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An important problem in the dynamics of surface homeomor-
phisms is determining the forcing relation between orbits. The
forcing relation between periodic orbits can be computed using
existing algorithms. Here we consider forcing relations between
homoclinic orbits. We outline a general procedure for comput-
ing the forcing relation and apply this to compute the equiva-
lence and forcing relations for homoclinic orbits of the Smale
horseshoe map.

1. INTRODUCTION

In this paper, we study the braid equivalence and forc-
ing relation for homoclinic orbits of the Smale horseshoe
map. This problem is important in obtaining a detailed
understanding of the chaotic behaviour of general sur-
face diffeomorphisms. The braid type of an orbit gives a
combinatorial way of specifying the orbit, and the forcing
relation places restrictions on the coexistence of orbits of
different braid types. For systems exhibiting full-blown
chaotic behaviour, we can deduce the existence of infi-
nitely many orbits from knowledge of just a single orbit
and also obtain a lower bound on the topological entropy.
For parameterized families of systems exhibiting a tran-
sition to chaos, the forcing relation gives information on
the order in which different orbits are created. The forc-
ing relation for homoclinic orbits can also be used to
give information about the periodic orbits of the system.
We restrict our discussion to the Smale horseshoe map,
since this provides a model of chaotic dynamics in two
dimensions that is universal (in a combinatorial sense),
for which a natural symbolic description of orbits is avail-
able, and that models other important systems, such as
the Hénon map.

Chaotic behaviour and the forcing relation is well
understood for one-dimensional (noninvertible) maps.
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Sharkovskĭı’s theorem [Sharkovskĭı 64] describes the forc-
ing relation of periodic orbits of interval maps in terms
of the period. For unimodal interval maps, the kneading
theory [Milnor and Thurston 88] shows that periodic or-
bits are created in a linear ordering. The kneading theory
has been partially generalised to nonunimodal maps [Bal-
adi and Ruelle 94] to give a fairly complete picture of the
bifurcation structure.

For systems in two dimensions, the situation is more
complicated and not well understood. It is possible to
obtain considerable information from a single orbit, but
periodic orbits are only partially ordered [Boyland 92] by
the forcing relation. This makes the study of surface dif-
feomorphisms particularly interesting; the dynamics are
much richer than that of one-dimensional maps, but there
is enough structure that a fairly complete understanding
of chaotic dynamics is feasible.

Considerable attention in the literature has been paid
to the Hénon family, a two-dimensional analogue of
the one-dimensional quadratic family, and to the Smale
horseshoe map, an analogue of the tent map, and a the-
oretically tractable chaotic system. It has been shown
that the Hénon map has a full Smale horseshoe for cer-
tain parameter values and a partially formed horseshoe
for others [Devaney and Nitecki 79]. In fact, any C1+ε

surface diffeomorphism with positive topological entropy
must have a horseshoe [Katok 80], so the Smale horse-
shoe map is pivotal in studying chaos in two dimensions.
Further, the third iterate of the Smale horseshoe map
contains periodic orbits of all braid types [Kin 00], so it
is “combinatorially universal.”

The forcing relation for periodic orbits of surface dif-
feomorphisms can be studied using the Nielsen-Thurston
theory of surface homeomorphisms [Thurston 88]. This
gives a classification of surface homeomorphisms up to
isotopy and provides a canonical diffeomorphism in each
isotopy class which minimizes the topological entropy
and has minimal orbit structure (see [Handel 85, Boy-
land 99]). A number of algorithms exist to compute the
forcing relation [Bestvina and Handel 95, Franks and Mi-
siurewicz 93, Los 93].

A conjecture in [de Carvalho and Hall 02] suggests that
the periodic orbits of the Smale horseshoe map are parti-
tioned into families that the forcing relation restricts to a
linear order, and that each family has an associated ho-
moclinic orbit that forces all periodic orbits of the family.
The forcing relation between families can be determined
from a knowledge of the forcing relation between the as-
sociated homoclinic orbits. If the conjecture is true, com-
puting the forcing relation between homoclinic orbits is

an important problem in determining the complete forc-
ing relation. Partial results on the conjecture are given
in [de Carvalho and Hall 04].

In this paper, we compute the braid equivalence and
forcing relations for homoclinic orbits of the Smale horse-
shoe map using the trellis theory developed in [Collins 02,
Collins 04a]. The braid type of a homoclinic orbit of a
saddle fixed point can be described by the trellis formed
by finite pieces of the stable and unstable manifolds of
the saddle fixed point. The trellis can be represented
combinatorially by giving the relative ordering of the
intersection points along the stable and unstable mani-
folds. Since approximations to trellises can be computed
numerically for a given diffeomorphism, we can, in the-
ory, extract the combinatorics of a numerically computed
trellis to find the braid type. The results of this pa-
per, however, use a purely combinatorial construction of
the trellis from the symbolic coding of the homoclinic
orbit.

The fundamental operation on trellises is pruning, re-
lated to the pruning isotopies of [de Carvalho 99]. How-
ever, the pruning theory for trellises is much simpler than
the general theory and has a straightforward formulation
in terms of the combinatorics of the trellis. We compute
the trellis associated with a given homoclinic horseshoe
orbit by pruning a trellis for the Smale horseshoe map rel-
ative to the given orbit. The braid equivalence relation
is given by comparing the combinatorics of the resulting
trellis, and the forcing relation can be given by following
the other orbits through the pruning. By computing the
graph representative of the trellis, a lower bound for the
topological entropy forced by the homoclinic orbit can be
found.

A number of other authors have considered forcing
relations for homoclinic orbits and tangles. Forcing re-
lations and entropy bounds for some infinite families of
trellises are given in [Rom-Kedar 94]. The possible bifur-
cation sequences associated with the break-up of horse-
shoes in a driven oscillator using methods similar to our
prunings are discussed in [McRobie and Thompson 94].
Methods for the computation of the forcing relation for
homoclinic orbits have been given in [Handel 99] and
[Hulme 00]. The methods outlined in this paper have
the advantage of being applicable to general trellises and
homoclinic/heteroclinic orbits, and the computations are
straightforward to implement. Further, we believe that
this is the first paper that presents numerical computa-
tions of forcing relations between homoclinic orbits.

The paper is organized as follows. In Section 2 we de-
scribe the combinatorics of periodic and homoclinic or-
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bits of the Smale horseshoe map, and introduce the braid
type of a homoclinic orbit. In Section 3, we introduce the
results of trellis theory which are necessary for the cal-
culations. In Section 4, we describe the algorithms used
to compute the braid equivalence and forcing relations
and discuss the implementation of the pruning proce-
dure. In Section 5, we present the results of numerical
computations of the equivalence and forcing relations for
homoclinic orbits of the Smale horseshoe map with short
symbolic codings. Finally, we give some conclusions and
open problems in Section 6

The computations in this paper were performed using
the C++ package tangle, which is freely available for
download [Collins 04b]. This package allows computa-
tions on combinatorial trellises, including the computa-
tion of the trellis associated with a horseshoe homoclinic
orbit, and the computation of the graph representative of
the trellis.

2. HORSESHOE ORBITS

In this paper, we use the model of the Smale horseshoe
map f : S2 → S2 depicted in Figure 1. The stadium-
shaped domain shown, consisting of two half-discs and
a square R, is mapped into itself in an orientation-
preserving way, as indicated by the dotted lines, with
a stable fixed point a in the left hemisphere. The map is
then extended to a homeomorphism of S2 with a repelling
fixed point at ∞ whose basin includes the complement of
the stadium domain. The saddle fixed point of negative
index (i.e., positive eigenvalues) is denoted p.

The nonwandering set Ω(f) consists of the fixed points
a and ∞, together with a Cantor set

Λ = {x ∈ S2 : fn(x) ∈ R for all n ∈ Z}.

Since Λ is contained in the union of the rectangles
R0 and R1, symbolic dynamics can be introduced in the

R

R0 R1

a p

FIGURE 1. The Smale horseshoe map.

usual way, providing an itinerary homeomorphism

k : Λ → Σ2 = {0, 1}Z,

with the property that σ(k(x)) = k(f(x)) for all x ∈
Λ (where σ : Σ2 → Σ2 is the shift map). The code of
an orbit H in Λ is the bi-infinite sequence given by the
itinerary of any of its points.

The itinerary of a point x is periodic of period n if
and only if x is a period n point of F . This paper is
concerned with orbits that are homoclinic to p, and the
term homoclinic orbit will be used exclusively to mean
such orbits. A point x ∈ Λ is homoclinic if and only if
its itinerary consists of finitely many 1s.

Definition 2.1. (Core.) Let H be a homoclinic orbit of
the horseshoe. The core of H is the longest word in the
code of H that begins and ends with 1.

The signature of H is equal to the length of the core
minus one. Thus, for example, the point with itinerary
0110 · 01010 is a point in the homoclinic orbit 011001010
with core 1100101 and signature 6. The primary ho-
moclinic orbits are those with cores 1 and 11; these two
orbits have the same homoclinic braid type, are forced by
every other homoclinic orbit, but do not force any other
periodic or homoclinic orbit. By contrast, the orbits with
cores 111 and 101 will be shown to force all periodic and
homoclinic orbits of the horseshoe (cf. [Handel 99]).

Definition 2.2. (Decoration.) The decoration of H is
defined to be ∗ if H has code 010

110, · if H has code
010

1
0
110, and c if H has code 010

1c
0
110.

Orbits of the Smale horseshoe map with the same dec-
oration have the same braid type.

Definition 2.3. (Braid type.) The braid type of a ho-
moclinic orbit H of a surface diffeomorphism f , denoted
BT[H; f ], is the conjugacy class of the isotopy class of f

relative to H.

In other words, orbits H of f and H ′ of f ′ have the
same braid type if there is an isotopy (ft) and a diffeo-
morphism h such that f = f0, H is a homoclinic orbit of
ft for all t, H ′ = h(H), and f ′ = h ◦ f1 ◦ h−1.

Definition 2.4. (Forcing.) A braid type BT forces BT′

if every homeomorphism f , with a homoclinic orbit H

with BT(H, f) = BT, has a homoclinic orbit H ′, with
BT(H ′, f) = BT′.
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3. HORSESHOE TRELLISES

In this section, we review the aspects of trellis theory
that will be used later. Trellis theory is applicable in
a much more general setting (see [Collins 04a] for full
details), but here the key definitions and results are pre-
sented in a manner tailored to the study of horseshoe
trellises. All results stated in this section can be found in
[Collins 04a].

A trellis is a finite portion of the tangle of stable and
unstable manifolds of a saddle fixed point. Starting with
the familiar tangle of the full horseshoe, the full horse-
shoe trellis of signature n can be defined for each integer
n ≥ 2: it has longer stable and unstable branches as n

increases. Given a horseshoe homoclinic orbit, the full
horseshoe trellis of appropriate signature can be pruned,
by removing as many intersections as possible without
disturbing the given homoclinic orbit. This pruned trel-
lis is a complete invariant of homoclinic braid type, and
so the technique can be used to determine whether or not
two given homoclinic orbits have the same braid type.

Given a trellis (and the action of a diffeomorphism on
it), there is a lower bound on the dynamics of any diffeo-
morphism that has such a trellis. These minimal dynam-
ics can be computed as the dynamics of a tree map, using
techniques similar to those developed for computing train
tracks for periodic orbits by [Bestvina and Handel 95] and
[Franks and Misiurewicz 93].

The dynamics forced by a given horseshoe homoclinic
orbit can thus be determined by finding the appropriate
pruned horseshoe trellis, and calculating the associated
tree map. In this paper, we are only concerned with
forcing relations between homoclinic orbits.

3.1 The Full Horseshoe Trellis

Definition 3.1. (Trellis.) Let f : S2 → S2 be a diffeo-
morphism, and p be a hyperbolic saddle fixed point of f .
Then a trellis for f (at p) is a pair T = (TU , TS), where
TU and TS are intervals in WU (f ; p) and WS(f ; p), re-
spectively, containing p. (Here, WU (f ; p) and WS(f ; p)
denote the unstable and stable manifolds, respectively, of
f at p.) Given a trellis T = (TU , TS), denote by TV the
set of intersections of TU and TS . The trellis is transverse
if all of its intersection points are transverse.

Since all trellises considered in this paper are trans-
verse, the word trellis will be understood to mean trans-
verse trellis.

Definition 3.2. (Segment.) Let T = (TU , TS) be a
trellis. A segment of T is a closed subinterval of either
TU or TS with endpoints in TV but interior disjoint from
TV . The segment is called unstable or stable according
to whether it is a subinterval of TU or of TS .

Definition 3.3. (Region, Bigon.) Let T = (TU , TS) be a
trellis. Then a region of T is the closure of a component
of S2 \ (TU ∪ TS). A bigon of T is a region bounded by
two segments (one unstable and one stable).

Definition 3.4. (Full horseshoe trellis.) Let f be the
Smale horseshoe map, and p be the fixed point with code
0. Let q0 be the homoclinic point with itinerary 0 · 10,
and qk = fk(q0). Given i ≥ 0 and j ≤ 0, denote by TU

i

an interval in WU (f ; p) with end intersections p and qi,
and by TS

j the interval in WS(f ; p) with end points p and
qj . For n ≥ 2, a full horseshoe trellis of signature n is a
trellis T = (TU

i , TS
j ) such that i − j = n.

It is clear that all full horseshoe trellises as defined
above with the same signature are differentiably conju-
gate.

Example 3.5. The full horseshoe trellis of signature 2
is depicted in Figure 2(a). The chaotic dynamics are
supported in the regions labelled R0 and R1. All points in
the interior of RS are in the basin of the attracting fixed
point a, and all points in the interior of RU are in the
basin of the repelling point at infinity. The point r0 has
itinerary 01 · 010, and the point r1 has itinerary 01 · 110.
The full horseshoe trellis of signature 3 is depicted in
Figure 2(b).

3.2 Pruning Isotopies

Given a trellis T for a diffeomorphism f , a pruning iso-
topy is an isotopy which removes the intersections on the
boundary of one or more bigons of f . To be more precise,
it is an isotopy from f to a diffeomorphism f ′ that has
a trellis T ′ obtained from T by removing such intersec-

TU

R0 R1

p

r1r0

q0

q1

q−1

RS

T S

RU
a a q0

q1

q2
f(r0)

f(r1)

p q−1

r0 r1

(b)(a)

FIGURE 2. (a) The full horseshoe trellis with signature 2.
(b) The full horseshoe trellis with signature 3.
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(b)(a)

FIGURE 3. The local effect of pruning isotopies on a trellis.

tions. There are two possibilities; we can either remove
both intersections of a single bigon, as depicted in Fig-
ure 3(a), or remove intersections from two neighbouring
bigons, changing the orientation of the crossing at the
remaining intersection, as depicted in Figure 3(b).

An isotopy of the diffeomorphism f supported in some
open set U will also change the trellis outside of U . If
we are trying to reduce the number of intersections of T ,
we need to ensure that no other intersections are created
when we remove intersections locally. This gives rise to
the notion of an inner bigon.

Definition 3.6. (Inner bigon.) A bigon B is inner if
B ∩ ⋃

n∈Z
fn(TV ) = B ∩ TV . In other words, a bigon B

is inner if the only intersections of B with the orbits of
the intersection points of the trellis are the vertices of B.

The following result follows from the proof of Theo-
rem 3.5 of [Collins 04a].

Theorem 3.7. (Pruning away an Inner Bigon.) Let T

be a trellis of a diffeomorphism f . Suppose either that
B is an inner bigon with vertices v0 and v1, or that B0

and B1 are inner bigons with a common vertex v and
other vertices v0 and v1 on different orbits. Then there
is a diffeomorphism h : S2 → S2, that we can take to be
supported on a neighbourhood U of B or B0 ∪ B1, such
that f ′ = f ◦h has a trellis T ′ with the same intersections
apart from those on the orbits of v0 and v1 under f .

The trellis T ′ is obtained by removing all the intersec-
tions of T contained in the orbit of U . The diffeomor-
phism f ′ is isotopic to f , and a general pruning isotopy
can be constructed as a sequence of isotopies pruning
away an inner bigon.

Example 3.8. Figure 4(a) depicts the full horseshoe trel-
lis of signature 3, and a shaded neighbourhood U of an
inner bigon B, together with its image. Pruning away
the bigon B yields a diffeomorphism f ′ with trellis T ′

as shown in Figure 4(b). Pruning away the bigon B′

yields a diffeomorphism f ′′ with the trellis T ′′ depicted
in Figure 4(c).

UB

B′

(a) (b) (c)

FIGURE 4. Pruning away inner bigons in the horseshoe
trellis.

3.3 Horseshoe Trellises

A trellis obtained by pruning the full horseshoe trellis as
in Example 3.8 is called a horseshoe trellis.

Definition 3.9. (Horseshoe trellis.) A horseshoe trellis
is a trellis T obtained from the full horseshoe trellis by
a pruning isotopy (i.e., by pruning away a sequence of
inner bigons).

A horseshoe trellis can be associated to each homo-
clinic orbit of the horseshoe, by pruning away as many
inner bigons as possible without touching the homoclinic
orbit. It is trivial to show that the signature of a horse-
shoe homoclinic orbit H is equal to the least integer n

such that H is an intersection of the full horseshoe trellis
of signature n.

Definition 3.10. (Trellis forced by a homoclinic orbit.)
Let H be a horseshoe homoclinic orbit of signature n,
and let m ≥ n. The trellis of signature m forced by H

is the trellis T obtained from the full horseshoe trellis of
signature m by pruning away inner bigons as much as
possible without removing points of H.

Example 3.11. The white circles in Figure 4 represent
points in the homoclinic orbit H with code 010010 (which
thus has signature 3). Thus the trellis in Figure 4(c) is
the trellis forced by this homoclinic orbit. Note that
every bigon has a point of H on its boundary.

This method makes it possible to determine whether
or not two horseshoe homoclinic orbits have the same
homoclinic braid type.

Definition 3.12. (Trellis type.) Let T and T ′ be horse-
shoe trellises for diffeomorphism f and f ′ respectively.
We say that (f ;T ) and (f ′;T ′) have the same trellis type
if there is a diffeomorphism g isotopic to f relative to T ,
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and a homeomorphism h : S2 → S2 such that h(T ) = T ′

and h−1 ◦ f ′ ◦ h = g.

We denote the trellis type containing (f ;T ) by [f ;T ].
For horseshoe trellises, the trellis type is determined by
the geometry of the trellis.

Theorem 3.13. Let T and T ′ be horseshoe trellises for
diffeomorphism f and f ′ respectively. Then (f ;T ) and
(f ′;T ′) have the same trellis type if and only if T and T ′

are diffeomorphic.

Proof: It suffices to consider the case T = T ′. Since
the points with itinerary 010 all lie on a single homo-
clinic orbit, we can deduce the action of f and f ′ on all
the vertices of T from the action of this orbit simply by
counting vertices in each fundamental domain. The re-
sult follows since all regions of T are simply connected,
so the isotopy class is determined by the action on the
segments.

Since a horseshoe trellis type is fully determined by the
geometry of the trellis, we define the type of a horseshoe
trellis T to be the type of (f ;T ) for any diffeomorphism
f with trellis T which can be obtained by pruning away
inner bigons.

Horseshoe trellises (f ;T ) and (f ′;T ′) have the same
type if and only if the trellises T and T ′ are homeomor-
phic, and this occurs if and only if the orderings of the
intersections on the stable and unstable manifolds are the
same.

Definition 3.14. (Intersection ordering.) Let (f ;T ) be
a horseshoe trellis, with intersections TV = {vi : i =
0 . . . n − 1} such that vi <u vi+1 (i.e., vi is closer to p

along the unstable manifold). Then the relative ordering
of the stable and unstable manifolds is the permutation
πT such that vπT (i) <s vπT (j) if and only if πT (i) < πT (j).

The following result gives a computable criterion for
the equivalence of horseshoe trellises.

Theorem 3.15. Let T and T ′ be horseshoe trellises. Then
T and T ′ have the same trellis type if and only if πT =
πT ′ .

The following result is immediate from Theorem 2
of [Collins 04a] and shows that a homoclinic braid type
is determined by the geometry of the trellis obtained by
pruning up to the given orbit. In particular, homoclinic

orbits can only have the same braid type if they have the
same signature (i.e., their cores have the same length).

Theorem 3.16. Let H and H ′ be horseshoe homoclinic
orbits of signatures n and n′, and let T and T ′ be the trel-
lises of signature m ≥ max{n, n′} forced by them. Then
H and H ′ have the same homoclinic braid type if and
only if T and T ′ have the same trellis type.

The following result follows from the main theorem
(Theorem 1) of [Collins 05] which shows that the dynam-
ics forced by a trellis are minimal in the isotopy class.

Theorem 3.17. Let H and H ′ be horseshoe homoclinic
orbits of signatures n and n′, and let T and T ′ be the
trellises of signature m ≥ max{n, n′} forced by H. The
homoclinic braid type of H forces the braid type of H ′ if
and only if T has an intersection on an orbit with the
same braid type as H ′.

4. COMPUTATION OF THE EQUIVALENCE
AND FORCING RELATIONS

We now give a brief outline of the algorithm used to com-
pute the equivalence and forcing relations for horseshoe
homoclinic orbits, and then we will discuss the imple-
mentation details of the pruning procedure.

4.1 Algorithm

To compute the trellis forced by the orbit H, a full horse-
shoe trellis of the same signature as H is constructed, and
then pruned relative to the orbit H and the orbit with
code 010, the latter being used to fix the end intersec-
tions. The pruning process sweeps through the trellis,
pruning whenever an inner bigon is found whose vertices
are not points of H, or a pair of inner bigons is found
whose outer vertices are not points of H.

The equivalence relation for orbits of signature n is
determined by first computing all the trellises of signa-
ture n associated with the homoclinic orbits. The homo-
clinic orbits of the same decoration are known to have
the same braid type, so only one orbit with each decora-
tion is needed. Since the trellis is a braid type invariant
by Theorem 3.16, and the relative intersection ordering
characterizes horseshoe orbits by Theorem 3.15, the rel-
ative intersection ordering is computed for each orbit,
and the orbits partitioned into equivalence classes ac-
cordingly. To compute the equivalence relation between
homoclinic horseshoe orbits, it suffices to compute the
trellis of signature n forced by each.



Collins: Forcing Relations for Homoclinic Orbits of the Smale Horseshoe Map 81

Since the (horseshoe) itineraries of intersections can
be continued through the pruning, the codes of the re-
maining orbits can be recovered from the pruned trellis.
Note, though, that in order to show that the homoclinic
braid type of a homoclinic orbit H does not force that of
a homoclinic orbit H ′, it is necessary to show that none
of the homoclinic orbits of the same type as H ′ persists
through the pruning. Thus it is necessary to compute
equivalences in order to be able to compute the forc-
ing relation. Hence, to compute whether BT(H) forces
BT(H ′) where H has signature n and H ′ has signature n′,
we need to compute all trellises of signature n′ to deter-
mine the equivalence relation on braid types of signature
n′. We then compute the trellis of signature max{n, n′}
forced by H, and determine if it contains an orbit of braid
type BT(n′).

The topological entropy forced by the homoclinic orbit
of a given braid type was computed by finding the graph
representative, as detailed in [Collins 02, Collins 04a].

4.2 Implementation of Pruning
The most natural implementation of a trellis type is as a
list of vertices with image information. An intersection
can be represented as below.

class Intersection is

Orientation orientation;

Intersection previous unstable;

Intersection next unstable;

Intersection previous stable;

Intersection next stable;

Intersection preimage;

Intersection image;

end;

Here, each Intersection data element is a reference
to another intersection, which may be void, and the
orientation is either positive or negative, depending
on the orientation of the intersections of the periodic
orbit. We remark that, this contains more information
than is needed to specify the trellis structure; it suffices
to store the next unstable, next stable, and image in-
tersections. However, at least one of previous unstable

or previous stable is required for the algorithm, and
preimage is useful for general trellises. Note that the
orientations for horseshoe trellises always alternate be-
tween positive and negative.

The main procedure needs to detect and prune in-
ner bigons, as shown in Figure 3(a). Detecting bigons
and inner bigons can be accomplished by the predicates
is bigon and is inner bigon. We assume throughout
that the function arguments are not void.

bool is bigon(Intersection a, Intersection b) is

return( (a.next unstable==b or b.next unstable==a)

and (a.next stable==b or b.next stable==a) );

end;

bool is inner bigon(Intersection a,

Intersection b) is

/* assume a.preimage==void and b.preimage==void */

while(true) do

if(a==void and b==void) then return true; end;

if not is bigon(a,b)) then return false; end;

a:=a.image;

b:=b.image;

end;

end;

The pruning is performed by the procedures
prune bigon and prune inner bigon described below.
The vertices a and b are deleted following a prune bigon
function.

prune bigon(Intersection a, Intersection b) is

/* assume is bigon(a,b) */

if(a.next unstable!=b) then swap(a,b) end;

a.previous unstable.next unstable:=

b.next unstable;

b.next unstable.previous unstable:=

a.previous unstable;

if(a.next stable!=b) then swap(a,b) end;

a.previous stable.next stable:=b.next stable;

b.next stable.previous stable:=a.previous stable;

end;

prune inner bigon(Intersection a, Intersection b) is

/* assume is inner bigon(a,b) */

while(a!=void) do

prune bigon(a,b);

a:=a.image;

b:=b.image;

end;

end;

The procedure prune inner bigon can be easily con-
structed from prune bigon. Detecting and removing the
intersections of two adjacent bigons as shown in Fig-
ure 3(b) can be carried out as follows. Vertices a and
c may be deleted after a prune bigon pair procedure.

bool is bigon pair(Intersection a, Intersection b,

Intersection c) is

return(

((a.next unstable==b and b.next unstable==c)

or (c.next unstable==b and b.next unstable==a))

and ((a.next stable==b and b.next stable==c)

or (c.next stable==b and b.next stable==a)) );

end;
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prune bigon pair(Intersection a, Intersection b,

Intersection c) is

/* assume is bigon pair(a,b,c) */

if(a.next unstable!=b) then swap(a,c) end;

a.previous unstable.next unstable:=b;

c.next unstable.previous unstable:=b;

if(a.next stable!=b) then swap(a,c) end;

a.previous stable.next stable:=b;

c.next stable.previous stable:=b;

b.orientation := -b.orientation;

end;

When dealing with trellises that are not horseshoe
trellises, extra code is needed to take care of degenerate
cases involving endpoints. In particular, in the function
is inner bigon, an extra line

if(a==void or b==void) then return false; end;

is needed in case an endpoint occurs between a and b.
These procedures can be further optimized; we present
them in the form given here to show explicitly the steps
required, omitting only the details of garbage collection.

5. NUMERICAL RESULTS

In this section, we compute, for horseshoe homoclinic
orbits with short cores, the equivalence classes under the
relation of having the same homoclinic braid type and
the forcing relation.

5.1 Horseshoe Homoclinic Orbits with the Same
Homoclinic Braid Type

We computed the trellis types forced by all horseshoe
homoclinic orbits of signature 12 or less and determined
which pairs have the same homoclinic braid type. Table 1
presents the relative orderings of trellises of signature up
to 4, and Tables 2–3 present the equivalence relations for
orbits of signatures up to 9.

(b) (c)(a)

FIGURE 5. The horseshoe trellises and homoclinic orbits
with codes (a) 01101110 and (b) 01110110, and (c) the
trellis they force.
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FIGURE 6. Topological graph representatives for the
homoclinic orbits with codes (a) 010

1010010
110 and (b)

010
1100100

110.

For orbits of signature up to 4, the only equivalences
are trivial; two homoclinic orbits have the same homo-
clinic braid type if and only if they have the same decora-
tion. However, the orbits of signature 5 with decorations
01 and 10, and codes 010

1010
110 and 010

1100
110 respectively,

are equivalent (see Figure 5).
For homoclinic orbits of signature at most 7, all or-

bits have the same homoclinic braid type as their time-
reversal. However, for orbits of signature 8, there are
two pairs of orbits whose homoclinic braid type differs
from that of their time-reversal. This is a counterex-
ample to the conjecture that horseshoe orbits, that are
time-reversal pairs have the same braid type.

The trellises forced by the orbits with codes
010

1010010
110 and 010

1100100
110 are not equivalent, even

though these words are reverses of each other. Each trel-
lis has 176 intersections. The graph representatives are
shown in Figure 6. The topological entropy of both these
orbits is log λ, where λ is the largest root of the polyno-
mial

λ13 − 2λ12 + 2λ8 + λ7 − 4λ5 − 2λ4 + 2λ2 + 2λ − 2.

Numerically, λmax ≈ 1.845, giving htop > 0.612.
Another counterexample is given by the orbits with

codes 010
1110010

110 and 010
1100110

110. These trellises have
252 intersections each. The topological entropy of both
of these orbits is log λ, where λ is the largest root of the
polynomial

λ13 − 2λ12 + 3λ7 − 4λ6 + 4λ5 + 2λ4 + 2λ − 2.

Numerically, λmax ≈ 1.909, giving htop > 0.646.

5.2 The Forcing Relation

Figure 7 shows the forcing relation between horseshoe
homoclinic orbits of signature 7 or less. Each homoclinic
orbit is specified by its decoration, and the scope of the
decoration is also given. Only one decoration is given
for each equivalence class of homoclinic braid types (so,
for example, the decoration 10 is not included, since it is
equivalent to 01).

We give two examples illustrating the computation of
Figure 7 and interpret the results.
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Sig Dec Ordering

2 ∗ 0, 7 , 4, 3 , 2,5,6, 1

3 · 0, 9 , 6, 5 , 4, 3 , 2,7,8, 1

4 0 0, 11 , 8, 7 , 6, 5 , 4, 3 , 2,9,10, 1
1 0, 23 , 12, 11 , 6, 5 , 4, 19, 16, 15, 20, 3 , 2, 21, 14, 9, 8,17,18, 7, 10, 13, 22, 1

TABLE 1. Relative orderings for trellises with signature up to 4. The intersections corresponding to the fixed point and
the forcing orbits are indicated in bold type, and the intersections corresponding to the primary homoclinic orbit with
code 010 are indicated in italic type.

•

1001

0011 0

0110

011

0111

01

001

00 0001

000

0000

1101

1

111

1111

11

101

FIGURE 7. Decorations and scopes of homoclinic braid
types of signature up to 7 and the forcing relation be-
tween them.

Example 5.1. Figure 8 shows a horseshoe trellis, where
the intersections of orbit H with code 01101110 (deco-
ration 01) are marked with white dots, and the intersec-
tions of the orbit with codes 010

10
0
110 are marked with

black dots. After performing a pruning isotopy to obtain
the trellis forced by the orbit H, it can be seen that the
marked intersections persist. Therefore, the homoclinic
braid type with decoration 01 forces the homoclinic braid
type with decoration 0. From Figure 8, we see that the
only other forced homoclinic braid type with signature
less than 5 has decoration 00.

Example 5.2. It is possible to compute braid types of
arbitrary signature forced by any homoclinic orbit. In

Sig #T V htop Decorations

2 8 0.693147 ∗
3 10 0.528049 ·
4 12 0.434175 0

24 0.637160 1

5 14 0.372312 00
26 0.585210 01, 10
38 0.589844 11

6 16 0.327931 000
28 0.621811 001, 100
39 0.493726 011, 010, 110
76 0.618251 111
92 0.655290 101

7 18 0.294274 0000
29 0.658093 0001, 1000
42 0.450806 0011, 0010, 0100, 1100
58 0.471989 0110
70 0.549761 0111, 0101, 1110, 1010

122 0.591665 1101, 1011
134 0.604018 1111
218 0.684471 1001

8 19 0.267727 00000
31 0.676320 00001, 10000
43 0.458765 00011, 00010, 01000, 11000
60 0.410427 00110, 00100, 01100
72 0.563961 00111, 00101, 11100, 10100

100 0.535252 01101, 01110, 01010, 10110
112 0.518203 01111, 01011, 11010, 11110
176 0.612495 01001
252 0.646515 11001
176 0.612495 10010
252 0.646515 10011
208 0.576220 11011
252 0.612102 11111
268 0.625290 11101, 10111
336 0.650772 10101
472 0.690998 10001

TABLE 2. Equivalences for homoclinic orbits with signa-
ture up to 8.

Figure 9, we show the trellis of signature 5 forced by the
homoclinic orbit 0111110, which has decoration 1 and
signature 4, allowing us to compute the braid types of
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Sig #T V htop Decorations

9 22 0.246163 000000
34 0.684979 000001, 100000
46 0.485379 000011, 000010, 010000, 110000
62 0.376307 000110, 000100, 001000, 011000
74 0.597015 000111, 000101, 111000, 101000
82 0.398273 001100
94 0.537060 001101, 001110, 001010, 001001, 011100, 010100, 101100, 100100

106 0.504368 001111, 001011, 110100, 111100
150 0.604226 011001, 100110
162 0.484357 011011, 011010, 011110, 010110, 110110
198 0.537481 011111, 010111, 111110, 111010
214 0.563076 011101, 010101, 101010, 101110
182 0.502700 010010, 010011, 110010
430 0.659895 010001
510 0.671444 110001
310 0.548079 110011
378 0.583547 110111, 110101, 111011, 101011
446 0.603536 111101, 101111
458 0.607837 111111
650 0.666417 111001
722 0.668611 101001
725 0.670332 101101
722 0.668611 100101
650 0.666417 100111
430 0.659895 100010
510 0.671444 100011
982 0.692607 100001

TABLE 3. Equivalences for homoclinic orbits with signature 9.

(a) (b)

FIGURE 8. The homoclinic orbit 01101110 forces the or-
bits 010

10
0
110.

signature up to 5 forced by the orbit. In particular, we
see that the orbit 0111110 forces the orbits 010

1110
110, so

the homoclinic braid type with decoration 1 forces the
homoclinic braid type with decoration 11. The other
homoclinic braid types with signature less than 5 forced
by the braid type with decoration 1 have decorations ·,
0, and 00.

6. CONCLUSIONS AND FURTHER RESEARCH

We have described a numerical method for determining
the forcing relation for homoclinic orbits of the Smale

(a) (b)

FIGURE 9. The homoclinic orbit 0111110 forces the orbits
010

1110
110.

horseshoe map using trellises. The method is exact, in
that is considers orbits given in terms of their symbolic
codes. The numerical techniques can also be used to
determine forcing relations between homoclinic and het-
eroclinic orbits of general surface homeomorphisms.

One of the motivations for this work was to help in de-
termining the forcing relation between periodic orbits of
the Smale horseshoe map, and between homoclinic and
periodic orbits. Unfortunately, while it is fairly straight-
forward to compute a train track for a pseudo-Anosov
periodic orbit, it is less straightforward to determine the
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codes of the periodic orbits forced by a given homoclinic
orbit. The main difficulties lie in the fact that there may
be many periodic orbits of the Smale horseshoe map with
the same braid type, and that pruning the trellis destroys
the partition of the regions R0 and R1, making it diffi-
cult to recover the braid type from a trellis or its graph
representative.

There are a number of important related computa-
tional problems for which no methods are currently avail-
able. On the combinatorial side, it is important to de-
velop methods for computing the topological graph rep-
resentative of a trellis type; this has been implemented
for horseshoe trellises, but not for trellises on general
surfaces. It is also important to have an automatic pro-
cedure for generating a combinatorial trellis from numer-
ically computed stable and unstable manifolds. Unfor-
tunately, näıve methods fail since a numerically com-
puted trellis may have orbits not present in the actual
system, and may even be inconsistent. An extension of
the tangle package is planned, that will allow the dy-
namics forced by a numerically computed trellis to be
found.
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[de Carvalho 99] André de Carvalho. “Pruning Fronts and
the Formation of Horseshoes.” Ergodic Theory Dynami-
cal Systems 19:4 (1999), 851–894.

[de Carvalho and Hall 02] André de Carvalho and Toby Hall.
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Cycles of a Continuous Map of the Line into Itself.”
Ukrain. Mat. Zh. 16:1 (1964), 61–71. Russian.

[Thurston 88] William P. Thurston. “On the Geometry and
Dynamics of Diffeomorphisms of Surfaces.” Bull. Amer.
Math. Soc. (N.S.) 19:2 (1988), 417–431.

Pieter Collins, Centrum voor Wiskunde en Informatica, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
(Pieter.Collins@cwi.nl)

Received April 22, 2004; accepted August 16, 2004.


