Remark 6.8. It is no longer true that M(n, 4) ≥ 1 for
all sufficiently large n. If all primes dividing both n and
n− 4 are congruent to 1 modulo 4, then by Remark 3.2,
there are no solutions to Equation (1–1) with k = 4. In
fact, this happens for infinitely many n by the following
argument, for which we thank Mariusz Ska�lba. Let m

be a natural number such that m �≡ 1 (mod 3) and put
n = 2m2 + 2m+ 5. Then,

n = (m− 1)2 + (m+ 2)2 and n− 4 = m2 + (m+ 1)2

are only divisible by primes congruent to 1 modulo 4.
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