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Bibliography Familiar rulers are marked in equal increments.
The distance across n segments of the ruler is n
units. By contrast, a Golomb ruler [Shearer 1990]
has segments of unequal length, and each set of ad-
jacent segments measures a distinct distance. For
example, a rule having segments of length one, four
and two, in that order, can measure distances of
one, two, four, five, six, and seven units.

Is the set of distances measured by a Golomb
ruler uniquely defined by the lengths and order of
the segments? Or is there a nontrivial pair of rulers
that measure the same set of distances? (A pair is
trivial if the two rulers are identical or reflections
of each other.)

In 1939, S. Piccard published a “theorem” saying
that no such nontrivial pairs exist. However, G. S.
Bloom gave a five-segment counterexample in 1975,
later generalized by Bloom and S. W. Golomb to
a two-parameter family (see Section 3). Yovanof
[1988] describes these examples and illustrates the
error in Piccard’s proof, which holds for rulers with
fewer than five marks.

By exhaustive computer search, we have deter-
mined that there are no other nontrivial pairs with
fewer than 12 segments. The program treats rulers
symbolically, manipulating linear equations, so it
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can conclusively eliminate the possibility of pairs
with specific numbers of segments.

2. DEFINITIONS AND NOTATION

Dewdney [1985], Yovanof, and other authors rep-
resent rulers as a set of numbers that indicate the
locations of marks; the difference between two dis-
tinct marks is a distance the ruler can measure.
For our purposes, it is more convenient to work
with the distances between adjacent marks, called
segments. Thus, we regard a ruler with n+1 marks
as an n-tuple of positive numbers (ag, ai, ..., @, 1),
each of which is called a segment.

A measurement of a ruler is the sum of one or
more adjacent segments. Thus an n-segment ruler
A can measure the distance from the left edge of
the p-th segment to the right edge of the ¢-th seg-
ment, for all p and ¢ with 0 <p<qg<n-—1. We
call such an ordered pair (p,q) a block, and let

g
Ap,g) = Zai
i=p

be the distance it measures. (We also use the term
block for the corresponding union of consecutive
segments.) We let M (n) be the set of blocks (p, ¢);
it has In(n + 1) elements.

A is a Golomb ruler if all the A, ;) are distinct.
Two Golomb rulers A and B are homometric, de-
noted A ~ B, if there is a permutation f of M (n)
such that A, ¢ = By((p,q) for every (p,q) € M(n).
Note that f must be unique, since no two measure-
ments coincide. The homometric pair is trivial if
and only if f is the identity or comes from reflec-
tion, that is, f((p,q)) =(n—g¢—1,n—p—1) for
all (p,q) € M(n).

3. STATEMENT OF THE RESULT

In Yovanof’s formulation, the known six-mark ho-
mometric rulers have marks at

{0, a,2a+b,2b—a, 2b+a, 3b —a}

and at
{0, a, b — 2a, 2b — 2a, 2b, 3b — a},

for values of @ and b that result in Golomb rulers.
When represented as segments instead of marks,
the ruler pairs form two classes, depending on the
order in which the marks fall:

(u, v, 3u+ v, 2u, 2u + v) ~ (u, 4u + v, v, 2u, u + v)
and
(u, v, 3u+v, 2u+2v, 2u+v) ~ (u, du+v,v, 2u, u+v),

where u and v are arbitrary positive values except
for the restriction that the A, are all distinct.
The shortest pair of equivalent rulers with integer
lengths is obtained when w is 1 and v is 3 in the
first class, giving a length of 17.

There are no nontrivial homometric pairs with
eleven or fewer segments, apart from the family
just given. We describe the algorithm by which
this was proved.

4. ELEMENTARY PROPERTIES

Let A and B be homometric rulers. The longest
measurement of each ruler is its total length, so

A,n-1) = B(o,n-1)-

This is a homogeneous linear equation in the a;’s
and b;’s, and each of these variables must be pos-
itive. Any equation of two measurements is also
homogeneous and linear in these variables.

The second-longest measurement of a ruler must
be A, n—2) or A(1,,—1), since any other block apart
from (0, n — 1) is contained in one of these two.
By flipping the ruler if necessary, we can stipulate
that (1, n — 1) measures the second-longest dis-
tance. Therefore

A(l,nfl) = B(l,n71)7

which together with A ,_1) = B(o,n—1) gives ag =
by. We also conclude that ay < a,,_; and by < b, _;.
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One more linear equation holds for all pairs of
equivalent rulers. The sum of all the measurements
must coincide for such a pair:

Z Apg) = Z Bp,g)-

0<p<g<n-1 0<p<g<n-—-1
This can also be written
n—1 n—1
Y i+ 1)(n—i)a; =Y (i+1)(n—i);, @1
i=0 i=0

since segment ¢ appears in every block (p,q) with
p <1 (giving i + 1 choices) and ¢ > i (giving n — i
choices).

5. STATEMENT OF THE ALGORITHM

For a fixed permutation f of M (n), the condition
that Ap = Byp) for every P € M(n) gives a set
of linear equations in the a;’s and b;’s, which must
have positive values. Our strategy is to try to build
up a permutation f using a depth-first search, us-
ing the corresponding partial system of equations
to eliminate possibilities.

5.1. Search Procedure

From Section 4, we know that f takes each of the
blocks (0,0), (0, » — 1) and (1,n — 1) to itself.
We view f as a subset of the Cartesian product
M (n)x M(n), so that ((0,0), (0,0)) € f and so on.
The question is to find what other pairs, besides
these three, are in f.

For this we keep a contert consisting of the fol-
lowing information:

(@) All ordered pairs of blocks known to be in f.

(b) All blocks in the domain of f that are not yet
assigned, and all blocks in the range of f that
are not yet assigned.

(c) A set of linear equations that must be true given
the pairs in f.

(d) A list of assignments that should not be tried
again in collateral branches of the search (see
below).

(e) A flag indicating whether f is diagonal so far—
that is, whether all pairs in (a) are of the form
(P, P).

The algorithm consists essentially of a routine that
takes the current context, considers one at a time
all possible ordered pairs that can be added to
f (see Section 5.3), and calls itself recursively for
each augmented f. This goes on until all elements
of the domain and range have been assigned, lead-
ing to a homometric pair, or all possibilities are
exhausted. Note that if symmetry still holds when
all elements have been assigned, the permutation
is the identity. This trivial solution is discarded.

The initial context includes the three pairs of
blocks mentioned above, their associated equations,
and (4.1).

When the routine considers a candidate (P, Q)
to be added to f, it changes the context as follows:

(@) (P, Q) is added to the set of elements known to
be in f.

(b) P and @ are removed from the sets of unas-
signed elements of the domain and range, re-
spectively.

(c) The equation Ap = B is asserted, and the
augmented system is analyzed (Section 5.2). If
a forbidden situation is found, the routine fails
and the search stops along this branch. If forced
equalities are found, the corresponding pairs are
added to the set of elements known to be in f.

d) (P, Q) is added to the list of assignments not to
be tried again.

(e) If P # @ and f is diagonal, f is marked as no
longer diagonal and (@, P) is added to the list
of assignments not to be tried again.

The idea behind (d) is this: Suppose the search
routine has determined (P, Q) and (P', Q') as pos-
sible next assignments. After (P, Q) is attempted
and discarded, (P',Q’) is tried. At this point,
deeper calls to the search routine might want to
try (P, Q) again, which is wasteful. Thus each pair
that is tested at a certain search depth should be
forbidden until we return from that depth. (Once
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we return one level higher, some assignment made
prior to the testing of the pair in question is un-
done, and it makes sense to test the pair again in
the new context.)

Step (e) represents an optimization that allows
us to ignore the inverse of a permutation that we
have already investigated. We can do this because,
if a valid permutation maps ruler A to ruler B, its
inverse maps B to A, and we don’t care about the
order of the two rulers.

5.2. Analysis of the Equations

We now spell out item (c) above. The first step
is to reduce the system of linear equations to row-
echelon form. Independent variables are chosen,
equal in number to the rank of the system; the
remaining variables are considered dependent.

Next we examine the coefficients of the reduced
system. If, in any single equation, all the nonzero
coefficients (assumed to be all on the same side)
have the same sign, a solution with all variables
positive is not possible, and we return with failure.

Next we investigate what relations among mea-
surements are forced by the context. We reduce
each measurement (which is a sum of certain vari-
ables) to an expression in independent variables
only. We compare these reduced expressions with
one another, looking for the following cases:

1. Two different blocks in the domain, or two dif-
ferent blocks in the range, have measurements
whose reduced expressions coincide.

2. Two different blocks in the domain or range
have measurements whose reduced expressions
add to zero.

3. An unassigned block in the domain and one in
the range have measurements whose reduced ex-
pressions coincide.

We return with failure in the first two cases, since
all measurements for a ruler must be distinct and
positive. In the third case we add the ordered pair
of blocks whose measurements coincide to the set
of pairs known to be in f, and keep going.

The actual comparison is done by successively
inserting reduced expressions and their negatives
into a sorted tree, so equalities can be detected
quickly.

5.3. Adding New Pairs

Given the current context, we must figure out a list
of possible next assignments (P,Q) € M(n) that
will cover all possibilities for constructing f. There
are different ways to do this.

One way is to take a fixed P in the set of unas-
signed domain blocks, and pair it with every @) in
the set of unassigned range blocks.

A second way is to think in terms of measure-
ments. In f, the unassigned domain block with
greatest length will turn out to be paired with the
unassigned range block with greatest length. We
don’t know which unassigned blocks in the domain
and range have the greatest length, but we can
eliminate some candidates: any block contained in
another unassigned block cannot be longest. We
can therefore make our list by pairing all maximal
unassigned blocks in the domain with all maximal
unassigned blocks in the range.

A third possibility is similar to the second, but
we use minimal, rather than maximal, unassigned
blocks.

Any of these three lists will work. Our program
chooses the shortest.

6. DISCUSSION

The algorithm we have described was implemented
in C (see Electronic Availability below) and run
under the Ultrix operating system on several DEC
workstations. It finds the expected solutions in
the five-segment case but finds no other solutions
for eleven or fewer segments. The eleven-segment
case required 2.8-107 seconds, or 320 days, of CPU
time, distributed among nine Mips R2000 proces-
sors, and amounting to some 2.5-10'* RISC instruc-
tions. The ten-segment case required ten CPU-
days, and the nine-segment case under two CPU-
hours.
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Further refinement of the algorithm, and specif-
ically of the analysis in Section 5.2, may speed up
the search and settle the case of rulers with more
segments. (For instance, our program does not
take advantage of the inequality ay < a,,_; proved
in Section 4.) However, a different approach must
be found in order to obtain a proof that will work
with an arbitrary number of marks. The authors
are divided as to whether any additional nontrivial
pairs of homometric rulers are to be found.

7. A GEOMETRIC OBSERVATION

Yovanof described several other models for homo-
metric rulers, such as numbered graphs and poly-
nomials. We introduce another model. Take an
equilateral triangle with, for example, vertices at
(+2,0) and (0,2v/3). Counterclockwise from each
vertex, extend a line segment half the length of
and parallel to the opposite side. In our exam-
ple, this creates the points (—2,2v/3), (3,+/3) and
(—1,—+/3). This set of six points has no reflec-
tional symmetry, but the set of 30 vectors joining
pairs of points is equal to the corresponding set for
the mirror image obtained by reflection in a verti-
cal line (Figure 1). We call a set with this property
autometric.

FIGURE 1. An autometric set of points and a cor-
responding pair of homometric Golomb rulers (see
Section 7).

Projecting the six points orthogonally onto any
line yields a six-mark Golomb ruler, provided no
equal measurements are coincidentally formed by
the projection. Moreover, projecting the mirror
image onto the same line yields a generally dif-
ferent Golomb ruler. Because the sets of vectors
are equal, the projections of the vectors, which are
the measurements of the ruler, are equal, yield-
ing homometric Golomb rulers. The reader can
check that the six-point autometric set of Figure 1
yields the family of homometric pairs of Section 3
by the following procedure: multiply the points by
—31/3(a? 4 b? — ab), and project onto the line

V3(2a — b)
3b

so that a point (x,y) on the plane is taken to the
point on the line at a signed distance

—1bz — layv/3 + Lbyv/3

from the origin.

Y= €L,

This leads to the question: Is every pair of homo-
metric Golomb rulers formed by projecting some
autometric set?

ELECTRONIC AVAILABILITY

Upon request, the first author will provide the program
by electronic mail or on 3.5" disks (Unix or DOS for-
mat). The program has been tested only under Ultrix.
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