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Recently, many new results have been found concerning algo-
rithms for counting points on curves over finite fields of charac-
teristic p, mostly due to the use of p-adic liftings. The complexity
of these new methods is exponential in log p, therefore they be-
have well when p is small, the ideal case being p = 2. When ap-
plicable, these new methods are usually faster than those based
on SEA algorithms, and are more easily extended to nonelliptic
curves. We investigate more precisely this dependence on the
characteristic, and in particular, we show that after a few mod-
ifications using fast algorithms for radix-conversion, Kedlaya’s
algorithm works in time almost linear in p. As a consequence,
this algorithm can also be applied to medium values of p. We
give an example of a cryptographic size genus 3 hyperelliptic
curve over a finite field of characteristic 251.

1. INTRODUCTION

Computing the zeta function of curves over finite fields
is an important task for cryptography. Indeed, for the
design of a cryptosystem whose security is based on the
discrete logarithm problem in the Jacobian of a curve,
it is required that its group order is a prime (or a small
cofactor times a prime).

Two classes of algorithms can be used: those based
on Schoof’s idea of computing the result modulo sev-
eral small primes using torsion elements [Schoof 95, Pila
90, Adleman and Huang 01, Couveignes 96], and those
using a lift of the curve to a p-adic ring by Satoh [Satoh
00], Kedlaya [Kedlaya 01], and Lauder and Wan [Lauder
and Wan 01]. The first family of algorithms works for any
finite field whereas the second family requires the char-
acteristic to be small. When p-adic algorithms are ap-
plicable, there are usually much faster than those based
on Schoof’s idea; furthermore, they are more easily ex-
tended to high genus curves. For instance, the Kedlaya
and Lauder-Wan algorithms have complexities which are
polynomial in the genus, whereas Pila’s algorithm is ex-
ponential in the genus.
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The p-adic algorithms can again be divided into two
classes: those based on the computation of the canoni-
cal lift of the curve, and those that use an arbitrary lift.
Although the subject is recent, the literature is already
quite extensive. Improvements to Satoh’s original algo-
rithm for elliptic curves have been made in various places
[Fouquet et al. 00, Fouquet et al. 01, Skjernaa 03, Ver-
cauteren et al. 01, Satoh et al. 03, Satoh 02, Gaudry
02, Harley 02]. This method was extended to genus 2
curves in characteristic 2 by Mestre [Mestre 00]. Vari-
ants of Kedlaya’s algorithm have been designed [Gaudry
and Gürel 01], in particular to extend it to hyperelliptic
curves in characteristic 2 [Denef and Vercautern 02, Ver-
cauteren 02]. Also, Lauder and Wan improved their al-
gorithm for various classes of varieties [Lauder and Wan
01, Lauder 03].

The purpose of this paper is to analyse the behaviour
of the p-adic algorithms when the characteristic is not so
small. We concentrate on the case of nonelliptic curves.
Indeed, for elliptic curves, Schoof’s algorithm allows one
to solve the point counting problem efficiently, whereas
already in genus 2, Schoof’s like algorithm is much slower
and more complicated [Gaudry and Harley 00, Gaudry
and Schost 02]. Hence, it makes sense to try to push
the p-adic algorithms as far as possible in term of the
characteristic.

There are also applications: Some cryptosystem de-
signers like to have curves defined over a finite field with
a medium characteristic, in order, for instance, to have
integers modulo the characteristic that fit into one or one
half of a machine word [Bailey and Paar 98].

Let us now consider the theoretical complexity of dif-
ferent p-adic algorithms in terms of the characteristic p.
This complexity is always exponential in log p, but varies
quite a lot. In algorithms based on the canonical lift, the
p-torsion subgroup plays an important role and it seems
to be impossible to avoid working modulo an ideal defin-
ing it. As a matter of fact, it has degree p2g, and the com-
plexity is at least Ω(p2g). So even for elliptic curves, the
complexity appears to be Ω(p2). Note also that comput-
ing the canonical lift involves an explicit representation
of pg isogenies, namely modular equations.

On the other hand, Kedlaya’s algorithm has a depen-
dence on p which is not as clear. Our main result is that
after a few adaptations using fast algorithms for radix
conversions, the complexity is in fact Õ(p). Recall that
the notation Õ(N) means O(N(log N)k) for some con-
stant integer k. We then validate this complexity with
some practical experiments and give a cryptographic size
genus 3 curve.

2. AN OVERVIEW OF KEDLAYA’S ALGORITHM

Let C be a hyperelliptic curve of genus g defined by its
affine equation y2 = f(x) over a finite field Fq where
q = pn and f is a polynomial of degree 2g + 1; hence,
we assume that C has a rational Weierstrass point. In
[Kedlaya 01], Kedlaya gives an explicit construction of
the de Rham cohomology space H1 of the coordinate ring
of a curve associated to C and computes the Frobenius
action on a particular basis. This computation is done
in the set of overconvergent series A†. Kedlaya shows
how to reduce those series onto the initial basis; he also
estimates the precision needed. We limit ourselves to a
short description of the algorithm.

Kedlaya’s algorithm illustrates the principle of the
Monsky-Washnitzer cohomology in the case of hyperel-
liptic curves. For a more general introduction to p-adic
cohomology, see [van der Put 86] or [Koblitz 77].

2.1 Definitions and Notation

2.1.1 The ring Zq. Let P be a monic polynomial which
defines Fq as an algebraic extension of Fp and let P be any
monic lift of degree n over Zp. The first step is to build
the p-adic ring needed for the computation. The quotient
Zq = Zp[t]/(P (t)) defines, up to isomorphism, the ring of
integers of the unramified field extension K of degree n of
Qp. In practice, we will be working in Zq/pν , where ν is
the p-adic precision. The output of the algorithm is the
numerator of the zeta function associated to C modulo pν .
Thus, we can recover the numerator of the zeta function
as soon as ν is larger than a quantity which depends on
Weil’s bounds. One can show that ν = Õ(ng). In the
following, we extend the p-th power Frobenius of Fq to
many different objects and for simplicity we will denote
it by σ regardless of the object on which it operates. In
particular, σ extends to Zq.

2.1.2 The algebra A†
+. The lift of f to f in Zq[x] de-

fines a lift of the curve in characteristic zero. We re-
call that A† is constructed as the quotient Zq-algebra of
power series in x, y and 1/y modulo y2 − f , and such
that the valuation of the coefficients grows at least lin-
early with the degree in x, y and 1/y. In the algorithm,
it suffices to consider A†

+, the subalgebra of A† of power
series in x and τ = 1/y2 (i.e., A†

+ is the subalgebra of A†

which is stable under the hyperelliptic involution).
For the computation, an important consequence of the

fast convergence is that the precision µ in τ for which all
the coefficients are zero modulo pν is linear in pν (i.e., in
Õ(png), see Lemma 2 in [Kedlaya 01] for more details).
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To represent an element of A†
+, we adopt a normalised

form:

Definition 2.1. (Normal form.) We say that an element
S(x, τ) = S0(x) +

∑
i>0 Si(x)τ i ∈ A†

+ is represented in
normal form if deg(Si) ≤ 2g for i > 0.

Notice that, using the equation y2 = f(x), we can
write any element of A†

+ in normal form, and that
deg(S0) can be arbitrarily large. We will see below that
in Kedlaya’s algorithm, all the elements of A†

+ are such
that deg(S0) ≤ 2gp − (p + 1)/2.

Remark 2.2. The set of power series
∑

i≥0 Si(x)τ i ∈ A†
+,

in normal form, with deg(S0) = 0 is stable under multi-
plication. Indeed, if P =

∑
i≥0 Pi(x)τ i is the product of

two such series before normalisation, then deg(P0) = 0,
deg(P1) ≤ 2g, and deg(Pi) ≤ 4g for i > 1. Using the
equation of the curve (i.e., computing the remainder of
Pi by f = 1/τ), if i > 1, the normalisation of Piτ

i con-
tributes a polynomial of degree at most 2g times τ i−1,
and normalising P1 contributes a constant times τ0.

The extension of the Frobenius action to A† is chosen
such that xσ = xp and (yσ)2 = f(x)σ.

2.1.3 Basis of differential forms. We consider the quo-
tient space H1

−, of differentials of the form S(x, τ)dx/y,
where S ∈ A†

+, modulo the differentials which are ex-
act. Lemma 2 in [Kedlaya 01] implies in particular that
B = {xidx/y, i ∈ [0, 2g − 1]} is a basis of H1

− over the p-
adic number field K, and that this vector space is stable
under the action induced by σ.

This action of Frobenius endomorphism on differential
forms is given by (dx)σ = d(xσ) = pxp−1dx, hence, we
can compute the action of σ on each element of the basis
B of H1

−. We have

(xidx/y)σ = (xi)σ(dx)σ/yσ = pxip+p−1dx/yσ,

and that expression is then rewritten as a linear combi-
nation of elements of B by adding appropriate elements
dh where h ∈ A†. Indeed, those exact forms are zero in
H1

−. This is explained in detail in Algorithm 1.

2.2 Kedlaya’s Algorithm

In the algorithm, we compute the action of σ on each
element of B, which gives the matrix of σ in this basis.
The characteristic polynomial of the norm of this matrix
gives us the numerator of the zeta function, modulo the
p-adic precision, due to Lefschetz fixed point formulae.
We describe the whole computation in Algorithm 2.

Input: ω =
∑

0≤m≤µ Qm(x)τmdx/y, as a normalized
element of A†

+ times dx/y.
Output: The coefficients of ω in B.
Step i. [First reduction: write∑

0≤m≤µ Qm(x)τmdx/y in the form Q(x)dx/y]
for k := µ to 1 by −1 do

Compute Uk(x) and Vk(x) such that Qk(x) =
Uk(x)f(x) + Vk(x)f ′(x);
Replace the coefficient Qk(x) τk dx

y in ω by(
Uk(x) +

2
2k − 1

V ′
k(x)

)
τk−1 dx

y
;

endfor
Step ii. [Second reduction: reduce the degree of Q(x)]
Initialisation: δ ← deg(Q);
while δ > 2g do

Compute Q̃ such that d(2xδ−2gy) = Q̃(x)dx/y:

Q̃ =
(
2(δ − 2g)xδ−2g−1f(x) + xδ−2gf ′(x)

)
;

(Note that Q̃ has the same degree as Q.)
Normalize Q̃ so that it has the same leading coef-
ficient as Q;
Q ← Q − Q̃;
δ ← deg(Q);

endw

ALGORITHM 1. Cohomological reductions.

3. COMPLEXITY IN p

Following the computation from [Kedlaya 01] of the time
and space dependence on n and g, but taking into account
the contribution of p, we give a proof that the complexity
is almost linear in p and that the introduction of the
radix-conversion has not disturbed the dependence on
the other parameters. We recall that we use the Soft-Oh
notation, thus any contribution in log p, log n, or log g in
the complexity is not to be taken into account.

3.1 Bit-Size of the Different Objects

Notice that a multiplication between two objects of
bit-size N is assumed to take time Õ(N), thanks to
Schönhage’s fast multiplication algorithm. To analyse
the complexity, it is important to describe the bit-size of
the different objects we manipulate in the algorithm.

Using the notations of Section 2.1, Zq denotes the quo-
tient Zp[t]/(P (t)) and elements in Zp are truncated to
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Input: A curve C defined by y2 = f over the finite
field Fq.

Output: The numerator of the zeta function of C.
Step 0. Compute the p-adic and τ -adic precisions,
the element tσ, the lift of f and fσ, U and V such
that Uf + V f ′ = 1;
Step 1. [Computation of 1/yσ] From equa-
tions (y2)σ = (f(x))σ and yσ ≡ yp mod p, we
see that 1/yσ = τ (p−1)/2S/y with S := (1 +
(f(x)σ − f(x)p) τp)−1/2. The power series S can be
computed efficiently by a Newton iteration in A†

+;
Step 2. [Computation of the Frobenius action on B]
for each differential ωi in B do

Step 2.1. [Compute ωσ
i =

pτ (p−1)/2xip+p−1Sdx/y] This is essentially
the multiplication of pτ (p−1)/2xip+p−1 by S, as
normalised elements of A†

+. We obtain ωσ
i written

in the form
∑

0≤k≤µ Qkτkdx/y;
Step 2.2. [Reduce ωσ

i as a linear combination of
elements of B] We apply Algorithm 1 to ωσ

i ;
endfch
Step 3. [Compute the characteristic polynomial χ(t)
of the norm of the Frobenius] The action of the p-
th power Frobenius endomorphism on the differential
forms is gathered in a matrix M . The q-th power
action is then obtained by computing Norm(M) =
M Mσ · · ·Mσn−1

. The characteristic polynomial χ of
the Frobenius is computed as the characteristic poly-
nomial of this matrix;
return t2gχ(1/t).

ALGORITHM 2. The main algorithm.

precision pν where ν = Õ(ng). This implies that an ele-
ment of Zq is represented as a polynomial of degree n with
coefficients in Z/(pν), therefore the bit-size of an element
of Zq is Õ(n2g). An element of the set A†

+, represented in
normal form, is a power series in τ , truncated modulo τµ,
over the polynomials of degree 2g + 1 over Zq. We recall
that the precision in τ , namely µ, is linear in p, and that
the coefficient S0(x) is of degree at most O(gp). More
precisely, we have µ = Õ(png), therefore the bit-size of
an element of A†

+ is Õ(nν · µg) = Õ(pn3g3).

ν (p-adic precision) Õ(ng) an element of Zq Õ(n2g)

µ (τ -adic precision) Õ(png) an element of A†
+ Õ(pn3g3)

TABLE 1. Bit-size of main elements.

3.2 Frobenius Substitution

To compute the Frobenius action on Zq, we have to esti-
mate tσ modulo the p-adic precision. The element tσ is
a zero of P and is congruent to tp mod p, therefore we
use a Newton iteration:{

x0 = tp mod p,

xi+1 = xi − P (xi)
P ′(xi)

.

It costs log p operations in Fq for the initialisation. At
the step i of the iteration, we have computed tσ mod p2i

.
As usual, for this type of Newton computation, the over-
all cost is a constant times the cost of the last step. In
this case, it costs O(n) multiplications in Zq at maximal
precision. Hence, the computation of tσ costs O(n) oper-
ations in Zq, i.e., the cost of this computation is Õ(n3g).
Let

z = zn−1t
n−1 + zn−2t

n−2 + · · · + z1t + z0

be an element of Zq. For zσ =
∑n−1

i=0 zi(tσ)i, Horner’s
method yields a way of computing it at a cost of n oper-
ations in Zq. So this computation is in time Õ(n3g).

More generally, computing σk(z) for any k can be done
at the same cost, by lifting tσ

k

and plugging it into the
expansion of z. Consequently, using the 2-adic expansion
of k, we can compute the norm of an element in time
Õ(n3g).

3.3 Normal Form

At several places in the algorithm, the elements of A†
+

do not come naturally in their normal form. First, this
occurs in Step 1, where we have to compute the series
(f(x)σ − f(x)p)τp. Also in Step 2.1, we have to put the
series pτ (p−1)/2xip+p−1 in normal form before multiply-
ing it by S. More details about these steps are given
below.

For small p, this normalisation step takes a negligi-
ble time and can be done in a naive way. However,
for large p, using näıve algorithms makes it the domi-
nant step in the whole algorithm. It is then required to
use asymptotically fast algorithms, namely the recursive
radix-conversion algorithm.

More precisely, let Q(x)τm ∈ A†
+ with deg(Q) > 2g.

Let k =
⌈

deg(Q)
2g+1

⌉
. The normal form essentially consists

of the coefficients of the (f)-adic expansion of Q, that is
the polynomials (a0, . . . , ak) such that

Qτm =

(a0 + a1f + · · · + am−1f
m−1 + amfm + · · · + akfk)f−m,
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where all of the ai have degree at most 2g. Then, if we put
Q0 = am+am+1f+· · ·+akfk−m and Qi = am−i for i > 0,
we get the normal form Q(x)τm = Q0(x)+

∑
i>0 Qi(x)τ i.

To compute the ai, we compute Q1 and Q2 such that
Q = Q1f

�k/2� + Q2 and we call the radix-conversion al-
gorithm recursively on Q1 and Q2. It takes Õ(kg) oper-
ations in Zq to compute those coefficients (see [von zur
Gathen and Gerhard 99, Theorem 9.15] for more details).

Conversely, building Q from its (f)-adic expansion can
also be done in the same time, using a similar strategy.

3.4 Cost of Cohomological Reductions

First, the polynomials U and V such that Uf + V f ′ = 1
are computed only once. In one step of the first re-
duction applied to a differential ωk = Qkτkdx/y, where
deg(Qk) ≤ 2g, we compute ω̃k = Q̃k−1τ

k−1dx/y in the
same class of cohomology as ωk, for k > 0. We refer
to Algorithm 2.1.2 for the formulae that are used; they
involve the multiplication of Qk by U and V to obtain
Uk and Vk, thus it costs a constant number of multipli-
cations of polynomials of degree O(g) over Zq, which can
be performed in time Õ(n2g2).

One step of the second reduction decreases by 1 the
degree δ > 2g of the polynomial Q in the differential
Qdx/y. Again, in Algorithm 2.1.2, we see that this in-
volves one inversion and O(g) multiplications of scalars
(the polynomial multiplications are just shifts), thus the
time complexity is Õ(n2g2).

3.5 Overall Complexity

In Step 1, let U = 1 + (fσ − fp)τp. We compute the
normal form to write

U = U0 + U1τ + · · · + Upτ
p,

where deg(Ui) ≤ 2g. It costs the computation of the
polynomial fσ −fp of degree O(pg) and its radix conver-
sion as described in Section 3.3. The time complexity is
Õ(n3g2 + pn2g2).

Then we perform a Newton iteration to take the in-
verse of the square root of U . There are O(log µ) itera-
tions to be done and after each step, we renormalise the
series to prevent the growth of the coefficients. As usual
for a Newton iteration, the overall cost is a constant times
the cost of the last iteration. This last iteration involves
a constant number of multiplications of two elements of
A†

+ truncated modulo τµ, therefore the cost of the mul-
tiplication is Õ(pn3g3) (see Table 1).

The result of this operation is a truncated power se-
ries S = S0 + S1τ + · · · + Sµτµ with deg(Si) ≤ 4g + 2.

By the statement after Definition 2.1 and noticing that
deg(U0) = 0, we have deg(S0) = 0. Thus, the cost of a
normalisation in this case is Õ(pn3g3).

The global cost of Step 1 is then Õ(pn3g3).

In Step 2, we have to compute B = pτ (p−1)/2xpi+p−1S

for i ∈ [0, 2g − 1]. We concentrate on the worst case,
namely i = 2g − 1, and we write A = pτ (p−1)/2x2gp−1

and B = AS. After normalisation, we can write

A = A0 + A1τ + · · · + Akτk,

where k := (p − 1)/2. The degree of A0(x) in x is k0 =
(2g−1)(p+1)/2 and the degree of S in τ is µ, both linear
in p. Näıvely, there are p multiplications of a polynomial
of degree p by a polynomial of degree 2g+1 to do. Thus,
the complexity for computing B appears to be quadratic
in p.

A workaround to this problem is to use the “complete”
(f)-adic expansion of A and obtain

A =
k∑

i=−k1

Aiτ
i = τ−k1

(
k+k1∑
i=0

Ai−k1τ
i

)
,

with k1 linear in p and deg(Ai) ≤ 2g. The time complex-
ity of this operation as shown in Section 3.3 is Õ(pn2g2).
Now τk1A and S are both power series truncated at pre-
cision µ in τ with polynomials coefficient of degree 2g in
x. The cost of the multiplication of τk1A by S is the
same as the last step of the Newton iteration, thus still
Õ(pn3g3). Shifting the result by τ−k1 , we obtain an ex-
pression for B that involves negative powers in τ . We
then convert it to the normalised form as follows: Write
B = B1τ

−k1 + B2, where B1τ
−k1 contains the negative

powers of τ . Converting B1τ
−k1 back into a polynomial

in x is the reciprocal of the transformation explained in
Section 3.3, and can be done in time Õ(pn2g2). There-
fore, we obtain B written as B = B̃1(x) + B2, where
B̃1(x) is a polynomial in x of degree O(gp) and B2 is a
power series with polynomials of degree at most 2g.

In the cohomological reductions, we apply µ times the
first reduction to reduce B2 at a cost of Õ(pn3g3), and the
contribution of B2 is added to B̃1. The second reduction
is applied O(gp) times to B̃1 to get a polynomial of degree
less than 2g. The cost is then Õ(pn2g3).

The cost of treating one differential form is Õ(pn3g3).
There are O(g) of them, therefore the overall cost of Step
2 is Õ(pn3g4).

In Step 3, the dominant part is the computation of
the norm of a 2g × 2g matrix in K. As described in Sec-
tion 3.2, the cost of the computation of Mσ is Õ(n3g3),



400 Experimental Mathematics, Vol. 12 (2003), No. 4

0

1000

2000

3000

4000

5000

6000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

Total

Step 2

Step 1

FIGURE 1. Runtimes in seconds as functions of the characteristic p.

and the cost of a matrix multiplication is Õ(n2g4).
Therefore, the norm computation costs Õ(n2g4 + n3g3).
Classical fast algorithms for computing the characteristic
polynomial of matrices lead to a complexity of Õ(n2g4).
Hence, the cost of Step 3 is Õ(n2g4 + n3g3).

Putting everything together, we obtain the main the-
orem of this section.

Theorem 3.1. The overall time complexity of Kedlaya’s
algorithm is Õ(pn3g4). The space complexity of the algo-
rithm is Õ(pn3g3).

4. PRACTICAL EXPERIMENTS

To illustrate our analysis of the complexity, we have writ-
ten an implementation of Kedlaya’s algorithm adapted
to the medium characteristic case. In particular, we
have used the recursive radix-conversion algorithm of
Section 3.3. We used the NTL library written by Shoup
[Shoup 02], compiled with the GMP multiprecision pack-
age [Granlund 02]. Elements of the p-adic ring Zq are
represented as elements of an extension of the finite ring
Z/pνZ, and we wrote specific code to handle the few
divisions by p that occur in the algorithm. NTL pro-
vides the arithmetic of polynomials over this extension
ring. Above this, we added a simple arithmetic layer for
the power series required in Kedlaya’s algorithm. For
multiplication of those power series, however, we convert
everything to integers (Kronecker substitution) and use
GMP’s implementation of Schönhage’s algorithm.

4.1 Running Times When Only p Varies

For each prime p, we fix a root t of the polynomial used
to define Fp3 over Fp, and we consider the genus 3 hy-
perelliptic curves defined over Fp3 by

Ct : y2 = x7 + x6 + x5 + x4 + x3 + x2 + x + t.

We ran our implementation on these curves for differ-
ent values of p. The required p-adic precision is 7, and the
power series are truncated modulo τµ, where µ is about
6p. The running times are given on a AMD-Athlon MP
2200+. We also measured the maximal amount of mem-
ory used by the program. The data are given in Table 2
and graphically represented in Figure 1.

The complexity is clearly subquadratic in p. We also
insist on the fact that FFT-based algorithms are only
efficient for very large data, and their essentially linear
runtime is often hidden by logarithmic factors. In our
analysis, we did not take into account those logarithmic
factors. In fact, one factor log p is hidden in the size
of the elements of Zp, another one is due to the cost of
radix-conversion which is O(log p) multiplications, and a
third O(log p) contribution comes from the complexity
of Schönhage’s integer multiplication algorithm. Putting
all of this together, we see that there is actually a factor
O(log3 p) hidden in the complexity. This factor explains
the resulting growth of the runtime.

4.2 A Cryptographic Size Curve Over F2517

Let C be the hyperelliptic curve of genus 3 defined over
F2517 by the equation y2 = f(x), where
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p Minpol(t) Step 1 Step 2 Total time Memory

251 t3 + 20t2 + 95t + 116 11 s 28 s 42 s 25 MB
503 t3 + 20t2 + 95t + 372 25 s 67 s 100 s 48 MB
751 t3 + 20t2 + 95t + 445 56 s 107 s 164 s 84 MB
1009 t3 + 79t2 + 764t + 463 82 s 147 s 244 s 114 MB
2003 t3 + 746t2 + 66t + 1844 200 s 347 s 664 s 225 MB
3001 t3 + 152t2 + 1723t + 2076 371 s 712 s 1155 s 377 MB
4001 t3 + 1723t2 + 2493t + 3307 585 s 1031 s 1720 s 503 MB
6007 t3 + 152t2 + 3307t + 3469 971 s 1832 s 2975 s 750 MB
8009 t3 + 3469t2 + 6172t + 4424 1551 s 2656 s 4482 s 1.0 GB
10007 t3 + 152t2 + 3307t + 3469 2010 s 3423 s 5798 s 1.4 GB

TABLE 2. Time and space data for various p.

f(x) = x7 + t17808079175804175x6 + t54575364231919474x5

+ t237357237234904x4 + t3218736229782234x3

+ t41232191549139817x2 + t41258843266959358x

+ t43871791627662980,

and t with minimal polynomial t7 + 197t5 + 245t4 + t3 +
148t2 + 119t + 225 over F251. The characteristic polyno-
mial of the Frobenius endomorphism is then

χ(T ) = T 6 − s1T
5 + s2T

4 − s3T
3 + qs2T

2 − q2s1T + q3,

where

s1 = −77096895,
s2 = −482223667309721,
s3 = −13295755585577091248791717,

which gives a prime cardinality of

N =24725674724261831060555809558534131082

6595788242067.

Notice that, in this case, it takes less than seven min-
utes of computation for one hyperelliptic curve and uses
190 MB of memory.

5. CONCLUDING REMARKS

It is straightforward to check that our analysis is still
valid for the adaptation of Kedlaya’s algorithm to su-
perelliptic curves described in [Gaudry and Gürel 01].

Instead of using the radix-conversion to write the poly-
nomials as (f)-adic expansions, we could have used this
basis for the whole computation. However, this would
imply the finding of another appropriate basis for the
differentials and rewriting the formula for the reductions
accordingly. Furthermore, in practice, operations with
polynomials represented in the classical basis are much
faster and easier to handle.

It is known [Bostan et al. 03] that computing the
Cartier-Manin matrix, hence also the zeta function mod-
ulo p of a hyperelliptic curve, can be done at a cost Õ(

√
p)

(not taking into account the dependence of the other pa-
rameters). The question is still open whether this com-
plexity can be obtained on the whole zeta function af-
ter an adaptation of Kedlaya’s algorithm. Another open
question is how to reduce the space complexity. Indeed,
this is now clearly the bottleneck of this method.

ACKNOWLEDGMENTS

We are grateful to Andreas Enge, Guillaume Hanrot, and
François Morain for their close reading and helpful comments
on the manuscript.

The computations were carried out on machines at the
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(gurel@lix.polytechnique.fr)

Received April 14, 2003, accepted in revised form August 12, 2003.


