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Let o be a unit of degree d in an algebraic number field,
and assume that « is not a root of unity. We conduct a nu-
merical investigation that suggests that if o has small Mahler
measure, there are many values of n for which 1 — a™ is a
unit and also many values of m for which ®,,(a) is a unit,
where ®,,, is the m-th cyclotomic polynomial. We prove that
the number of such values of n and m is bounded above by
O(d'+0-7/leglogd) "and we describe a construction of Boyd
that gives a lower bound of (d%-6/logleg ),

INTRODUCTION

An algebraic number a is an exceptional unit if
both a and 1 — a are algebraic units. Siegel proved
that there are only finitely many exceptional units
in any number field, and there is a large litera-
ture devoted to proving quantitative and effective
bounds for the set of exceptional units. For exam-
ple, Evertse [1984] has proved that a number field
of degree d has at most 3 - 73¢ exceptional units.
Let a be an algebraic unit of degree d that is not
a root of unity. In this article we investigate how
many powers of o can be exceptional units. Thus
we will be looking at solutions of the unit equation

utv=1 (v and v units) 0.1)

in which the variable w is chosen from a cyclic sub-
group of the group of units.

Let E(a) be the number of values of n > 1 such
that o™ is an exceptional unit. OQur main theoret-
ical result will imply that there is an absolute and
effectively computable constant ¢ such that

E(a) S Cd1+0'7/10310gd. (0.2)
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So in this special situation we are able to reduce
Evertse’s exponential bound to a bound that grows
only a little faster than linearly.

A power " is an exceptional unit if and only if
1 — a™ is a unit. Now 1 — o™ factors as

1—a" =[] ®m(a), (0.3)

min

where ®,, is the m-th cyclotomic polynomial. Thus
1 — o™ is an exceptional unit if and only if ®,,(«)
is a unit for all m|n. Let U(a) denote the num-
ber of values of m > 1 such that ®,,(«) is a unit.
Stewart [1977] has shown that, if ®,,(«) is a unit,
then m < e*2d%". This clearly gives O(d%") as an
upper bound for U(«). The following result gives
a bound of the form O(d'*°®)) (see Theorem 4.1
for something stronger).

Theorem 0.1. Let o be an algebraic unit of degree
d > 2 that is not a root of unity.
absolute and effectively computable constant ¢ such
that

There is an

U(a) < Cd1+0.7/ log log d‘

We now briefly describe the contents of this arti-
cle. We begin in Section 1 with some motivation
for why one might be interested in studying the set
of m such that o™ is an exceptional unit and the
set of m such that ®,,(«) is a unit. We also use a
method from [Blanksby and Montgomery 1971] to
show heuristically why one might expect these sets
to be large if o is a number of small Mahler mea-
sure. We follow up this observation in Section 2
with a numerical investigation of some specific a’s
catalogued by David Boyd [1977; 1978; 1990]. For
example, we will exhibit an « of degree 18 such that
E(a) > 25, an « of degree 28 such that U(a) > 77,
and an « of degree 26 such that o™ is an exceptional
unit for all n =1,...,10.

The data we collect will suggest a possible gen-
eral upper bound of the form

log d
Ula) > A28

———+ B
~ log M () +5

where A and B are absolute constants and M («)
is the Mahler measure of «. Unfortunately, this
guess turns out to be much too ambitious. David
Boyd (in a private communication) has pointed out
that U(«) can grow more rapidly than any power
of logd, and further that no upper bound of the
form o(d)/log M (a) + O(1) is possible. We will
describe Boyd’s constructions in Section 5.

After the numerical results of Section 2, we turn
in Section 3 to some preliminary inequalities that
are needed for the proof of our main result. In
Section 4 we prove something stronger than The-
orem 0.1. The proof uses an upper bound for m
essentially found in [Stewart 1977], a lower bound
for the Mahler measure [Dobrowolski 1979], an el-
ementary but involved estimate for values of cy-
clotomic polynomials (Proposition 3.3), and a sort
of “supergap principle” (Lemma 4.3) that may be
of some independent interest. Finally, in Section 5
we present Boyd’s results.

We close this introduction with two remarks.
First, our estimate (0.2) is really a bound for the
number of solutions of (0.1) in which the variable u
is chosen from a group I' C C* of rank 1. More gen-
erally, one can ask for a bound for the number of
solutions of (0.1) with v € I'; and v € I', where
I'y,I'; € C* are groups of ranks r; and r2. See,
for example, the recent work [Bombieri et al. 1994]
in which the authors use a supergap (or cluster)
principle to prove their bounds. If r; = 1 and I',
is the full unit group, (0.2) gives a bound that is
almost linear in r,. However, if 7; > 2, the best
known bounds are exponential in 7. One possible
explanation for this difference is the existence of
the factorization (0.3) of 1 — ™ in the rank-1 case.
Unfortunately, there is no analogous factorization
of 1 — al*ay?.

Second, there are natural elliptic analogues to
the questions studied in this article. The analogue
of an exceptional unit is an integral point on an
elliptic curve. Thus let E/K be an elliptic curve
defined over a number field, and let P € E(K) be
a nontorsion point of degree d. One can ask for
an upper bound for the number of integers n such
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that nP is an integral point on E, and similarly
one can ask for the number of values of m such
that ®g,,(P) is an S-unit, where ®g ,, is the m-
division polynomial of £ and S is the set of primes
of bad reduction for E. There are bounds known
in terms of various quantities associated to K, FE,
and d (see [Hindry and Silverman 1988], for ex-
ample), but all of them are worse than polynomial
in d. It seems likely that the methods of this article
will give a bound of the form ¢(E/K)d*t°®). The
exponent 3 reflects the best result currently known
for the elliptic Lehmer conjecture [Masser 1989].
For elliptic curves with nonintegral j-invariant, the
improved estimate in [Hindry and Silverman 1990]
would probably yield an upper bound of the form
c(E/K)d*°®. Similarly, for elliptic curves with
complex multiplication, [Laurent 1983] could prob-
ably be used to reduce this to c(E/K)d**°™"). We
will not deal with the elliptic case in this article.

1. Exceptional units in cyclic groups

The Mahler measure M («) of an algebraic integer
« is defined by

= Hmax{|a|, 1},

where the product is over all embeddings of Q(«)
into C. Clearly M(a) > 1 for all @. An elemen-
tary result of Kronecker [Kronecker 1857] says that
M («) =1 if and only if « is a root of unity. Equiv-
alently, if « is not a root of unity, at least one of
its conjugates must lie outside the unit circle.

Now consider the following dubious piece of logic
suggested by Kronecker’s theorem.

1. If M(«) is close to 1, then « should look like a
root of unity.

2. If ¢ is a root of unity, 1 — (™ tends to be a unit
(or at least a p-unit, if ¢ is a p*-th root of unity).

3. Ergo, if M () is close to 1, then 1 — o™ should
be a unit for many values of n.

This suspicious reasoning will be numerically vin-
dicated in the next section. For example, a root 7,
of the polynomial

28 1T 16 4 15 12 g1l g0

— T — 41 (1.1)
has Mahler measure approximately 1.188368147,
and there are at least 25 values of n for which 1—~7
is a unit.

A famous question of Lehmer [1933] is whether
there exists an absolute constant € > 0 such that
a is a root of unity whenever M(a) < 1 +¢. For
partial results on this problem, see [Blanksby and
Montgomery 1971; Dobrowolski 1979; Mignotte
1977; Silverman 1994; Smyth 1971; Stewart 1978].
In particular, [Blanksby and Montgomery 1971]
can be used to establish a connection between
Lehmer’s question and the powers of o that are
exceptional units. This was our original motiva-
tion for studying this question. We briefly sketch
the argument.

Let a be an algebraic unit of degree d with con-
jugates ai,...,aq. Foreach 1 < i < d, let §; =
a; if |og| < 1, and let B; = " otherwise. Let
N : Q(a) — Q denote the norm. For each inte-
ger K > 1 we consider the sum

(1
(1

Mw

S(a >log|N 1—a)|

71):
K1)

(1-
X zi: log max{|ak], 1}+10g|1—ﬁk|>
log M («a )

—i—ZZ(l—K—H)lOgH_ﬂﬂ-
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The final inner sums can be bounded using the
Fourier averaging technique described in [Blanksby
and Montgomery 1971]. One ends up with an esti-
mate of the form

log M () > % (S(e, K) — Ld(log(K + 1) + 1))
(1.2)
[Silverman 1994, Proposition 2.3].

Thus one approach to answering Lehmer’s ques-
tion is to find a (small) value of K with the prop-
erty that S(«, K) is large [Silverman 1994]. But
S(a, K) will be large precisely when N (1 — o*) is
large for many values of 1 < k < K, so the worst
possible case is when many of the o are excep-
tional units. Conversely, inequality (1.2) says that
S(a, K) cannot be too large if M («) is close to 1,
and this in turn suggests that many of the oy are
exceptional units. So (1.2) helps to justify our ear-
lier piece of dubious logic. Unfortunately, it does
not appear that (1.2) by itself is strong enough to
actually prove the existence of many exceptional
units.

As mentioned in the introduction, the factoriza-
tion of 1 —x™ as a product of cyclotomic polynomi-
als means that it is more natural to look at values
of m for which ®,,(«) is a unit. Thus, if 1 — « is
not a unit, 1 — o™ will never be a unit. But one
might hope that the chances of the ®,,(a) being
units are independent events in some (admittedly
vague) probabilistic sense. As a numerical exam-
ple, consider a root 7y, of the polynomial

PRL TP B [ Q. S S S

The Mahler measure of 7, is 1.2527759374, approx-
imately. Evaluating the polynomial at = 1 shows
that N(1—12) = —5, so 1 — % is never a unit. On
the other hand, there are at least 58 values of m
for which ®,,(2) is a unit.

We also note that rearranging the sum defining
S(a, K) gives

where the inner sum is approximately K/2m. So
(1.2) also suggests that many values of @, («) will
be units if M («) is close to 1.

As a final motivation for studying the question of
how many values of m give units ®,,(«), we men-
tion the recent article [Cohen et al. 1992], where
the authors consider the largest real root 3 of the
polynomial

20+ 2 - = - -t B+ 1. (1.3)

(This 73 has the smallest known Mahler measure
greater than 1—approximately 1.1762808.) They
find that there are 66 values of m < 1000 for
which ®,,(vy;3) is a unit. They use these values,
together with a few additional multiplicative re-
lations among the other ®,,(v3)’s, as the starting
point in climbing a polylogarithm ladder. The exis-
tence of so many units allows them to discover and
numerically verify several relations among polylog-
arithms of order sixteen. They suggest that this
“is quite possibly the highest order occurring for
any algebraic number” because ~y3 probably has the
smallest Mahler measure strictly greater than 1.
However, we observe that for a root ~; of (1.1),
there are at least 75 values of m for which ®,,(v1)
is a unit, so it might be worthwhile investigating
polylogarithm ladders for ;.

2. NUMERICAL RESULTS

In this section we investigate some specific numbers
of small Mahler measure. David Boyd [1977; 1978;
1990] has computed tables of such numbers. We
begin with his list of small Salem numbers [Boyd
1977; 1978]. (A number « is a Salem number if
M (o) = « and if some conjugate of « lies on the
unit circle.) The relevant data are given in Table 1.

Boyd [1990] gives for each even degree 4 < d <
40 the number with smallest known Mahler mea-
sure. (For d < 20, he verifies that the number listed
is actually the smallest.) In Table 2 we reproduce
Boyd’s list, together with the largest value of m
and the number of values of m such that ®,,(«) is
a unit, where we check all m < 500.
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k d a=Ma) A B C D
1 10 1.176281 74 22 286 65
2 18 1.188368 74 25 210 72
3 14 1.200027 74 20 260 68
4 14 1.202617 74 20 300 64
5 10 1.216392 43 16 294 53
6 18 1.219721 91 19 294 64
7 10 1.230391 39 11 186 48
8 20 1.232614 73 13 300 64
9 22 1.235665 91 22 240 63

10 16 1.236318 67 14 210 56
11 26 1.237505 98 17 290 66
12 12 1.240726 47 11 240 49
13 18 1.252776 —  — 228 58
14 20 1.253331 —  — 252 56
15 14 1.255094 41 16 192 50
16 18 1.256221 47 15 294 54
17 24 1.260104 27 9 204 56
18 22 1.260284 61 16 270 57
19 10 1.261231 46 13 156 39
20 26 1.263038 74 19 250 59
21 14 1.267296 59 13 264 47
22 8 1.280638 23 8 140 35

23 26 1.281691 — — 300 57
24 20 1.282496 41 10 210 55
25 18 1.284617 — — 248 50
26 26 1.284747 91 16 280 54
27 30 1.285099 — — 280 55
28 30 1.285122 85 12 266 62
29 30 1.285186 — — 252 59

30 26 1.285197 46 14 294 58
31 44 1.285199 127 11 300 62
32 30 1.285235 83 16 264 57
33 34 1.285409 98 16 246 54
34 18 1.286396 73 14 180 47
35 26 1.286730 74 14 234 54
36 24 1.291741 —  — 162 46
37 20 1.292039 — — 300 49
38 10 1.293486 39 11 210 36
39 18 1.295675 61 13 240 46
40 22 1.296421 61 13 210 49
41 28 1.296821 —  — 276 52
42 26 1.299745 53 16 168 52

TABLE 1. Small Salem numbers and their degrees
d, from [Boyd 1977; 1978]. For each number we
have also computed the largest n < 300 with 1—a™
a unit (column A), the number of n < 300 with
1—a™ a unit (a lower bound for E(a); column B),
the largest m < 300 with ®,,(c) a unit (column
C), and the number of m < 300 with ®,,(c) a unit
(a lower bound for U(«); column D).

d M(a) A B
4 1.722084 22 6
6 1.401268 84 18

8 1.280638 210 35
10 1.176281 360 66
12 1.227786 170 49
14 1.200027 260 68
16 1.224279 420 57
18 1.188368 290 75
20 1.212824 396 67
22 1.205020 390 70
24 1.218855 408 70
26 1.223777 280 67
28 1.207950 330 7
30 1.225620 450 71
32 1.236198 480 65
34 1.229999 280 73
36 1.229483 462 73
38 1.223447 360 76
40 1.236250 360 70

TABLE 2. Small reciprocal numbers and their de-
grees d, from [Boyd 1980]. For each number we
have computed the largest m < 500 with ®,,(a) a
unit (column A) and the number of m < 500 with
®,,, (@) a unit (a lower bound for U(a); column B).

The data in columns A-D of Tables 1 and 2
were calculated using PARI [Batut et al. 1993].
Note that 1 — a™ and ®,,(«) are units if and only
if their norms equal £1. If f(X) is the minimal
polynomial of « over QQ, these norms can be com-
puted as the resultants Res(f(X), 1 — X™) and
Res(f(X), ®,(X)). PARI is well suited to per-
form these computations, although for large values
of m it turns out to be slightly quicker to compute

Res(f(X), @m(X)) = [ Res(£(X), 1-X")Hmm),

n|m

where p is the Mobius function. The advantage of
this formula is that one can compute X™ mod f(X)
quite rapidly by using successive squaring.

Before we begin analyzing the data in our ta-
bles, we want to point out a few individual entries.
The most famous, of course, is the first entry in
Table 1, which also appears as the degree-10 entry
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in Table 2. It is widely believed that this number
has the smallest Mahler measure strictly greater
than 1. For this number there are at least 66 val-
ues of m for which ®,,(«) is a unit. (Note that
Table 1, which only refers to values of m up to 300,
missed the value m = 360 included in Table 2.)

The large number of units ®,,,(«) for this partic-
ular a was exploited in [Cohen et al. 1992] to pro-
duce relations between polylogarithms of order 16.
It might be interesting to perform similar compu-
tations using entry k = 2 in Table 1 with its 72 unit
values, or using the entries of degrees 18 and 28 in
Table 2, which have 75 and 77 unit values. These
«’s might allow the construction of polylogarithm
relations of even higher order.

Another interesting entry is £ = 20 in Table 1,
which has the property that 1 — o™ is a unit for
all 1 < n < 10. This is currently the longest
known string of consecutive powers being excep-
tional units.

We are now going to try to interpret the data
in our tables, especially the question of how the
last column is related to the degree and Mahler
measure of the number. For any number «, we will
denote by d(a) = [Q(«) : Q)] the degree of «. In the
course of proving our main theorem in Section 4,
we will prove an inequality slightly weaker than

d(a)

U(a) < cd(a) + c Tog M(a)

+ cs, (2.1)

and it seems possible that our method is capable
of producing exactly this estimate. See the proof
of Theorem 4.1, especially (4.9).

At first glance this inequality seems reasonable
for the data in Tables 1 and 2, since increasing
the degree leads to additional units, and increasing
the Mahler measure leads to fewer units. However,
a second look makes it clear that a linear depen-
dence in d(a) grows much too rapidly. In fact,
the growth levels out quickly enough to suggest
that log d(«) might be more appropriate. Unfor-
tunately, as shown by the constructions of Boyd
described in Section 5, our data for «’s of small

Mahler measure turns out to be misleading. There
do not exist bounds for U(«) of the form

U(a) < cs(logd(a))™

or of the form

d(c)y (d(a))

Ul < e log M («)

for any exponent N and function v(d) that tends
to 0 as d — oo.

On the other hand, we would certainly expect
that, for a fixed degree, the size of U(«) should
decrease as the Mahler measure M («) increases.
This leads us to ask the following question.

Question 2.1. Are there absolute constants A and B
such that

d
Ule) A———+ B
(o) < log M(«) +
for all d > 1 and all algebraic units « of degree d
that are not roots of unity?

Notice that one consequence of the inequality in
this question is that, if M(a) > e? there is a
bound C for U(«) that is completely independent
of a. But for any given d, there are only finitely
many o’s of degree d and M(a) < e?, so for any
given d there would be only finitely many o’s with
U(a) > C.

3. PRELIMINARY ESTIMATES

In this section we will prove some preliminary es-
timates needed for the proof of our main theorem.
We set the following (mostly) standard notation.
See [Apostol 1976] for further details.
p(n) Mobius p function, equal to (—1)% if n is
a product of k distinct primes, otherwise
equal to 0.

oo(m) the number of divisors of m.

I(n) the identity function for Dirichlet multipli-
cation, equal to 1 if n = 1, otherwise equal
to 0.

W, the set of n-th roots of unity.
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. the set of primitive m-th roots of unity.

®,,(z) the m-th cyclotomic polynomial, equal to

©(m) Euler’s totient function, equal to deg ®,,

Lemma 3.1. Let n > 1 be an integer, and let w,( €
C satisfy |lw| <1 and || =1. Then
1| w
— (> 2= — .
=412 5| ¢

Proof. Replacing w by (w and canceling |(| = 1, we
may assume that ( = 1. Write z = = + iy = re®
with [0] < 7. If || > 7/2, then z < 0, s0 |z — 1| >
|x — 1| > 1. Since we always have

1‘ =le? 1] < 2,

this gives the desired result in this case.

Next suppose that |#] < 7w/2. Then |jw — 1| >
|sin@|, since |sinf)| is the distance from 1 to the
ray determined by w. Hence

0

>

jw =1 > e

|sinf| =
246

| e

_1|:l

2|

= 1le e —1|le? + 1|

> 1le? —1] = ‘——1‘ O
Lemma 3.2. Let a € C with |a] < 1 and o not a

root of unity. Then, for alln > 1,

(1—|a|)? +4]asin? = %ﬂ'a -
2n
(3.1)
In particular,
3 < |.047—1| <. (3.2)
10~ min |a — (|
CEM,

Remark. If we put || = 1 in (3.1) and use the
estimate |sinz| > 2z /7, we obtain the following
interesting inequality:

2 _ o -1

7 — min |a — (|
Cepy,

<n
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for all & € C with |a| = 1. It is not hard to see
that this is best possible.

Proof of Lemma 3.2. Replacing « by (« for some
¢ € u,,, we may assume that

— 1| = min |a — ¢|.
o= 1] = min | - ¢

n

This means that we can write a = re?™® with r < 1
and || < 1/2n.
The upper bound in (3.1) follows trivially from

the triangle inequality:

n—1 n—1
a™ -1 . .
J J
‘a—l —Za §Z|a|.
=0 =0

Then the upper bound in (3.2) is immediate from
the assumption that |a| < 1.
To prove the lower bounds, we define

m—1 1— p2m
j=0 m
We expand and regroup:

n—
‘ E k 27rz]0
n—1n-1

E § ,,_]+ke27rz(]—k)9
j=0 k=0
—1 n—1+u

E ,’,,—u+21627r1u9

u=—(n—1) j=0

ifr <1,
ifr=1.

n—1ln—-1—-u
+ § 7.2] + § § ,’,,u+2k 27wiub
u=1

n—1

= R(n) + Z R(n — u)(e*™0 4 ¢—2miub)
=R(n) +2 i R(n — u) cos(2mub).

Now we need only observe that if 1 < u < n—1, the
function cos(27uf) on the interval |§| < 1/2n at-
tains its absolute minimum at the endpoints. This
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means that, for a fixed modulus |&| = r, the mini-
mum value occurs at § = 1/2n, so

|an _ 1| S |(,,,627ri/2n)n _ 1|

min |a — (| — |re?ri/?n — 1|
CEn,
_ 147"
/1412 —2rcos(m/n)
1+

a V(1 = 7)? + 4rsin®(7/2n)
This completes the proof of (3.1).

In order to prove the lower bound in (3.2), we
consider two cases, the first being n > 1/(1 — 7).
Then

(1 —7)? + 4rsin®(r/2n) < (1 —7)? 4+ rr?/n?
(1—7)*(1+r7?)

(1 =r)*(1+%)
(the first inequality because |sinz| < z, the sec-
ond because of the assumption on n, and the last
because r < 1). Substituting this into the lower
bound in (3.1), we get
1+ 3 S 3

(1—7)V/1+72 = 10(1—r) = 10
since r > 0. This proves the desired lower bound
in this case. If, on the other hand, n < 1/(1 —r),
we have

(1 —7)% 4 4rsin®(7/2n) < 1/n® + 4rsin®(7/2n)

< (1+n*)/n?

IA A

(the first inequality because r > 1 — 1/n, and the
second because r < 1 and |sinz| < z). Substitut-
ing this into the lower bound in (3.1), we get

B Y 1
g 0
which completes the proof of the lemma. O

Proposition 3.3. For all oo € C not a root of unity
and satisfying || < 1, and for all integers m > 1,

¢'le — o0 m
7|_ ()] > (118m)~270™/2 (3.3)
min |a — (|
CEMT,

Proof. Write o = re?>™* and choose an integer a
satisfying
1
P
m 2m

Setting ¢, = e?™/™, we have

min |a — | = |a — (.
CEpm
Note, however, that this is the minimum over all
m-~th roots of unity, not just the primitive ones,
since ged(a, m) may be greater than one. So we
write a/m = A/M with ged(A4, M) = 1, and then
we have (, € pu3,.
From [Apostol 1976, Theorem 2.1] we have

> ()= T o) -1 (5)-

This allows us to write

[P ()] 1
_ n_ qpm/m)
min |a — (|  min a—C|H|a |

¢eps, Cens, n|m

=P PP,

where

— (. |[{(m/M)
Pl - |a . Ca| )
min |« — (|
CEMT,
a™—1
P2 == ‘
an[n a_Ca
n=0mod M

= ][

nlm
n#Z0mod M

n(m/n)
)

la™ — 1|u(m/n)‘

We will treat each factor individually.

The first factor is easy. If m = M, then ¢, € p,,
so P, = 1; and if m # M, we can use the trivial
estimate o — (| < 2 to get P > 1.

Next consider P,. In this product every n = 0
mod M, so we have (, € p,. Further, our choice
of a ensures that this is the n-th root of unity clos-
est to a, so (3.2) gives the upper and lower bounds

3
= 10"

n >

‘a"—l

a_Ca
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Substituting these bounds into the definition of P;
gives

m a™—1
log P, = (%) 10g]
gP= D, p()lsg g
n=0mod M
> Z log & — Z logn
n|lm, p(m/n)=1 n|lm, p(m/n)=—1
n=0mod M n=0mod M
> > (- log 2 ~ logn)
nlm

= —oo(m) log<%>.

Exponentiating gives

P, > (10y/m/3) ™. (3.4)

It remains to deal with P3. Let n|m be an integer
with n Z 0 mod M, and choose £ € pu,, so that

o = €]

sinw(& — %)‘

22‘9—%‘, (3.5)

min |a — (| =

n

Then, by Lemma 3.1, we have

. _ >l 27ri0_ —
gg;nla ¢l > 5le q

n

where b is defined by ¢ = >/ and where the last
inequality used the fact that |sin(t)| > (2/7) |¢| for
It] < /2.

Now we note that £ # (,, since (, is a primi-
tive M-th root of unity and M{n. This trivial but

crucial observation implies that b/n # a/m, so
‘ b a ‘ ‘ bm/n — a‘ 1
— 2 =12 T s =
m - m

We also note that
‘9 N i‘ < 1
ml~— 2m

since (, is the closest m-th root of unity to a =

re?™®. These two estimates, combined with (3.5),
yield
1
m1n|a—§| >2<‘———‘ ‘——9‘) > —
CEm m’
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Hence, using the fact that |a| < 1 and Lemma 3.2,
we get

a”—1
2> |a"—1|:¥ m1n|a—C|
min |a — (| ¢
CER,
3
>_2
10m

Using this, we are finally able to estimate P; as

P= I[ len—1pem s ] %

nZ0 mod M n#Z0 mod M
H <10m> ™)
| 10m '

Combining this with the trivial estimate P; > %

and with (3.4), we get
@ 1 —oo(m)
| ‘ _p.p.p>t 00m>3/ '
len a— (| 2 9
e

Since oy(m) > 2 for all m > 2, this is stronger than
(3.3). This completes the proof of Proposition 3.3.
[l

4. UPPER BOUNDS FOR UNITS @, ()
In this section we will prove the following bound:

Theorem 4.1. Let ¢ > 0 and k > 1. There is an
effectively computable constant ¢ = c(e, k), depend-
ing only on € and K, such that any algebraic unit
a of degree d that is not a root of unity satisfies
(1+¢)log2
#{m>1:|N®,(a)| <k} < cd'" Toslogm
(4.1)

Note that ®,,(«) is a unit if and only if the norm
of ®,,(«) has absolute value 1, so this theorem is
stronger than Theorem 0.1.

We begin with some preliminary calculations.
The following result, which is essentially due to
Stewart [1977], says that the largest m appearing
in (4.1) satisfies m < max{d2%®,log®® k}. Thus
the main feature of interest in Theorem 4.1 is the
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fact that the exponent of d in the upper bound is
only slightly larger than 1.

Proposition 4.2 (after [Stewart 1977]). Let « be an
algebraic integer of degree d > 2 that is not a root
of unity. If m > (1000d)?%5, then

log |®,m ()| > (1000d)*°m?/>. 4.2)

Proof. This result is contained in the proof of The-
orem 1 of [Stewart 1977], so we just give a brief
sketch. We begin with [Stewart 1977, eq. (12)],
which in our notation says that

dlog [®m(a)| > ¢(m)log M(c)
— Cd(d + log M(c))q(m)logm,
where C' = 2%3¢(3d)*° and log, ¢(m) is the num-

ber of distinct prime divisors of m. Next, [Stewart
1977, eq. (15)] gives

1
log M > > .
08 M(e) 2 155 108 6d = 100

Combining these two estimates and doing a little
algebra we get something stronger than

1 p(m)

_ 10155d50.
” 100d® g(m)logm

log| @ ()]

Next we use the fact that

p(m) > m/s
q(m)logm

[Stewart 1977, p. 88] to get

m*/> 43749 750
log|®,, —27"3%d
og‘ (a)‘ - 100d3

= (1000d)*m?/*

m1/5 105
1015353  3/5 ) :

Finally, our assumption that m > (1000d)?%° gives

something stronger than the desired result. El

Proof of Theorem 4.1. Unless otherwise indicated, the
constants ¢; appearing in this proof are effectively
computable constants that depend only on € and k.

We denote the conjugates of a by ay,...,aq € C
and define (q,..., 34 to be
/B- o a; if |o¢l| S 1,
T lagtif e > 1.
Thus |3;| < 1 for all . We will need the estimates
(1+€)log2
oo(m) < cgm loglogm (4.3)
and
C7m
> T 4.4
w(m) 2 loglogm 44

[Apostol 1976, Theorems 13.12(a) and 13.14(a)].
As we will see below, our argument hinges on the
fact that ¢(m) grows much faster than oo(m).

We take m to be in the set on the left-hand side
of (4.1), so we can write

cgd > log [IN®,,(a)].

This gives

d
csd > ) log | @, (c;)|

i=1

d d
= > loglaf™ |+ " log|®... (8],
=1 =1

lai|>1

since ®,,(z) = £2*(™®,, (z7!). By the definition
of the Mahler measure, the first sum on the right-
hand side is ¢(m) log M (), so Proposition 3.3 now
gives

csd > p(m)log M(a)
d

+ ) (log Crgin 18; — ¢ — 2009(m) log(118+/m))
Py Mo
C7m
> ——logM
~ loglogm og M(a)
(14€)log2
—d - Cem loglogm

- 21log(118+y/m)
d
+ log min |3; —
; g min |6 — |
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by (4.3) and (4.4). Rearranging the terms and ad-

justing the constants as necessary, we find
d
log M
Y log min |, — ¢ > @m0 (a)
— cens, loglogm

(1+€)log2
— log I
crodm loglogm |

and hence
log M
_dlog min |6 — ¢| > &miosM()
1<i<d loglogm
CeEpy,
(14€)log2
— Clodm loglogm (4.5)

We are now going to assume that m satisfies

(1+¢)log2
m ~ loglogm >

d d. (4.6
~ log M («) and.m > (4.6)

This means that at the end of the proof we will
have to include all smaller values of m as possible
elements of the set (4.1) whose size we are esti-
mating. Now divide both sides of (4.5) by d and
substitute in (4.6) to obtain

(142¢) log 2

cuim log log m (1+¢)log2

—log min |B;—(|> —c1om loglogm
8 1<i<d Bi—Cl= loglogm 2
CEMT,
The function m®°8?/1oglog™ grows faster than any
power of logm, so if we assume that m > c¢i3, we

obtain the fundamental estimate

(14¢€)log2
—log min |B; — (| > ciam loglogm |
g win [6; —¢| =
CEL,

Multiplying both sides by —1 and exponentiating
yields the equivalent estimate

(14+¢)log2

1Ié1iiéld 1B — ¢| < exp<—014m log log m ) 4.7)
CEMT,

The content of this inequality is that, if m is large

and in the set (4.1), one of the 3; must be extremely

close to some primitive m-th root of unity. In fact,

the estimate (4.7) is so good that it implies that

the m’s in the set (4.1) satisfy a sort of “supergap
principle”, as described in the following result.

Lemma 4.3 (supergap principle). Let s > 0 andt > 1
be fized constants. There is a number X(s,t) such
that, for all B € C and all X > X(s,t), there is
at most one m such that X <m < X* and

min | — (| < exp(—m?/slEm),

CERS,

Proof. Let m; < ms both satisfy this last inequality,
and let ¢; € py,, and (> € py,, be the correspond-
ing roots of unity closest to 3. Then

€1 =G| S [B—=Gi[+[8 -G

s/loglogm s/loglogm
ml/gg 0 2/gg ),

< exp(— +exp(—m

On the other hand, we know that (; # (., and
clearly ¢;¢;" is an myma-th root of unity, so we
have the trivial lower bound
G = Gl = |GGt — 1] > |e2m/mme — 1
=2 | sin(ﬂ/m1m2)| Z 4/m1m2.
Combining the upper and lower bounds and using
the assumption that m, < m., we find that
4/m?2 < 2exp(—m;}/ %818,
If we further assume that m; is larger than some
constant depending only on s, we find that
1
loglog my > 5 _ogi
2 loglog my
But if X < m; < my < X, this gives
s logX
log(tlog X) > - —2——
og(tlog X) = 2 loglog X’

which is a contradiction as soon as X > Xy(s,t).
O

We resume the proof of Theorem 4.1. It clearly
suffices to bound the size of the set

{m>d:|N®,(a)| <r%}. (4.8)

Further, Stewart’s result (4.2) says that any m in
(4.8) satisfies
m S Cl5d265.
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It thus suffices to prove Theorem 4.1 under the
assumption that d > ¢4, since the constant c¢ in
(4.1) can be adjusted to account for small values
of d.

Now let m; < mgs < -+ < my be the distinct
elements in (4.8) that also satisfy the inequality
(4.6). According to (4.7), we can assign to each
1 <j < N an index i(j) so that

C| SeXp( 1 m(1+€)10g2/10g10gm3)

min |G —
CCpin, |161(J)

Since we are further assuming that m > d > cyg,
we can absorb the constant into the power of m,
S0

617/ log log m; )

min |/6i(j) ¢| < exp(—m

CEnm;
On the other hand, Stewart’s result (4.2) says that
m; < d8.

Using the last two equations in the supergap prin-
ciple (Lemma 4.3), we see that, for each f;, there
is at most one m; with i(j) = i.

To summarize, we have shown that the set (4.8)
contains no more than d elements satisfying the
inequality (4.6). Hence (4.8) contains at most
d >1+_(11:g2150)g1(7)7g12

d+ d+clg(logM(a)

(4.9)

elements.
To complete the proof of the theorem, we apply
Dobrowolski’s theorem [1979], which says that

log log d\ 2
08 108 ) . (4.10)

logd
Substituting this into (4.9) and using

<ec 1<M>3 S c22d1+€/log10gd
loglogd

log M(a) > c2o <

log M ()
gives the desired result after adjusting the value

of . This completes the proof of Theorem 4.1. [l

Remark. Before Dobrowolski proved the estimate
(4.10), Blanksby and Montgomery [1971] and Stew-
art [1978] had proved the weaker result

log M (c) > dlcjgd 4.11)

This estimate sufficed for Stewart [1977] to prove
his polynomial upper bound for the largest value
of m, but if we use (4.11) in place of (4.10), our
upper bound (4.1) for the number of m’s would
look like d?*t°() instead of d'*°*). On the other
hand, even if we knew Lehmer’s conjecture that
log M () > co7, we would not be able to improve
the upper bound in Theorem 4.1 unless we could
also improve the lower bound in Proposition 3.3.

5. LOWER BOUNDS FOR UNITS @, ()

In this section we describe David Boyd’s proof that
the set E(a) of values of n > 1 such that 1 — o™
is a unit can be fairly large. We continue with
the notations d(a) and M («) for the degree and
the Mahler measure of a. Further, we denote by
U(cx) the set of m > 1 such that ®,,(a) is a unit.
Notice that a lower bound for E(«) is automati-
cally a lower bound for U(a). We begin with two
elementary results.

Proposition 5.1. Let p be a prime, and let 8 = /P
be any p-th root of c.

(a) (after Rausch [1985]) Let K/Q be a number field
containing «. If a is mot a p-th power in K*,
then [K(f) : K| = p.

(b) (Boyd) 17 [Q(8) : Q)] = p, then

€(B) =pe(a) U (&(a) \ p2),
U(B) =pUa) U (Ua)\ pZ).
E

(
(
In particular, E( ) = ga every n € E(a)

is prime to p, and U(()B) = 2U(()a) if every
n € U(a) is prime to p.

Proof. (a) If [K () : K] < p, the polynomial X? — «
is reducible in K[X], since it has a root X = ( of
degree less than p. Factor X? — a = g(X)h(X)
with g(X), h(X) € K[X] monic polynomials and
t = degg satisfying 1 < ¢t < p. The polynomial
XP — o factors over K as

gX)(X)=XP —a=XP - = [] (X —¢B).

Ceny

Q
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Comparing constant terms, we see that
9(0) = (-1)"¢1Ga - - - G3°

with (1,...,¢ € m,. But g(0) € K, so there is
£ € p, such that {8* € K. Further, f? = a € K
and ged(t,p) = 1, so taking appropriate powers
(£6°)'(B?)? we find that there is a ' € p, such
that '8 € K. Then a = (§')?, contradicting the
assumption that « is not a p-th power in K. Hence
X? — « is irreducible in K[X], which proves that
K(8): K] = p.

(b) We prove the result for £(3) and leave the sim-
ilar proof for U(B3) to the reader. The assumption
that [Q(83) : Q(a)] = p means that the conjugates
of B over Q(a) are exactly the numbers (3 with
¢ € p,- So if we write Nk for the K/Q norm, we
can compute

Nas) (1 = ") = No(a) < [Ta- (Cﬂ)"))

CEH,

= Ng(a) < IT ITa- nCﬁ))

CEMR, MEH,

= Ny < [Ta- n”ﬂ”))

nep,

= No(a) < [Ta- npa)>

NEpy
_ NQ([X) (]_ - a") if pj(n,
No(ay (1 — a™/P)?  if p|n.

It follows that n is in £(0) if and only if n/ged(n, p)
is in €(«), which is just another way to state the
assertion in part (b) of the proposition. O

As Boyd points out, Proposition 5.1 can be used to
find specific values of 8 for which £(3) and U(S) are
large. For example, let & = 73, a root of (1.3), be
the number with smallest known Mahler measure
greater than 1. One can check that the number of
m € U(a) for which p divides m is

44,29,19,11,8,6,3,3,3,1,1,2,0,1,1,0,1

forp=2,3,5,...,59, and is 0 for all other primes.
It follows from Proposition 5.1 that

U(a/?) = 132 — 44 = 88,

and that U(a!/?) = 132 — 29 = 103. Notice that
these values are larger than the corresponding val-
ues in Table 2, column B, for degrees 20 and 30.

Proposition 5.1 can also be used to show that
&(a) and U(r) may grow quite rapidly.

Corollary 5.2 (Boyd). (a) Suppose that E(a) > 1, and
fit e > 0. For every k > 1, let B, = o’ be a
k-th root of a. Then there exists a sequence of
numbers k — oo such that M(8y) = M (a) and

E(Bk) > d(/@k)(l—s) log 2/ loglogd(ﬂk).

A similar result holds for U(B).

(b) Let ¢(d) be any function such that ¢(d) — 0 as
d — 0o. Then, for everyd > 1 and every C > 1,
there exists a satisfying d(a) > d, E(a) > C,

and
d(0)(d(0))

EBla) 2 log M («)

In particular, it is not possible to find absolute
constants A and B such that

Be(d())

Bla) s A+ log M ()

for all .

Proof. (a) Let k be the product of all primes p < ¢t
such that p does not divide any element of €(«) and
such that « is not a p-th power in Q(a)*. Notice
we have eliminated only finitely many primes, so
k>< et

Proposition 5.1(a) says that [Q(a/?) : Q(a)] = p
if p divides k. These degrees are relatively prime
for different values of p, and Q(fx) is the com-
positum of Q(al/?)’s for p|k, so it follows that
[Q(Bx) : Qa)] = k. In particular, this implies
that M (Bx) = M ().

Suppose p divides k. Proposition 5.2(b) tells us
that E(a)/? = 2E(a). But it tells us even more,
since it says that €(al/?) is the union of &(a) and
p (). Thus, if ¢ is another prime dividing &, none
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of of the numbers in &(a!/P) is divisible by ¢, so
we can apply Proposition 5.2(b) to a*/? and ¢ to
deduce that

E(a'/?1) = 2E(a)"? = 4E(a).
Continuing in this fashion, we find that
E(B) = E(a**) > 2"E(a) > 2,

where 7 is the number of primes dividing k. In
particular, r > 7(¢t) + O(1) > (1 — ¢)t/logt for
all sufficiently large ¢t. Combining the estimates
E(ﬂk) > 2T7

t

r>(1- 6)—logt

and k >< e*, we obtain
E(ng) > 2(17&:) log k/ log log k.
This gives the desired result, since

k= [Q(8k) : Q)] = d(Br)/d().

(b) We give only a sketch of the proof. Suppose
that the assertion is false. For each n > 1, let a,
be a root of f,(z) = (z — 1)*™ + z™. Assuming
that f, is irreducible, it follows from [Boyd 1980]
that M(«a,) ~ cbg, where c3s = 1.90814.... One
can show that, if n is a power of 2, then f,(z*) is
irreducible for all £ > 1, so we restrict attention to
values of n that are powers of 2. We also note that
N1 —-a,) ==xf.(1) =+£1,s0 1 € E(awy). Just as
in the proof of part (a), we now take k to be the
product of the first ¢ primes and consider 3, =
al/k. Again as in (a), Proposition 5.1 and our as-
sumptions give E(B,;) > 20-9t/lst g(5, ;) =
kd(c,) = kn, and M(Bnr) = M(a,) =~ chs. We
can thus fix a value for ¢ such that E(8,x) > C
and d(Bnx) > d.

We are assuming that the assertion in (b) is false,
so for every a we have

d(a)p(d(a)

Ela) = log M ()

Using our estimates from above, we obtain
E(Bnx) < d(Brx)¥(d(Bnk)) < km/;(k;n)
log M (1) log cBg
= cooktp(kn).

Here the left-hand side goes to 0 as n — oo, while
the right-hand side is greater than C. This contra-
diction completes the proof. O
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