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We prove that in Conway’s Game of Life cellular automaton with
initial configuration 4rrat2, the linear growth rate of the num-
ber of live cells is irrational, as conjectured in 1991 by Dean
Hickerson. Our proof uses intertwined substitution sequences.

1. INTRODUCTION

The Game of Life, invented by John Horton Conway over
30 years ago, is probably the best known cellular automa-
ton. An infinite rectangular grid divides the plane into
squares called cells. Each cell can be dead or alive, but at
any given moment only finitely many cells are alive. Each
cell has eight neighbors. The evolution in (discrete) time
follows simple rules: if at the moment n a cell is alive
and has two or three live neighbors, it stays alive at the
next moment n + 1, otherwise it dies; if at the moment
n it is dead and has exactly three live neighbors, then
it becomes alive at the moment n + 1, otherwise it stays
dead. Both overcrowding and loneliness are intolerable.

Cellular automata were introduced by von Neumann
and Ulam in the late 40s. One of their goals was to study
self-reproduction in these spatially discrete dynamical
systems with spatially homogeneous, locally determined,
discrete time dynamics. Cellular automata have since
been studied from many other points of view, including
computability and computational complexity, formal lan-
guage theory, and statistical mechanics, and applied to
model widely diverse phenomena in physics, chemistry,
biology, and many other fields.

Our primary tool will be substitution sequences.
Given a finite alphabet and a suitable substitution rule,
i.e., a finite word associated to each symbol in the alpha-
bet, one obtains a sequence of symbols by starting with
a symbol, replacing it with its associated word, similarly
replacing each symbol in this word, and repeating this
procedure. (Actually, one has to start with a letter for
which the associated word begins with this letter, and
this word has to have at least two letters.) The most
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FIGURE 1. Initial configuration.
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FIGURE 2. After 90 steps.

famous example is the so-called Morse sequence

01101001100101101001011001101001 .. .,

generated by the substitution 0 — 01, 1 — 10 and used
by Morse to study geodesic flows on negatively curved
surfaces.

One can get more information about Life in, for in-
stance, [Berlekamp et al. 82] and [Gardner 83]. There
is also substantial information on the Internet, includ-
ing programs for various platforms and online. Two
good starting points are (as of April 2005) http://
www.radicaleye.com/lifepage/ and http://psoup.math.
wisc.edu/Life32.html.

Many initial configurations with very interesting evo-
lution in time have been found. Most of them have been
collected and encoded using the *.1if format that can be
read by standard Life software. One of the most popular
collections is lifep.zip. Various parts of configurations
(“life forms”) have their specific names, often referring
to spaceships.

2. IRRATIONAL CONFIGURATION

The Life configuration we considered is called irrat2
(see Figure 1). It was described by Dean Hickerson in
1991 and can be found with his comments at http://

www.radicaleye.com/lifepage /patterns/irrat2.html. For
related work, see [Griffeath and Hickerson 03].

It consists of two big mother spaceships that move
apart to the left and right (on the same horizontal level),
leaving behind a combination of small spaceships and
mines in two horizontal rows: upper and lower. (In the
standard Life terminology, mother spaceships are called
puffers, spaceships are called middleweight spaceships,
and mines are called boats.) Additional effects, crucial
for us, are created when a spaceship hits a mine. Fig-
ures 2, 3, and 4 show the evolution of the system. Note
that the scale of the figures changes. Although the space-
ships in the lower and upper rows may look different, they
are simply in different phases.

The mother spaceships are moving apart with speed
¢/2 (one space unit per two time units) each. The left one
leaves spaceships in the upper row (they are moving right
with speed ¢/2) and stationary mines in the lower row.
Both spaceships and mines are 20 units apart. The right
mother spaceship leaves spaceships in the lower row (they
are moving left with speed ¢/2) and stationary mines in
the upper row. Spaceships are 20 units apart, while mines
are ten units apart. When a spaceship hits a mine, both
of them are destroyed, but a glider is created. It moves
in the lower right direction if the catastrophe occurred in
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FIGURE 3. After 405 steps.
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FIGURE 4. After 1,761 steps (central part).

the upper row and in the upper left direction if it hap-
pened in the lower row. In each case, when it reaches
the other row, it collides with an incoming spaceship,
destroying it (and itself). When a glider created in the
lower row hits a spaceship in the upper row, then addi-
tionally a secondary mine (of a different shape than the
main ones) is created. The next incoming spaceship hits
it and is destroyed (the mine is also destroyed) and no
more debris remains.

Hickerson’s comment to the configuration reads:
“Population growth appears to be linear with an irra-
tional multiplier. The probability that a middleweight
spaceship will hit a boat seems to be 1/v/2 for the lower
(westward) stream, and v/2 — 1 for the upper (eastward)
stream. If this is true, then the population in generation
t is about (78v/2—73)t/40 for t even, and (82v/2—77)t/40
for t odd.” Our aim is to prove this conjecture about the
probabilities.

Noting the position of spaceships and mines, we get
two rows of sequences of symbols S (for a spaceship), M
(for a mine), and O (for an unoccupied position). It is
sufficient for our purposes to record those sequences only
every 20 units of time. Each row consists of three blocks.
The left-most block of the upper row and the right-most
block of the lower row consist of alternating Ss and Os.
The central blocks of both rows look similar, except that
some Ss are replaced by Os (the spaceships that should
occupy those positions have been destroyed). The right-
most block of the upper row consists of Ms, while the
left-most block of the lower row consists of alternating
Ms and Os.

The unit of time we use is equal to 20 elementary units
of time. It allows each spaceship to move by one posi-
tion in its row. Of course, moments at which various
events, like destruction of a spaceship, occur are regis-
tered approximately, since they take some time to com-
plete. However, this makes no difference for us. Our aim
is to identify the sequences (for the central blocks) that

are created, so exact times of destruction are irrelevant.
It is easier to think of those disappearing elements as re-
maining there. Then we get longer and longer one-sided
sequences whose beginnings remain the same. We want
additions from the right, so we have to flip the upper
TOW.

In such a way we get the following model. We start
with two short sequences of symbols O and S, upper
and lower. Then we read the upper sequence from the
left and extend the lower one to the right accordingly.
Simultaneously, we read the lower sequence from the left
and extend the upper one to the right accordingly.

Both lower and upper sequences consist of alternating
Os and Ss, with some Ss replaced by Os. To simplify
notation, we remove every second symbol (that is, those
that have to be Os). Now, S means a spaceship and O a
hole (a destroyed spaceship).

Suppose an S has just been read in the upper sequence.
This corresponds to the destruction of a spaceship and
a mine in the upper row. The next mine is ten space
units farther (this corresponds to one time unit for the
movement of a spaceship). Thus, if the next symbols to
be read are k Os and then an S, we must wait 2(k+1)+1
time units for the next spaceship in this row to blow up
on a mine. This event will take place ten units to the
right compared to the previous one, so the spaceship to
be destroyed by the collision with a glider in the lower
row will be ten units to the right and 2(k + 1) + 1 time
units later than the previous one. By this time k£ 4 1
spaceships in the lower row will travel safely, and only
the next one will be destroyed. This means that reading
k Os and then an S in the upper row will result in the
addition of £+ 1 Ss and then an O in the lower row.

Suppose now that an S has just been read in the lower
sequence. This corresponds to the destruction of a space-
ship and a mine in the lower row. The next mine is 20
space units farther (this corresponds to two time units
for the movement of a spaceship). Thus, if the next sym-
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bols to be read are k Os and then an S, we must wait
2(k+1) + 2 time units for the next spaceship in this row
to blow up on a mine. This event will take place 20 units
to the left compared to the previous one, so the spaceship
to be destroyed by the collision with a glider in the upper
row will be 20 units to the left and 2(k+1)+2 time units
later than the previous one. By this time k+1 spaceships
in the upper row will travel safely, and only the next two
will be destroyed (one by a glider and the second one by
a secondary mine). This means that reading k¥ Os and
then an S in the lower row will result in the addition of
k+ 1 Ss and then two Os in the upper row.

The above rules can be written in a simpler form.
Namely, when we read O in the upper sequence, we ap-
pend an S to the lower one, and when we read S in the
upper sequence, we append SO to the lower one. Simi-
larly, when we read O in the lower sequence, we append
an S to the upper one, and when we read S in the lower
sequence, we append SOO to the upper one. In other
words, we build substitution sequences using the above
substitution rules.

When we start with a sufficiently long piece of the up-
per sequence, reading it results in extending the lower
one, and this in turn results in extending the upper one.
Thus, we are building a substitution sequence (however,
starting with a finite piece that perhaps has a wrong
structure). Our substitution rules are compositions of
corresponding substitution rules from the preceding para-
graph. Concretely, we get O — SOO and S — SOOS.
Similarly, the rules for the lower sequence are O — SO
and S — SOSS.

In order to be able to make precise statements, we have
to introduce some notation. Let u(n, k) be the number of
Ss in the block of length n starting at place k for the up-
per row, and I(n, k) a similar number for the lower row.
The probability that a spaceship (middleweight space-
ship) hits a mine (boat) is equal to the relative density
of the Ss in the corresponding row. We will prove a the-
orem from which the statement about the probabilities
from Hickerson’s comment will clearly follow.

Theorem 2.1. For the irrat2 initial configuration, the
sequences (u(n, k)/n)>2, and (I(n,k)/n)22, converge to
V2 -1 and \/5/2, respectively, as n — oo, uniformly in
k. That is,

lim sup

n—oo k

‘u(n,k)

l(n,k) Q

lim sup

n—oo k

Proof: Let us consider the upper sequence. It can be ob-
tained from some initial segment by reading it from the
left and appending from the right according to the substi-
tution O — SOO and S — SOOS. Thus, except perhaps
for the initial segment, it is a concatenation of longer
and longer blocks which are obtained from one symbol
by repetitive substitutions. Let us call such blocks regu-
lar. Their generation number counts how many times we
applied a substitution.

We claim that the number of Ss in a regular block of
generation m, divided by the length of this block, goes to
V2—1asm — oo. Let A be a regular block of generation
m and B the block of generation m + 1 obtained from it
by the substitution. Let the number of Os and Ss in A
be a and b, respectively, and the number of Os and Ss in
B be ¢ and d, respectively. Since each O in A is replaced
by two Os and one S in B, and each S in A is replaced
by two Os and two Ss in B, we see that

(5)(3): w0 (11)

Therefore, in a regular block of generation m the numbers
of Os and Ss are equal to the components of the vector
U™e;, where i =1 or 2 and

0o (1) waen ().

The matrix U has two eigenvalues: 2 + \/i, of modu-
lus larger than 1, and 2 — v/2, of modulus smaller than
1. The vectors e; do not belong to the eigenspace corre-
sponding to the second eigenvalue. Thus, as m — oo, the
vectors U™e; approach the eigenspace corresponding to
the first eigenvalue. This means that the number of Ss
in a regular block of generation m, divided by the length
of this block, goes to b, where (Z) is an eigenvector cor-
responding to the eigenvalue 2+ v/2, such that a+b = 1.
An elementary computation shows that b = v/2 — 1, thus
proving our claim.

Let € > 0 be given. By the claim that we have just
proved, there is m such that the number of Ss in each reg-
ular block of generation m, divided by the length of this
block, is within /2 of V/2—1. Note than if m; > m, then
each regular block of generation m; is a concatenation of
regular blocks of generation m. Therefore, there exists
ko such that starting at this place the upper sequence is
a concatenation of regular blocks of generation m. Let k;
denote the length of the longer of the two regular blocks
of generation m. Set ko = max(kg, k1). Then any block
A of length n > 2ky is a concatenation of a nonempty
block B, which is a concatenation of regular blocks of



generation m, and two other blocks (at the beginning
and the end) of length at most ky each. We admit also
a possibility that any of those two blocks may be empty.
Let A start at place k, B at place s, and let B have
length t. Then we know that

ulh9) —(\/5—1)’ <

13
t 2’

[n — t] < 2ky, and since B is a subblock of A, also
|u(n, k) —u(t,s)| < 2ky. Thus,

’u(n,k)_(\@_l)

n
u(n,. k) ul(t,s) . u(t,s) ul(t,s)
- n n n t
+ u(tt’s)(\@l)‘
2/€2 9 2k2 e
<2 1+ ) =242
<= +(x/§ 1+2) —+3

Thus, there is ng such that if n > ng, then

8 ()<

independently of k. This proves the theorem for the up-
per sequence.
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For the lower sequence the proof is the same, except
that the matrix U has to be replaced by the matrix

11
=(13)

for which we get b = /2/2. O
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