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In a recent article the first three authors proved that in dimension
4m + 1 all homotopy spheres that bound parallelizable mani-
folds admit Einstein metrics of positive scalar curvature which,
in fact, are Sasakian-Einstein. They also conjectured that all such
homotopy spheres in dimension 4m− 1, m ≥ 2 admit Sasakian-
Einstein metrics [Boyer et al. 04], and proved this for the sim-
plest case, namely dimension 7. In this paper we describe
computer programs that show that this conjecture is also true
for 11-spheres and 15-spheres. Moreover, a program is given
that determines the partition of the 8,610 deformation classes of
Sasakian-Einstein metrics into the 28 distinct oriented diffomor-
phism types in dimension 7.

1. INTRODUCTION

In a recent article the first three authors gave a method
for constructing Einstein metrics of positive scalar cur-
vature on odd-dimensional homotopy spheres [Boyer et
al. 04]. By Kervaire and Milnor [Kervaire and Milnor 63]
and Smale [Smale 62], for each n ≥ 5, differentiable ho-
motopy spheres of dimension n form an Abelian group
Θn, where the group operation is the connected sum. Θn

has a subgroup bPn+1 consisting of those homotopy n-
spheres which bound parallelizable manifolds Vn+1. Ker-
vaire and Milnor [Kervaire and Milnor 63] proved that
bP2m+1 = 0 for m ≥ 1, bP4m+2 = 0, or Z2, and is Z2

if 4m + 2 �= 2i − 2 for any i ≥ 3. The most interesting
groups are bP4m for m ≥ 2. These are cyclic of order

|bP4m| = 22m−2(22m−1 − 1) numerator
(

4Bm

m

)
,

where Bm is the m-th Bernoulli number. Thus, for ex-
ample |bP8| = 28, |bP12| = 992, |bP16| = 8, 128, and
|bP20| = 130, 816. In the first two cases these include
all exotic spheres. The correspondence is given by

KM : Σ �→ 1
8τ(V4m(Σ)) mod |bP4m|,
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where V4m(Σ) is any parallelizable manifold bounding Σ
and τ is its signature. Let Σi denote the exotic sphere
with KM(Σi) = i.

In [Boyer et al. 04] the authors proposed the following:

Conjecture 1.1. The construction of [Boyer et al. 04]
yields Einstein metrics on every exotic sphere that bounds
a parallelizable manifold.

The construction is described in Sections 2–3. The
method gives Einstein metrics whose isometry group is
one-dimensional and even Sasakian-Einstein.

In [Boyer et al. 04] the conjecture was shown to be
true in dimensions 4m + 1. In dimension 7 we were also
able to verify it; the relevant signature calculations were
carried out by a computer.

The main aim of this paper is to provide more evidence
for our conjecture by demonstrating that it is true in
dimensions 11 and 15 as well. More precisely we show:

Theorem 1.2. Every homotopy sphere Σi ∈ bP12 and
Σi ∈ bP16 admits at least one Einstein metric.

We also give a complete enumeration of all oriented
diffeomorphism types in dimension 7, namely:

Theorem 1.3. In dimension 7, Σi admits at least ni in-
equivalent deformation classes of Einstein metrics, where
(n1, . . . , n28) = (376, 336, 260, 294, 231, 284, 322, 402,

317, 309, 252, 304, 258, 390, 409, 352, 226, 260, 243, 309,

292, 452, 307, 298, 230, 307, 264, 353), giving a total of
8,610 cases.

Actually for dimensions 11 and 15, just as in dimen-
sion 7, we do get several deformation types, but the sig-
nature was computed only for a sample of all cases. For
instance, in dimension 15 our method gives at least 1050

deformation classes of Einstein metrics on all homotopy
15-spheres, and even their complete enumeration is im-
possible with the current programs and facilities.

2. BRIESKORN-PHAM SINGULARITIES AND
THEIR LINKS

For a = (a1, . . . , am) ∈ Z
m
+ set Fa(z) :=

∑m
i=1 zai

i . Con-
sider a Brieskorn-Pham singularity

Y (a) := (Fa(z) = 0) ⊂ C
m, and its link

L(a) := Y (a) ∩ S2m−1(1).

Set C = lcm(ai : i = 1, . . . , m). Both Y (a) and L(a) are
invariant under the C

∗-action

(z1, . . . , zm) �→ (λC/a1z1, . . . , λ
C/amzm).

If we denote w = (w1, . . . , wm) = (C/a1, . . . , C/am),
then Fa is a weighted homogeneous polynomial on C

m

with weight w and degree C, i.e.,

Fa(λw1z1, . . . , λ
wmzm) = λCFa(z1, . . . , zm).

Consider the orbit spaces: Xorb(a) := Y (a)\{0}/C
∗ and

the weighted projective space P(w) := (Cm \ {0}/C
∗).

We get a commutative diagram

L(a) −−−−→ S2m−1�π

�
Xorb(a) −−−−→ P(w).

It is known that the sphere S2m−1 can be given
a Sasakian structure with respect to the projection
S2m−1−−→P(w) associated to the characteristic foliation
[Yano and Kon 84]. In such a case the embedding
L(a)−−→S2m−1 is Sasakian and Xorb(a) is the horizon-
tal space of the characteristic foliation of the link L(a)
[Boyer and Galicki 01].

3. ORBIFOLDS AND EINSTEIN METRICS

Let Cj = lcm(ai : i �= j), bj = gcd(aj , C
j), and dj =

aj/bj . The following result was established in [Boyer et
al. 04].

Theorem 3.1. The orbifold Xorb(a) = Y (a) \ {0}/C
∗ is

Fano and has a Kähler-Einstein metric if

(1) 1 <
∑m

i=1
1
ai

,

(2)
∑m

i=1
1
ai

< 1 + m−1
m−2 mini{ 1

ai
}, and

(3)
∑m

i=1
1
ai

< 1 + m−1
m−2 mini,j{ 1

bibj
}.

In this case the link L(a) admits a Sasakian-Einstein
metric with one-dimensional isometry group.

The first inequality is necessary for Xorb(a) to be
Fano. Hence, it is also necessary for the link L(a)
to admit any Sasakian-Einstein structure. The second
inequality is necessary for our algebraic approach to
Kähler-Einstein metrics to work, while the third inequal-
ity is most likely a by product of our estimates. Hope-
fully, it is not needed at all. We should reiterate that
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the failure of our method does not imply that Xorb(a)
cannot admit a positive Kähler-Einstein metric as long
as Xorb(a) is Fano.

For any m ≥ 3 there are infinitely many m-tuples
satisfying the conditions of Theorem 3.1. For example,
we can take a = (m − 1, . . . , m − 1, k), where gcd(m −
1, k) = 1 and k > (m−1)(m−2). However, in this paper
we are only interested in the case when the link L(a) is a
homotopy sphere and, as we shall see, L(m− 1, . . . , m−
1, k) is not.

4. HOMOTOPY SPHERES AS BRIESKORN-PHAM
LINKS

To every m-tuple a, one can associate a graph G(a) whose
m vertices are labeled by a1, · · · , am. Two vertices ai and
aj are connected if and only if gcd(ai, aj) > 1. Let Cev

denote the connected component of G(a) determined by
the even integers. Note that all even vertices belong to
Cev, but Cev may contain odd vertices as well. Brieskorn
shows that:

Theorem 4.1. [Brieskorn 66] The link L(a) (with m > 3)
is a homotopy sphere if and only if either of the following
hold:

(1) G(a) contains at least two isolated points, or

(2) G(a) contains one odd isolated point and Cev has an
odd number of vertices and for any distinct ai, aj ∈
Cev, gcd(ai, aj) = 2.

We observe that, in each dimension, there are only fi-
nitely many m-tuples that yield homotopy spheres and
satisfy the conditions in Theorem 3.1. For that we intro-
duce the following example.

Example 4.2. (Euclid’s or Sylvester’s Sequence.) (See
[Graham et al. 89, Section 4.3] or [Sloane 03, Sequence
number A000058].)

Consider the sequence defined by the recursion rela-
tion

ck+1 = c1 · · · ck + 1 = c2
k − ck + 1

beginning with c1 = 2. We call this sequence the extremal
sequence. It starts as

2, 3, 7, 43, 1807, 3263443, 10650056950807, . . . ,

and it is easy to see (cf. [Graham et al. 89, Section 4.17])
that

m∑
i=1

1
ci

= 1 − 1
cm+1 − 1

= 1 − 1
c1 · · · cm

.

In [Soundararajan 05] it was proved that if the sum of
reciprocals of m natural numbers is less than 1, then it is
at most 1−1/(cm+1−1). Thus, in this sense the sequence
{ci} is extremal.

We use the sequence ci to show that the number of m-
tuples that yield homotopy spheres and satisfy the condi-
tions in Theorem 3.1 is finite. Without loss of generality
we shall assume that the exponents are arranged in non-
decreasing order.

Proposition 4.3. Assume that a ∈ Z
m
+ satisfies the con-

ditions (1) and (2) in Theorem 3.1 and in Theorem 4.1.
Then ak < (m− k + 1)(ck − 1), for k = 1, . . . , m− 1 and
am < m!

m−2 (cm − 1). In particular, the number of such
m-tuples is finite for each m > 3.

Proof:
Step 1. We first observe that

∑m−2
i=1

1
ai

< 1. For
otherwise we would have

1
am−1

+
1

am
<

m − 1
m − 2

· 1
am

<
2

am
,

which is impossible.
Step 2. Now, assume that

∑k
i=1

1
ai

< 1. Then it is
also ≤ 1−1/(ck+1−1). The remaining m−k reciprocals
must sum to more than 1/(ck+1 − 1), hence we obtain
that ak+1 ≤ (m−k)(ck+1 − 1). By Step 1 this takes care
of all ai for i ≤ m − 1 and also of am if

∑m−1
i=1

1
ai

< 1.
Step 3.

∑m−1
i=1

1
ai

≥ 1. If equality holds there is no
bound for am; however, in this case L(a) is not a homo-
topy sphere, since Theorem 4.1 says that at least one of
the a1, . . . , am−1 (or half of it) is relatively prime to the
others, and this implies that we cannot get an integer as
a sum of reciprocals. Otherwise we have

m−1∑
i=1

1
ai

> 1 +
1

a1 · · · am−1

≥ 1 +
1

m! · c1 · · · cm−1

= 1 +
1

m! · (cm − 1)
.

Thus we obtain that

1 +
1

m! · (cm − 1)
+

1
am

<

m∑
i=1

1
ai

≤ 1 +
m − 1
m − 2

· 1
am

.

Comparing the two outside expressions gives that

am <
m!

m − 2
(cm − 1).
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We wrote a simple program which we call
candidates.c.1 This is a C code which enumer-
ates all ordered m-tuples satisfying the conditions in
Theorem 3.1 and one of the conditions in Theorem 4.1
in any given range amin

i ≤ ai ≤ amax
i , i = 1, . . . , m,

with the condition that amin
1 ≤ · · · ≤ amin

m . In principle,
for any m ≥ 4, the program can be used to enumerate
all m-tuples of this type. However, this is not feasible
already for m = 7. On the other hand, the program
has the flexibility to “hunt” for such m-tuples in
any specified region of the integral lattice defined by
Proposition 4.3.

5. DIFFEOMORPHISM TYPES—BRIESKORN, ZAGIER,
AND HIRZEBRUCH

By Theorem 4.1, we know when L(a) is a homotopy
sphere. We now would like to be able to determine the
diffeomorphism types of various links. In this article, we
are only interested in the case when m = 2k + 1.

In this case, the diffeomorphism type of a homotopy
sphere L(a) ∈ bP2m−2 is determined [Kervaire and Mil-
nor 63] by the signature τ(M) of a parallelizable manifold
M whose boundary is Σ2m−3

a . By the Milnor Fibration
Theorem [Milnor 68] we can take M to be the Milnor fiber
M2m−2

a which, for links of isolated singularities coming
from weighted homogeneous polynomials, is diffeomor-
phic to the hypersurface {z ∈ C

m | F (z1, · · · , zm) = 1}.
Brieskorn shows that the signature of M2m−2

a can be
written combinatorially as

τ(M4k
a ) = #

{
x ∈ Z

2k+1

∣∣∣∣ 0 < xi < ai and
0 <

∑2k
j=0

xi

ai
< 1 mod 2

}

− #
{
x ∈ Z

2k+1

∣∣∣∣ 0 < xi < ai and
1 <

∑2k
j=0

xi

ai
< 2 mod 2

}
,

(5–1)
where m = 2k + 1.

Using a formula of Eisenstein, Zagier (cf. [Hirze-
bruch 71]) has rewritten this formula as:

τ(M4k
a ) =

(−1)k

N

N−1∑
j=0

(
cot

π(2j + 1)
2N

× cot
π(2j + 1)

2a0
· · · cot

π(2j + 1)
2a2k

)
, (5–2)

where N is any common multiple of the ai’s. Both for-
mulas are quite well suited to computer use. We wrote

1The codes candidates.c and sig.c as well as all the
relevant data files mentioned later can be downloaded at
http://www.math.unm.edu/˜galicki/papers/codes.html.

a second C code which we call sig.c. For any m-tuple,
with m = 2k + 1 = 5, 7, 9, sig.c computes the signa-
ture τ(a) := τ(M4k

a ) and the diffeomorphism type of the
link using either of the above formulas. Furthermore, one
can use sig.c to compute signature and diffeomorphism
type of a single m-tuple, or one can select an arbitrary set
of m-tuples I and compute the signature and diffeomor-
phism type associated to every m-tuple a ∈ I. One last
feature of sig.c is that, provided an appropriate option
is chosen, the program will start computing diffeomor-
phism type g(a) of each m-tuple a ∈ I until it finds all
possible oriented diffeomorphism types in bP2m−2 after
which it stops.

6. THE PROOFS

Proof of Theorem 1.3: In dimension 7 candidates.c

can be run in the maximal range specified by Proposi-
tion 4.3. The result is exactly 8,610 solutions. These
solutions become an input data file I for the signature
computation using sig.c with either Brieskorn or Za-
gier formula. In the case of 5-tuples the choice is not
important. The signature computation takes a couple
of hours on a Pentium 4 processor and the result is a
list of 8,610 5-tuples a = (a1, a2, a3, a4, a5) each with a
number g(a) ∈ Z28 which determines the oriented diffeo-
morphism type of L(a). The results are contained in the
output file 7spheres.txt. This file can be easily sorted
grouping 5-tuples with the same g(a) and we get the re-
sult described in Theorem 1.3.

Proof of Theorem 1.2: In dimension 11 candidates.c

cannot be run in the maximal range of Proposition 4.3.
The complete enumeration would take too long a time.
Instead, the code candidates.c is used to select 7-tuples
in a specified range. This will become an input file I for
the subsequent signature computation. One important
point in selecting I is that C = lcm(a1, . . . , a7) should
not be too large. The time of every individual signa-
ture computation with sig.c is approximately linear in
C. Another relevant point is that bP12 = Z992 so that
|I| should be sufficiently large. For example, we can
ask candidates.c to search for 7-tuples in the follow-
ing range: 2 ≤ a1 ≤ 6, 3 ≤ a2 ≤ 11, and i + 1 ≤ ai ≤ 30
for i = 3, 4, 5, 6, 7. This guarantees a relatively small
C < 66 · 305 for all solutions and |I| = 21, 535. One
should point out that there is nothing special about the
choice of I—other choices can be equally successful in
yielding the desired result. We now want to determine
if we find all g(a) ∈ Z992 among a ∈ I. This is done by
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feeding each 7-tuple a ∈ I into sig.c with the following
option: the program will calculate the signature τ(a) and
the diffeomorphism type g(a) of each 7-tuple a ∈ I in the
order specified by I. Any 7-tuple a ∈ I with a diffeomor-
phism type g(a) not previously found gets automatically
recorded into the output file A. Once the program finds
all 992 oriented diffeomorphism types it stops. The out-
put file contains a subset of the original input file (hope-
fully) containing exactly 992 7-tuples. All this work can
done on a single PC with a Pentium 4 processor. An ex-
ample of an output file A called 11spheres.txt can be
found at the URL mentioned in Footnote 1. We needed
approximately 9,000 7-tuples to find the 992 necessary to
prove, Theorem 1.2.

In dimension 15 we repeat the steps outlined in the 11-
dimensional case. Selecting an appropriately large data
file with candidates.c is not a problem. This can be
done on a single PC. Given that bP16 	 Z8128 one needs
an input file I with about 80K 9-tuples for the signature
computation with sig.c. A more challenging problem
has to do with computing signatures for these 9-tuples.
To minimize computing time some care should be given
to how I is selected. The length of a single computation
varies depending on: (1) a = (a1, . . . , a9) itself; (2) the
formula used for the signature computation; and (3) the
processor’s speed. Also, this is an easy parallelization
task because it consists of tens of thousand runs which
are almost completely independent of each other. The
only coordination that is required is to stop the process
when all g(a) ∈ Z8128 are found.

We actually generated two sets I1, I2 for the signa-
ture calculation. The first set I1 was was created by
appropriately restricting the size of all exponents. Af-
ter the calculations for I1 were completed a second set
I2 was chosen to select 9-tuples with a restricted upper
bound on C = lcm(a1, . . . , a9). We first used the Zagier
Formula (5–2) to calculate the signature τ(a) of the 9-
tuples in the selected input files I1, I2. Zagier’s formula
was chosen as this calculation is much faster for most
individual as. Exactly how much faster depends on the
ratio a1 · · · a9/C. If C = a1 · · · a9 then the Brieskorn
Formula (5–1) is slightly faster. On the other hand, the
problem with using the Zagier formula for very large C is
that there is a large round-off error on Intel x86 proces-
sors even at maximum precision. When C is of the order
of 109 this error becomes large enough that g(a) is some-
times calculated incorrectly. While this was not an issue
for all 5-tuples and also for carefully selected 7-tuples
the case of 15-spheres was more of a problem. Instead of
forcing the program to do a better round-off error control

with the Zagier option, we decided to do the first calcula-
tion with the Zagier formula and then verify all signature
calculations for the candidate solution with the Brieskorn
Formula (5–1). By its nature, this formula does not have
any round-off error. At the end we actually generated
two disjoint sets of 9-tuples. One is contained in the file
15spheresA.txt. The other one is in 15spheresB.txt.

The Zagier calculation on the first set I1 was done
at the University of Melbourne on an IBM eServer 1350
which is a cluster of 48 2.4-GHz Intel Xeon processors.
The calculation leading to the data set 15spheresA.txt
took approximately 9,500 hours of processor time and
tested nearly 70,000 candidates. The Brieskorn verifica-
tion was performed on 15spheresA.txt at the Univer-
sity of New Mexico High Performance Computer Center
on a 256 node cluster of 733-Mhz processors. This re-
quired 80,000 hours of processor time. In the case of
one 9-tuple the code calculating with the Zagier formula
yielded the wrong answer: gZ(3, 4, 8, 8, 9, 43, 83, 85, 97) =
3, 323 while gB(3, 4, 8, 8, 9, 43, 83, 85, 97) = 3, 322 is cor-
rect. Note that for this particular example Ca =
2, 118, 701, 160. It is in the 109 range where sig.c be-
comes unreliable with the Zagier option. An additional
search for a 9-tuple with that particular oriented diffeo-
morphism type was performed so that 15spheresA.txt

actually contains the full set of 8,128 examples. We re-
placed it with a = (6, 6, 6, 6, 6, 10, 25, 59, 73) which came
out of I2. Note that here Ca = 646, 050 which is smaller
by 3 orders of magnitude.

Realizing that one can do much better by a careful
selection of candidates with low Ca = lcm(a1, . . . , a9) we
used candidates.c to select more “efficient” input data
set I2. As a result, it was possible to obtain all 8,128
distinct g(a)’s calculating with the Zagier option in only
about 160 hours at the University of Melbourne facility.
A very significant improvement indeed. That second cal-
culation generated 15spheresB.txt. The Brieskorn ver-
ification was performed on 15spheresB.txt at the Uni-
versity of Melbourne facility and it took only 1,700 hours.
No errors were found in the Zagier calculation which is
no surprise: a typical Ca for 9-tuples of I2 was about 3
orders of magnitude lower.

Note that one can easily improve the “least one” state-
ment of Theorem 1.2 by repeating the same calculation
with several disjoint input files I. It is a simple exer-
cise to do it for 7-tuples and much more time consum-
ing in the case of 9-tuples. For 9-tuples, we actually
showed that there are at least two Sasakian-Einstein met-



64 Experimental Mathematics, Vol. 14 (2005), No. 1

rics on each homotopy sphere σ15
i ∈ bP16 as the lists

15spheresA.txt and 15spheresB.txt are disjoint.
On the other hand, to calculate signatures of all candi-

date 7-tuples and 9-tuples to get the statement similar to
the one expressed in Theorem 1.3 would take thousands
of years with the present technology.

Remark 6.1. It is clear that our approach breaks down
for (2n + 1)-tuples, where n is “large enough.” What is
exactly “large enough” depends on several factors. Our
rough estimate indicates that assuming the same facilities
and the same codes are used it would take about 100
years to do the same calculation for 19-spheres. No doubt
the sig.c code can be improved to calculate faster. On
the other hand, an average C for 11-tuples will be at least
103 larger that in the 9-tuple case. In addition, bP20 =
130, 816 is much bigger. Taking these two factors into
account, a calculation for 19-spheres would take about
104 times longer than a similar calculation for 15-spheres.
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