
How to Compute the Coefficients
of the Elliptic Modular Function j(z)
Harald Baier and Günter Köhler

CONTENTS

1. Introduction
2. Two Approaches Using the Definition of j
3. Approaches due to Rademacher and Mahler
4. Herrmann’s Method
5. Computations via Hecke Series
6. A Formula of Kaneko and Zagier
References

2000 AMS Subject Classification: Primary 42A16; Secondary 11F03

Keywords: Algorithmic number theory, elliptic modular function j,
Fourier coefficients, Fourier series

We discuss various methods to compute the Fourier coefficients
of the elliptic modular function j(z). We present run times to
compute the coefficients in practice. If possible, we discuss
the theoretical complexity of the corresponding method, too.
We conclude that, in practice, an approach due to Kaneko and
Zagier turns out to be most efficient.

1. INTRODUCTION

The Fourier coefficients c(n) of the elliptic modular func-

tion

j(z) =
∞

n=−1
c(n)qn , (1—1)

where q = e(z) = e2πiz for z in the upper half plane, are

important for several purposes. For instance, they can be

used to compute singular values of j(z) and Hilbert class

polynomials, and they are needed to compute modular

equations. The standard definition of j(z) is

j(z) =
E34(z)

∆(z)
, (1—2)

where

∆(z) = q ·
∞

n=1

(1−qn)24 = 12−3 · E34(z)− E26(z) (1—3)

is the discriminant function and

E4(z) = 1 + 240 ·
∞

n=1

σ3(n)q
n,

E6(z) = 1− 504 ·
∞

n=1

σ5(n)q
n (1—4)

with σr(n) = d|n d
r are the Eisenstein series of weights

4 and 6, respectively.

We discuss various approaches to compute the Fourier

coefficients c(n). We show that the respective perfor-

mance is, in practice, very different. Furthermore, we

c A K Peters, Ltd.
1058-6458/2001 $0.50 per page

Experimental Mathematics 12:1, page 115

116 Experimental Mathematics, Vol. 12 (2003), No. 1

give evidence that a method proposed by Zagier ([Za-

gier 96]) and Kaneko ([Kaneko 99]) is the most efficient

one. For most of the methods discussed in this paper,

we present the performance in both theory and practice.

More precisely, by the performance in theory, we mean

the number of multiplications of integers. Thus we do

not consider the contribution of integer additions. If we

speak of the performance in practice, we mean the CPU

time of our implementation.

One of our aims is that our results are easily verifi-

able by an “ordinary” user. Hence, all our run times are

measured on a PC using freely available libraries. Our

practical tests are performed on an Athlon XP1600+ run-

ning Linux 2.4.10 at 1.4 GHz and having 1 GByte main

memory. All programs are implemented in C++ using

the GNU compiler gcc 3.0.1 and the GNU multipreci-

sion package gmp 3.2.1 . As stated above, all software

is freely available. The implementation of the meth-

ods in this paper may be downloaded from the Web-

site of the first author (http://www.cdc.informatik.tu-

darmstadt.de/˜hbaier).

The rest of the paper is organized as follows. In Sec-

tion 2, we discuss two algorithms using the definition

of the modular function j. In Section 3, we present two

methods proposed by Rademacher [Rademacher 38] and

Mahler [Mahler 76], respectively. In Section 4, we in-

vestigate an algorithm which makes use of ideas due to

Herrmann [Herrmann 73]. In Section 5, we present two

methods due to the second author. This approach uses

Hecke series. The last method, due to Zagier and Kaneko,

is discussed in Section 6.

2. TWO APPROACHES USING THE DEFINITION OF
j

In this section, we discuss the performance of our first

two algorithms. Both methods are based on Equations

(1—2), (1—3), and (1—4). We give evidence that for our

purposes none of them is efficient in practice.

In order to make use of the defining equations, we have

to know the coefficients of the denominator in Equation

(1—2). It is well known that ∆ may be written in terms

of a Fourier series, that is, we have

∆(z) =

∞

n=1

τ (n)qn . (2—1)

The coefficients τ (n) in Equation (2—1) are called Ra-

manujan numbers. A first approach would be to com-

pute τ (n) by means of the infinite product for ∆(z) or

by means of E34(z) and E
2
6(z), respectively. However, in

the first author’s thesis, it is shown that both ideas turn

out to be rather slow ([Baier 02]).

We investigate two different representations of the Ra-

manujan numbers in what follows. The first one is due

to Ramanujan himself ([Ramanujan 27]); the second one

was proposed by Niebur ([Niebur 75], [Gouvêa 97]).

In 1916, Ramanujan ([Ramanujan 27, page 152])

proved the recursion formula

τ(1) = 1, τ(n) = − 24

n− 1 ·
n−1

k=1

σ1(n−k)τ (k) for n > 1 .

(2—2)

Once the values σ1(n) are known, it is obvious how to

evaluate and implement Equation (2—2) for n ≥ 2. First,
we are not aware of any reasonable estimation of the

computational complexity to compute σ1(n). However,

if we use trial division and reasonable values of n, say

n ≤ 50000, we may use machine types and hence fast

arithmetic for the computation of σ1(n). Indeed, as ex-

plained below, our practical test shows that only about

5% of the CPU time is spent computing the values σ1(n).

Second, we assume that the division by n−1 in Equa-
tion (2—2) takes the same time as a multiplication. Let

R(N) denote the total number of multiplications to com-

pute τ (n) for 2 ≤ n ≤ N using Ramanujan’s recursion

formulae. Then it is easy to see that

R(N) =

N

n=2

(n+ 1) =
N2

2
+
3N

2
− 2 . (2—3)

Finally, if we set N = 50000, this approach takes us

6 minutes, 15 seconds in practice to compute τ (n) for

2 ≤ n ≤ N . The CPU time to get all relevant values

σ1(n) is 19 seconds.

Let us turn to the second method of this section. It is

due to Niebur ([Niebur 75], [Gouvêa 97]). Niebur shows

τ(n) = n4σ1(n)

− 24 ·
n−1

k=1

35k4 − 52k3n+ 18k2n2 σ1(k)σ1(n− k) .

(2—4)

We describe how we evaluate Equation (2—4). As above,

we leave out the cost of the computation of σ1(n) in our

following discussion. Let n and k be given. We compute

(in this order) k2, kn, k4 = k2 · k2, k3n = k2 · kn, and
k2n2 = (kn)2. In all, we have to perform 10 multiplica-

tions to compute an addend in the sum of Equation (2—4).

Thus, the number of multiplications to compute τ (n) is

10(n− 1)+ 4 = 10n− 6. Let Ni(N) be the total amount

Baier and Köhler: How to Compute the Coefficients of the Elliptic Modular Function j(z) 117

of multiplications to compute τ (n) for 2 ≤ n ≤ N using

Niebur’s formula. Then we have

Ni(N) =

N

n=2

(10n− 6) = 5N2 −N − 4 . (2—5)

Compared to R(N), the number of multiplications of this

method is about 10 times larger. Indeed, the run time in

practice is much slower. If we compute τ (n) for n up to

50000, the CPU time is 22 minutes, 21 seconds.

We will see in Section 6, that if we use a method due

to Kaneko and Zagier, the whole computation of c(n)

up to n = 50000 takes less than 9 minutes in practice.

Thus, we skip the further computation of the c(n) by the

methods of this section.

3. APPROACHES DUE TO RADEMACHER AND
MAHLER

This section deals with two further methods to compute

the coefficients c(n). The first one is due to Rademacher

[Rademacher 38]; the second one is due to Mahler [Mahler

76].

H. Rademacher [Rademacher 38] used the circle

method to prove a formula which expresses c(n) as a

convergent infinite series in terms of Bessel functions and

Kloosterman sums. He realized, however, that the con-

vergence of the series is rather slow and that “the co-

efficients ... can be found [from the formula] by trou-

blesome computations, which for higher n are practi-

cally inexecutable ...” For this reason, we did not check

how Rademacher’s formula performs using the computing

power now available. A modern account of Rademacher’s

and related later work is given in [Knopp 90].

We next discuss Mahler’s approach. In [Mahler 76,

page 91], K. Mahler proved a system of recursion formu-

las for c(n). They read

c(4n) = c(2n+ 1) +
1

2
(c(n)2 − c(n))

+

n−1

k=1

c(k)c(2n− k) , (3—1)

c(4n+ 1) = c(2n+ 3)− c(2)c(2n) + 1
2
(c(n+ 1)2

− c(n+ 1)) + 1
2
(c(2n)2 + c(2n))

+

n

k=1

c(k)c(2n− k + 2)−
2n−1

k=1

(−1)k−1c(k)c(4n− k)

+

n−1

k=1

c(k)c(4n− 4k) , (3—2)

c(4n+ 2) = c(2n+ 2) +

n

k=1

c(k)c(2n− k + 1) , (3—3)

c(4n+ 3) = c(2n+ 4)− c(2)c(2n+ 1)− 1
2
(c(2n+ 1)2

− c(2n+ 1)) +
n+1

k=1

c(k)c(2n− k + 3)

−
2n

k=1

(−1)k−1c(k)c(4n− k + 2)

+

n

k=1

c(k)c(4n− 4k + 2) . (3—4)

As soon as the values c(−1), . . . , c(5) are known, the se-
quence of c(n) is uniquely determined by Mahler’s recur-

sion formulas.

We next investigate the number of multiplications to

evaluate Mahler’s equations. LetN ∈ N, 4 | N. ByM(N)
we denote the number of multiplications to compute the

Fourier coefficients c(n) up to n = N by Mahler’s ap-

proach. We do not consider a factor 12 , as this operation

is only a right shift. We fix 1 ≤ n ≤ N
4 . Obviously, Equa-

tions (3—1)—(3—4) yield a contribution of n, 4n+1, n, and

4n + 3 multiplications to M(N), respectively. Thus, for

fixed n, the contribution is 10n + 4 multiplications. As

we assume c(−1), . . . , c(5) to be known, we conclude

M(N) =

N
4 −1

n=1

(10n+ 4) +
N

4
− 6 = 5N2

16
− 10 . (3—5)

In this way, a table of c(n) for n ≤ 50000 was computed
in the first author’s thesis [Baier 02]. The run time in

[Baier 02] compared to the method of Section 6. is much

larger. Although both hardware and libraries in use of

[Baier 02] are inferior to our environment, we expect an

implementation of Mahler’s Equations (3—1)—(3—4) to be

inferior to the method of Kaneko on our platform, too.

4. HERRMANN’S METHOD

We next present two methods for the computation of

the c(n) which are both bases on an article by O. Herr-

mann [Herrmann 73]. The first method is due to Herr-

mann himself. In an early work in the field of algorithmic

number theory, Herrmann computed a table of c(n) for

n ≤ 6002 as explained below. The second approach is our
variant of Herrmann’s algorithm. It turns out that our

algorithm is slightly faster in practice than the original

method.

118 Experimental Mathematics, Vol. 12 (2003), No. 1

The crucial observation is that we may write the dis-

criminant function ∆ in terms of Dedekind’s η-function.

More precisely, we have ∆ = η24, where

η(z) = e
z

24
·
∞

n=1

(1− qn) =
∞

n=1

12

n
· e n2z

24

= e
z

24
·
∞

n=−∞
(−1)nqn(3n+1)/2 , (4—1)

where 12
n is a quadratic residue symbol. Herrmann

([Herrmann 73]) used Equation (4—1) to compute the val-

ues of c(n) for n ≤ 6002 as follows. He avoided the com-
putation of the power E34 in Equation (1—2) by means of

the identity

E34 = E12 +
432000

691
∆ , (4—2)

where

E12(z) = 1 +
65520

691
·
∞

n=1

σ11(n)q
n (4—3)

is the normalized Eisenstein series of weight 12. Then he

divided E12(z) repeatedly 24 times by η(z). This works

well since Euler’s series
∞
n=−∞(−1)nqn(3n+1)/2 is sparse

with very few coefficients ±1 and all others equal to 0.
In order to implement Herrmann’s proposal, we men-

tion the following observations. First, using the re-

lation ∆ = η24 and Equations (1—2), (4—2), we get

j − 432000
691 ·η24 = E12. Second, it is obvious that we may

write the right sum in Equation (4—1) as
∞
n=0 e(n)q

n

with e(n) ∈ {−1; 0; 1}. Thus, we get

c(−1) + c(0)− 432000
691

q +

∞

n=1

c(n)qn+1

·
∞

n=0

e(n)qn
24

= 1 +
65520

691
·
∞

n=1

σ11(n)q
n .

(4—4)

Once the coefficients e(n) and σ11(n) are known, Equa-

tion (4—4) shows how to recover the Fourier coefficients

of the modular function j. The computation of σ11(n) is

straightforward. In addition, the computation of the co-

efficients e(n) is very fast. An algorithm may be found,

for instance, like Algorithm 7.3 in the first author’s the-

sis [Baier 02]. We remark that in our implementation,

we multiply both sides of Equation (4—4) by 691 to work

with integers.

We estimate the number of multiplications to get the

c(n) up to n = N by this method. It is obvious that

one division by the series
∞
n=0 e(n)q

n in Equation (4—4)

takes
N
k=1 k =

N(N+1)
2 multiplications. Thus, in all,

the number of multiplications using Herrmann’s method

is at least 12N(N +1). However, the multiplications are

trivial, as one factor is a coefficient e(n) and therefore in

{−1; 0; 1}. Additionally, the case e(n) = 0 is by far the

most common. Thus we cannot compare this number of

multiplications directly to the number M(N) of Section

3.. The CPU time of this method to compute c(n), −1 ≤
n ≤ 50000, was 39 minutes, 39 seconds.
We next explain our similar method. The fundamen-

tal difference to Herrmann’s approach is that instead of

successively dividing by
∞
n=0 e(n)q

n in Equation (4—4),

we first compute a series representing the 24th power

of
∞
n=0 e(n)q

n. More precisely, let e24(n) denote the

Fourier coefficients of the series (
∞
n=0 e(n)q

n)
24
. Thus,

we set
∞
n=0 e24(n)q

n = (
∞
n=0 e(n)q

n)
24
. Again, Equa-

tion (4—4) yields an obvious recursion formula for the

c(n), once the values e24(n) and σ11(n) are known. In

contrast to the coefficients e(n), the computation of the

values e24(n) is more burdensome.

In Section 5, we use a Hecke representation of η8 to

get the Fourier coefficients of the series (
∞
n=0 e(n)q

n)
8
.

Similar to above, we denote these coefficients as e8(n).

Then we use standard exponentiation methods to com-

pute the coefficients e24(n).

Unfortunately, we are not able to count the number of

multiplications of this method to compute the coefficients

c(n), n ≤ N. Hence, we cannot present a theoretical es-
timation of the complexity of our approach. Neverthe-

less, our practical tests give evidence that our method

is slightly faster than Harrmann’s original method. For

example, N = 50000 yields a run time of 35 minutes, 39

seconds. Furthermore, this approach seems to be faster

than using Mahler’s formula of Section 3.

5. COMPUTATIONS VIA HECKE SERIES

The method in this section is similar to the approach in

Section 4. We use the formula

j(z) = γ32(z) with γ2(z) =
E4(z)

η8(z)
. (5—1)

However, it is known from Schoeneberg [Schoeneberg 53]

and later writers ([Serre 85], [Köhler 88]), that several

powers of η(z) are represented by theta series with a

Hecke character on an imaginary quadratic number field

and that, therefore, their Fourier expansion is lacunary.

Specifically, we have (see [Köhler 88, page 84])

η8(z) =
1

6
·
µ∈Z[ω]

χ(µ)µ3e
1

3
µµz ,

Baier and Köhler: How to Compute the Coefficients of the Elliptic Modular Function j(z) 119

where ω = e 1
6 = 1

2 (1 +
√−3) and

χ(x+ yω) =
x− y
3

for x, y ∈ Z, with a quadratic residue symbol on the right-
hand side. We collect the contribution of associated and

conjugate elements in Z[ω] and obtain the expansion

η8(z) =
n>0

n≡1 mod 3

a8(n)e
nz

3
, (5—2)

a8(n) =
x>0,

x2=n

x

3
· x3

+

1≤y<x,
x2+xy+y2=n

x− y
3

· (x− y)(2n+ 3xy) .(5—3)

In Section 4, we introduced coefficients e8(n) defined as

Fourier coefficients of the series (
∞
n=0 e(n)q

n)
8
. The re-

lation e8((n − 1)/3) = a8(n) is obvious from Equation

(5—2). Thus, Equation (5—3) yields an efficient algorithm

to compute a table of the coefficients e8(n).

It is well known that γ2(z) = q
−1/3 ∞

n=0 g(n)q
n with

integers g(n). We combine Equations (5—1) and (1—4) to

get a recursion formula for the coefficients g(n). More

precisely, it is easy to see that for n ≥ 1, we have

g(n) = 240 · σ3(n)−
n−1

k=0

g(k)e8(n− k). (5—4)

Again, we then make use of standard exponentiation

techniques to compute the values of c(n) from the re-

lation j = γ32 .

Although this method is very similar to our variant

of Herrmann’s algorithm, it turns out to be much slower

for N = 50000. The run time is 202 minutes, 33 seconds.

The reason is that using the power function is rather slow

for the large coefficients g(n) compared to the coefficients

e8(n). The CPU time to compute the values g(n), n ≤
N + 1, is only 8 minutes, 16 seconds. Hence, 95.9% of

the run time is spent computing c(n) from g(n).

There is a variant of this method. We observe that

j =
E34 − E26 + E26

∆
= 123 +

E26
∆
= 123 + γ23 (5—5)

with

γ3 =
E6
η12

. (5—6)

There is no representation of η12 as a theta series with

Hecke character. But we have ([Köhler 88, page 88])

η6(z) =
1

4
·
µ∈Z[√−1]

χ(µ)µ2e
1

4
µµz , (5—7)

where χ(x + y
√−1) = (−1)y if x ≡ y mod 2 and

χ(x+y
√−1) = 0 otherwise. Thus, we can tabulate η6 as

efficiently as η8. Squaring η6 yields η12, a division gives

γ3, and squaring again gives the coefficients c(n) of j(z).

In practice we observe that this variant is far more effi-

cient than the first one via γ2. The total CPU time is 95

minutes, 53 seconds.

6. A FORMULA OF KANEKO AND ZAGIER

In this section, we describe a method which was discov-

ered by D. Zagier [Zagier 96] and M. Kaneko [Kaneko

99]. The main Formula (6—4) makes use of coefficients

t(n) introduced by Zagier. Once the t(n) are known,

Equation (6—4) promises to be highly efficient since it re-

quires just additions, but essentially no multiplications.

Indeed we will see that this method turns out to be the

most efficient one to compute the coefficients c(n).

Zagier defined the sequence of numbers t(n) using cer-

tain singular values of j(z). We call the numbers t(n)

Zagier coefficients. Zagier gave an equivalent definition

of the t(n) by means of the Fourier expansion of a mero-

morphic modular form of weight 3
2 , namely,

g(z) = −E4(4z)θ1(z)
η(4z)6

=

d

t(d)qd , (6—1)

where θ1(z) =
∞
n=−∞(−1)nqn

2

is one of Jacobi’s theta

series. We have

t(−1) = −1, t(0) = 2, t(d) = 0 (6—2)

if d < −1 or d ≡ 1, 2 mod 4.
Zagier proved the recursion formulas

r∈Z
r2t(4n− r2) = −480σ3(n),

r∈Z
t(4n− r2) = 0

(6—3)

for n ≥ 1. It is obvious that the relations of Equation

(6—3) uniquely determine the values t(3), t(4), t(7),

Using this, Kaneko proved

c(n) =
1

n
r∈Z

t(n− r2)

+

r>0, r odd

(−1)nt(4n− r2)− t(16n− r2)

(6—4)

for n ≥ 1. When we use this formula to compute a table
of c(n) for n ≤ N , we need to compute a table of the

Zagier coefficients t(d) for d ≤ 16N . As t(d) = 0 for

120 Experimental Mathematics, Vol. 12 (2003), No. 1

t(800000) = 2164260999701052804585981227488262471198748472952\
9733696975143657080601035731790618173990526143533\
3656512282742365636119956617463196459050613824587\
6750440295776998790470423898792992957601904049205\
2973403996546755959877527784339014288775236748835\
2863476016634146494249609602402917308097572254788\
7973319641485734514318500429668348518525812824026\
0074890731020416830998364778099390291027394641183\
2430533387006349005324030346999047083617137851988\
1210160600271788791610210207214991198832620779142\
5161510503902500820717723125283468679059769785638\
3625441026469277090619710353216297142058551845001\
2536352059514829394139977330472898704169335282699\
2655586854087319998910783830452828265611170156566\
4610378672848078406365514503837549643769613967403\
6486510953444974172510427077521129204294180980867\
9992323250061136672353088366222604434782193190281\
2550994292744548193301365833106507850565952542288\
9946965717275618329353414719784089114371714546118\
1640821077406275518949910112812979406046773037141\
5907987653061887825150042047996556954159609405596\
4178054544759745095141452724977338405984760557339\
4993676514688839783009090058502226547817882109781\
5745036709112156565866550240890475100791145297982\
528846788862573350090531733289276113660937680

FIGURE 1. A Sample Zagier Coefficient.

d ≡ 1, 2 mod 4, this is essentially a table of length 8N .
Once the Zagier coefficients are known, we just have to

do additions to compute the c(n) using Equation (6—4).

We explain how to recursively compute the Zagier co-

efficients. It is obvious from the formulas in Equation

(6—3) that if some n ≥ 1 is given, we get the following
recursion:

t(4n− 1) = −240σ3(n)−
√
4n+1

r=2

r2t(4n− r2) ,

t(4n) = −2
√
4n+1

r=1

t(4n− r2) .

Most of the CPU time is spent to compute the values

t(d). If N = 50000, their computation takes us 8 minutes,

19 seconds. The run time of the whole computation of

the c(n), n ≤ N, is 8 minutes, 43 seconds. Thus, 95% of

the CPU time is spent computing the table of the Zagier

coefficients.

In Figure 1, we list the coefficient t(800000). We

choose this coefficient, as for N = 50000, we have to

compute the values t(d) up to d = 799999. We remark

that t(800000) is an integer of bitlength 4056.

Finally, we remark that if N is of order of magnitude

50000, this method assumes that a large quantity of main

memory is to our disposal, say more than 500 MByte. For

example, we terminated this algorithm on a PC having

about 100 MByte of main memory after 15 minutes. At

this point, the CPU usage of our process was less than

5%, while the swapping process took almost all of the

time.

REFERENCES

[Baier 02] H. Baier. “Efficient Algorithms for Generating El-

liptic Curves over Finite Fields Suitable for Use in Cryp-

tography.” PhD thesis, Darmstadt University of Tech-

nology, 2002.

[Gouvêa 97] F.Q. Gouvêa. “Non-Ordinary Primes: A Story.”

Exp. Math. 6:3 (1997), 195—205.

[Herrmann 73] O. Herrmann. “Über die Berechnung der

Fourierkoeffizienten der Funktion j(τ).” J. f. d. reine

u. angew. Math. 274 (1973), 187—195.

[Kaneko 99] M. Kaneko. Traces of Singular Moduli and

the Fourier Coefficients of the Elliptic Modular Func-

tion j(τ). Volume 19 of Number Theory. Fifth

Conf. Canad. Number Theory Assoc., Ottawa, Ontario,

Canada, Aug. 1996. AMS, CRM Proc. Lect. Notes, 1999.

Baier and Köhler: How to Compute the Coefficients of the Elliptic Modular Function j(z) 121

[Köhler 88] G. Köhler. “Theta Series on the Hecke Groups

G(
√
2) and G(

√
3).” Math. Z. 197:1 (1988), 69—96.

[Knopp 90] M. Knopp. “Rademacher on J(τ), Poincaré Se-
ries of Nonpositive Weights and the Eichler Cohomol-

ogy.” Notices Amer. Math. Soc. 37 (1990), 385—393.

[Mahler 76] K. Mahler. “On a Class of Non-Linear Functional

Equations Connected with Modular Functions.” Jour-

nal of the Australian Mathematical Society 22: Series A

(1976), 65—120.

[Niebur 75] D. Niebur. “A Formula for Ramanujan’s τ -
Function.” Ill. J. Math. 19 (1975), 448—449.

[Rademacher 38] H. Rademacher. “The Fourier Coefficients

of the Modular Invariant J(τ).” Amer. J. Math. 60

(1938), 501—512.

[Ramanujan 27] S. Ramanujan. Collected Papers. Cam-

bridge, UK: Cambridge University Press, 1927.

Reprinted New York, 1962.

[Schoeneberg 53] B. Schoeneberg. “Über den Zusammen-

hang der Eisensteinschen Reihen und Thetareihen mit

der Diskriminante der elliptischen Funktionen.” Math.

Ann. 126 (1953), 177—184.

[Serre 85] J. P. Serre. “Sur la lacunarite des puissances de

η.” Glasg. Math. J. 27 (1985), 203—221.

[Zagier 96] D. Zagier. “Traces of Singular Moduli.” preprint,

1996. Preprint.

Harald Baier, Darmstadt Center of IT-Security, Darmstadt University of Technology, D-64283 Darmstadt, Germany

(hbaier@dzi.tu-darmstadt.de)

Günter Köhler, Department of Mathematics, University of Würzburg, D-97074 Würzburg, Germany

(koehler@mathematik.uni-wuerzburg.de)

Received July 17, 2002; accepted in revised form May 21, 2003.

Product Replacement in the Monster
Petra E. Holmes, Stephen A. Linton, and Scott H. Murray

CONTENTS

1. Introduction
2. The Product Replacement Algorithm
3. Computing the Monster
4. Product Replacement in the Monster
5. Conclusions
Acknowledgments
References

2000 AMS Subject Classification: Primary 20-04, 20D08

Keywords: Monster group, randomised algorithms

We show that the product replacement algorithm can be used to
produce random elements of the Monster group. These random
elements are shown to have the same distribution of element
orders as uniformly distributed random elements after a small
number of steps.

1. INTRODUCTION

Computing in finite groups often requires a supply of

random elements. There are several known methods for

producing them. The best known practical method is

the product replacement algorithm which is given in Sec-

tion 2.

The Monster is the largest of the 26 sporadic simple

groups. It has order

808 017 424 794 512 875 886 459 904 961 710 757 005 754 368 000 000 000

;its minimal faithful permutation and matrix represen-

tation degrees are respectively 97 239 461 142 009 186 000

and 196 882. This makes it far harder to work with than

the 25 smaller sporadics.

In Section 3, we describe techniques which allow lim-

ited computation in the Monster. In Section 4, we de-

scribe our experiments to assess the effectiveness of com-

bining these techniques with a suitable version of the

product replacement algorithm, and in Section 5, we

present our results and conclusions.

2. THE PRODUCT REPLACEMENT ALGORITHM

Let G be a finite group generated by the set X.

The product replacement algorithm uses an array s =

(s1, . . . , sm) of elements of G satisfying the property that

s1, . . . , sm = G. We require that m be larger than the

size of X . Initially we take the entries in s to be the ele-

ments of X , with repetitions to fill out the array. Then at

each stage of the algorithm, we choose distinct random

integers i and j between 1 and m; and then replace si by

the product sisj . We then return the new value of si as

c A K Peters, Ltd.
1058-6458/2001 $0.50 per page

Experimental Mathematics 12:1, page 123

124 Experimental Mathematics, Vol. 12 (2003), No. 1

our random element. It is known from [Celler et al. 95]

that the random elements returned converge in the long

term to a fixed distribution. While this distribution is of-

ten close to uniform, [Pak 01] has shown that in certain

cases, it can be very far from uniform.

A more recent variant of this algorithm [Leedham-

Green and Murray 02] does converge to the uniform dis-

tribution. In this variant, we have an extra group el-

ement s0, called the accumulator. Then at each step

we do product replacement as above, but in addition we

choose a third random integer k and multiply s0 by sk.

Then s0 is returned as our random element.

We have run 100 tests of the product replacement al-

gorithm (with and without an accumulator) with differ-

ent random seeds. We assess the randomness of the ele-

ments produced using the χ2 statistic at the 0.9 probabil-

ity level, applied to a test value derived from the orders

of the random elements. We consider that the algorithm

has converged at step t if, for at least nine out of the

subsequent ten steps, the χ2 value is below the 0.9 level,

as would be expected from genuinely random elements.

These methods for testing product replacement are based

on [Babai et al. 01, Celler et al. 95].

3. COMPUTING IN THE MONSTER

Computing in the Monster is very different to computing

in smaller groups. In most of the groups in which we

work, generating elements can be stored as permutations

or matrices. In the Monster we must take a different

approach, as seen in the three constructions of [Linton

et al. 98], [Holmes and Wilson], and [Wilson 00]. The

construction of [Linton et al. 98], which uses 3-local sub-

groups and linear algebra in characteristic 2, gives us the

fastest way of computing in M and so we choose it for

our computations.

All three of the constructions use three generators,

two of which generate a local subgroup. In the construc-

tion of [Linton et al. 98], two of the generators, C and

D, generate a subgroup isomorphic to 31+12.2Suz:2, the

normaliser of an element in class 3B. The third gener-

ator, T , normalizes a subgroup of C,D isomorphic to

32+5+10:(M11× 22), the centraliser of two commuting el-
ements of class 3B. The element T extends this group to

32+5+10:(M11 × D8). The dimension 196882 module for
M over GF (2) restricts to 31+12.2Suz:2 with shape

142⊕ 32760⊕ (36 ⊗ 90),
where all dimensions are over GF (4) except 142. So C

and D are represented as files each containing four ma-

trices, one for each piece of the representation. Similarly,

the module structure for 32+5+10:(M11×D8) allows T to
be stored as a collection of small matrices.

There are two main programs: one which calculates

the image of any vector in the 196882-dimensional space

under any of the generators, and one which can multiply

together the elements in the local subgroup and return

the product in the same format as the generators. In

this paper, we use the vector-image program to calculate

orders of words in the generators.

It takes approximately 60 ms for each occurrence of

T in a word to multiply a vector by a word using a

Pentium II/450MHz processor with 384 MB of RAM.

This operation is about 100 times faster than when using

the construction of [Holmes and Wilson], although that

construction is the more frequently used as it gives easy

access to 2-local subgroups and comes equipped with a

method for shortening words [Holmes 02].

4. PRODUCT REPLACEMENT IN THE MONSTER

We performed 100 independent incarnations of the prod-

uct replacement algorithm, both with and without an

accumulator, running them for 20 steps with an accumu-

lator and 25 without.

To assess the uniformity of the distribution of ran-

dom elements that we obtained using the χ2 test, we

need some easily calculated property of these elements

which will take a reasonably small number of values

and whose distribution in the whole Monster is known.

The χ2 test can then be used to compare the dis-

tribution of the values which appear in our sample

with the true distribution of the value. In the Mon-

ster, the only suitable property which it appears feasi-

ble to calculate is element order, which has also been

used in studying product replacement in other groups

[Celler et al. 95]. To meet the requirements of the

χ2 test, that each outcome have expected frequency at

least 1 for the sample size being used, we group the

orders {1, 2, . . . , 23, 25, 28, 33, 34, 44, 45, 55, 105, 110} to-
gether to form a single test value.

In fact, we do not strictly use element order, but in-

stead use the order of the action of the elements on a

fixed test vector. It is highly likely, but not proven, that

this vector lies in a faithful orbit of M. Otherwise, there
will be a very small chance of obtaining a divisor of the

correct order. Since this would make the orders look less,

rather than more, random, it does not invalidate our con-

clusions.

The product replacement algorithm was actually per-

formed in the free group on three generators using an

Holmes et al.: Product Replacement in the Monster 125

Number χ2 χ2

of steps with accumulator no accumulator

1 670.051 419.923

2 390.119 367.669

3 249.562 300.125

4 163.061 252.426

5 142.792 247.926

6 62.536 274.574

7 65.525 223.413

8 36.882 94.410

9 50.313 131.215

10 37.671 56.936

11 37.680 76.733

12 35.448 52.527
13 57.899 35.812

14 48.167 33.932

15 37.387 38.222

16 34.160 44.395

17 37.068 43.748

18 47.394 49.358

19 30.610 40.715

20 40.744 38.068

21 45.162

22 36.205

23 38.297

24 46.629

25 43.727

TABLE 1. χ2 values. The entries in bold show where

convergence has occurred.

array of length 4, resulting, for each random seed, in two

sequences of words (one obtained using the accumulator,

and the other not). This part of the calculation and the

computation of χ2 values was done in GAP [GAP 02].

A C program, using subroutines derived from [Linton

et al. 98], was then used to compute the orders of these

words evaluated at the three generators described in Sec-

tion 3.

5. CONCLUSIONS

Table 1 gives the χ2 values for each step. It can be seen

that product replacement with an accumulator converges

after 8 steps, and for product replacement, we need 12.

One use of random element generation in any group

is to obtain elements of specific conjugacy classes or or-

ders, for use in subsequent calculations, such as finding

standard generators [Wilson 96]. To assess the suitability

of product replacement in the Monster for this purpose,

we tabulate in Table 2 the number of steps of product

replacement with an accumulator that we have to per-

form before we see elements of multiples of each possible

order amongst our hundred runs. We are only interested

in multiples of element orders because we can get the el-

ement of the required order by powering up. It is clear

Number Element orders

of steps

1 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 20, 23, 28,

30, 56, 60

2 9, 13, 31, 39, 41, 45, 46

3 11, 17, 19, 21, 24, 34, 35, 42, 55, 57, 68, 70,

84, 119

4 16, 22, 25, 26, 32, 33, 40, 47, 50, 52, 66, 78,

95, 104

5 18, 27, 36, 48, 51, 54, 62, 69, 92

6 29, 59, 71, 87, 93, 94

7 38, 44

8 88

9 105, 110

TABLE 2. Element orders occurring in the output of prod-
uct replacement.

from the table that short words are not suitable for gen-

erating random elements as there are some orders of ele-

ments which we were unable to find without using many

steps. To assess the cost of computing with random el-

ements produced in this way, we graph in Figure 1 the

length of the words generated against the number of steps

of product replacement. Applying a word of length n to

FIGURE 1. Word lengths for product replacement in the
free group.

126 Experimental Mathematics, Vol. 12 (2003), No. 1

a single vector takes about 60 nms on a Pentium II/450

processor.

We conclude that, while it is not practical to use a sin-

gle product replacement calculation to produce a series

of random elements of the Monster as is done in other

groups, since the words involved would rapidly grow too

long, it would appear that, at least as far as element or-

ders are concerned, starting a fresh product replacement

algorithm and running it for between 8 and 15 steps (de-

pending on the quality of randomness required) is both a

feasible and an effective way to generate pseudorandom

elements of the Monster.

Note that it is easy to see that the elements obtained

in this way must be far from uniformly distributed on

M. By counting the possible random choices, we see that
n step product replacement with (without) accumulator

can produce at most (4 ∗ 3 ∗ 4)n ((4 ∗ 3)n) distinct out-
comes, and this reaches the order of the Monster only for

n ≥ 32 (n ≥ 49). What our experiments show is that

product replacement approaches the same distribution

of element orders as the uniform distribution of elements

much sooner than this.

ACKNOWLEDGMENTS

The first author is supported by EPSRC grant

GR/R95265/01. The computations described in this

paper were performed on equipment provided by EPSRC

grant GR/M32351/01.

REFERENCES

[Babai et al. 01] László Babai, Walter Kim, Scott H. Murray,

and Rebecca Vessenes. “Quality of Random Elements in

Finite Groups.” Unpublished.

[Celler et al. 95] Frank Celler, Charles R. Leedham-Green,

Scott H. Murray, Alice C. Niemeyer, and E. A. O’Brien.

“Generating Random Elements of a Finite Group.”

Comm. Algebra 23 (1995), 4931—4948.

[Holmes 02] P. E. Holmes. “Computing in the Monster.” PhD

diss., Birmingham, 2002.

[Holmes and Wilson] P. E. Holmes and R. A. Wilson. “A

New Computer Construction of the Monster Using 2-

Local Subgroups.” J. LMS. To appear.

[Leedham-Green and Murray 02] C. R. Leedham-Green and

Scott H. Murray. “Variants of Product Replacement.” In

Computational and Statistical Group Theory, pp. 97—104,

Contemporary Mathematics 298, Providence, RI: Ameri-

can Mathematical Society, 2002.

[Linton et al. 98] S. A. Linton, R. A. Parker, P. G. Walsh,

and R. A. Wilson. “Computer Construction of the Mon-

ster.” J. Group Theory 1 (1998), 307—337.

[Pak 01] Igor Pak. “What Do We Know about the Prod-

uct Replacement Algorithm?” In Groups and Computa-

tion, III (Columbus, OH, 1999), pp. 301—347. Berlin: de

Gruyter, 2001.

[GAP 02] The GAP Group. GAP—Groups, Algorithms, and

Programming, Version 4.3. Available from World Wide

Web (http://www.gap-system.org), 2002.

[Wilson 96] R. A. Wilson. “Standard Generators for Sporadic

Simple Groups.” J. Algebra 184 (1996), 505—515.

[Wilson 00] R. A. Wilson. “A Construction of the Monster

Group over GF(7), and an Application.” Preprint, 2000.

Petra E. Holmes, School of Mathematics and Statistics, University of Birmingham, Edgbaston,

Birmingham B15 2TT, United Kingdom (P.E.Holmes@bham.ac.uk)

Stephen A. Linton, School of Computer Science, University of St. Andrews, North Haugh, St. Andrews,

Fife, KY16 9SS, United Kingdom (sal@dcs.st-and.ac.uk)

Scott H. Murray, Faculteit Wiskunde en Informatica, Technische Universiteit Eindhoven, Postbus 513,

5600 MB Eindhoven, The Netherlands (smurray@win.tue.nl)

Received June 12, 2002; accepted March 20, 2003.

Instructions for Authors

Experimental Mathematics is devoted to experimental as-
pects of mathematical research. It publishes results in-

spired by experimentation, conjectures suggested by ex-

periments, surveys of certain areas from the experimen-

tal point of view, descriptions of algorithms and software

for mathematical exploration, and general articles of in-

terest to the community. A more detailed statement of

philosophy and of the publishability criteria is available

on the Web at http://www.expmath.org, or by request

from the publisher (see address below, or send e-mail to

editorial@expmath.org).

How to Submit an Article

To submit a contribution, you may either send e-mail

to editorial@expmath.org with an attachment (pdf file)

or address from which the paper (pdf file) can be down-

loaded, or send four printed copies of the material to

Experimental Mathematics

A K Peters, Ltd.

63 South Avenue

Natick, MA 01760-4626

phone: 508-655-9933

fax: 508-655-5847

In either case, you must include a note stating that the

paper is intended for publication in Experimental Math-
ematics and contact information for each author, con-
sisting of (at least) full name, postal address, electronic

address and phone number.

Conditions of Submission

By submiting a paper, authors agree and confirm that:

substantially the same work has not been published else-

where (in a journal or proceedings, though it may have

appeared in the form of an abstract or as part of a lecture,

review, or thesis); substantially the same work is not un-

der consideration for publication elsewhere; if and when

the manuscript is accepted for publication, substantially

the same work will not be published elsewhere, except

that each author retains the right of republication in any

book of which he/she is the author or editor; publication

has been approved by all authors and, if required, by the

institution where the work was carried out.

Submissions will be acknowledged, but not returned.

Charges

There are no page charges for publications, but authors

are expected to contribute toward the cost of color illus-

trations in their articles. Rates will take into account

funding available to authors and editorial necessity.

Offprints

Authors will receive 25 free offprints of their work. At

production time authors may order up to 75 additional

offprints at cost.

Manuscript Requirements

Manuscripts must be written clearly and concisely. We

reserve the right to edit contributions for style and for-

mat, with changes subject to the authors’ approval.

All submissions must include the following elements:

1. title and (if title exceeds 75 characters) alternative

short title for running heads;

2. postal address, affiliation (if appropriate) and elec-

tronic address (if available) for each author;

3. an abstract of at most 150 words, in the same lan-

guage as the article, and an English translation if

the article is not in English.

References

References should include full information: author or in-

stitution; full title; publisher, city and year (for books,

manuals, etc.), or full journal name, volume, year and

page range (for papers). References to software should

contain complete manufacturer’s or distributor’s names

and addresses. All references in the bibliography should

be cited in the text, or accompanied by comments stating

their relevance. Reference tags in the text should include

author’s last name and year of publication, in brackets

[Poincaré 1901]. Use a comma to separate a tag from

a subsequent page or section number, and semicolons to

separate several tags in the same brackets.

c A K Peters, Ltd.
1058-6458/2001 $0.50 per page

Experimental Mathematics 12:1, page 127

128 Experimental Mathematics, Vol. 12 (2003), No. 1

Code and Tables

Experimental Mathematics does not publish computer
programs in printed form. You can include short illus-

trative excerpts from your programs, either within the

text itself (if at most three lines) or as a separate dis-

play. Please supply a caption and a number for each

displayed listing. Keep in mind that many readers will

not be familiar with the programming language in which

your program is written; it is almost always better to

explain what a program does in words than to let the

program speak for itself.

Similar considerations apply to program output and

interactive sessions.

Tables should be kept to a minimum, and generally

serve an illustrative rather than archival purpose. Very

short tables can be embedded in the text; all others

should be able to float and have a caption.

Figures

All figures should be available in electronic form. For

electronically-generated figures, you can use photographs

or printouts for hard-copy submission, but you must sup-

ply the electronic source files if your article is accepted for

publication. Under no circumstances will we reproduce

printouts, low-resolution scans, or screen photographs.

Figure source files should be in Encapsulated Post-

Script (EPS). All art files must be supplied in either

grayscale, or in CMYK (if color will be included in your

article); RGB files should not be used. Halftone images

should have a resolution of 300 dpi for best printing qual-

ity. Line art (black and white with no grays) should

ideally have a resolution of 1200 dpi, but definitely no

less than 800 dpi. Please be sure to check and make sure

that your line art is truly black and white and not RGB

in disguise.

When in doubt whether your figure source is in an ac-

ceptable format, check with the editors by sending elec-

tronic mail to editorial@expmath.org.

For each figure, please supply a caption and a number

by which the figure is referred to in the text. If possible,

integrate the figures with the text; otherwise, indicate

their optimal placement by means of a comment such as

“Place Figure 1 here.” In referring to the figure, avoid

constructions (“the curve looks like this:”) that require

the exact placement to be known in advance.

See also the section on Charges on the preceeding page.

Electronic Text

If your article is accepted, we request that you submit the

text in electronic form. You can transfer it by e-mail,

ftp, or diskette. Send e-mail to editorial@expmath.org

for details. We also require that you send us a printed

copy of the final version of your article.

Experimental Mathematics is typeset in LATEX. If you
have prepared your manuscript in a form other than

LATEX or TEX, please save your files as text-only or

ASCII.

• If possible, please use LATEX article style.
• Do not redefine existing LATEX commands.
• Do not embed any new definitions in your text.
• Avoid using explicit vertical spacing commands such
as \vskip, \medskip, \bigbreak.

• All user-defined macros must be placed in a separate
file which is input at the top of the document.

• Avoid using specialized style files which may work
only on your installation–if you use other style files,

they must be submitted with your article

• Avoid using explicit horizontal spacing commands.
If you must use extra spacing, do it consistently, by

means of macros.

• Do not, under any circumstances, insert forced line
breaks or page breaks in your document.

• Use double-column format if possible; otherwise sin-
gle column is acceptable. Since Experimental Math-

ematics is set in double-column format, your prepa-

ration of the electronic files in this way will ensure

that your mathematical formulas are broken cor-

rectly. It will also help in the sizing of your illus-

trations.

