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We describe an exhaustive search that proves the nonexistence

of homometric Golomb ruler pairs with 7 to 12 marks. We also

give a two-dimensional geometric model for the known family

of six-mark homometric ruler pairs.

1. INTRODUCTIONFamiliar rulers are marked in equal increments.The distance across n segments of the ruler is nunits. By contrast, a Golomb ruler [Shearer 1990]has segments of unequal length, and each set of ad-jacent segments measures a distinct distance. Forexample, a rule having segments of length one, fourand two, in that order, can measure distances ofone, two, four, �ve, six, and seven units.Is the set of distances measured by a Golombruler uniquely de�ned by the lengths and order ofthe segments? Or is there a nontrivial pair of rulersthat measure the same set of distances? (A pair istrivial if the two rulers are identical or re
ectionsof each other.)In 1939, S. Piccard published a \theorem" sayingthat no such nontrivial pairs exist. However, G. S.Bloom gave a �ve-segment counterexample in 1975,later generalized by Bloom and S. W. Golomb toa two-parameter family (see Section 3). Yovanof[1988] describes these examples and illustrates theerror in Piccard's proof, which holds for rulers withfewer than �ve marks.By exhaustive computer search, we have deter-mined that there are no other nontrivial pairs withfewer than 12 segments. The program treats rulerssymbolically, manipulating linear equations, so it
c
 A K Peters, Ltd.1058-6458/96 $0.50 per page



148 Experimental Mathematics, Vol. 3 (1994), No. 2

can conclusively eliminate the possibility of pairswith speci�c numbers of segments.
2. DEFINITIONS AND NOTATIONDewdney [1985], Yovanof, and other authors rep-resent rulers as a set of numbers that indicate thelocations of marks; the di�erence between two dis-tinct marks is a distance the ruler can measure.For our purposes, it is more convenient to workwith the distances between adjacent marks, calledsegments. Thus, we regard a ruler with n+1 marksas an n-tuple of positive numbers (a0; a1; : : : ; an�1),each of which is called a segment.A measurement of a ruler is the sum of one ormore adjacent segments. Thus an n-segment rulerA can measure the distance from the left edge ofthe p-th segment to the right edge of the q-th seg-ment, for all p and q with 0 � p � q � n � 1. Wecall such an ordered pair (p; q) a block, and let

A(p;q) = qXi=p aibe the distance it measures. (We also use the termblock for the corresponding union of consecutivesegments.) We let M(n) be the set of blocks (p; q);it has 12n(n+ 1) elements.A is a Golomb ruler if all the A(p;q) are distinct.Two Golomb rulers A and B are homometric, de-noted A � B, if there is a permutation f of M(n)such that A(p;q) = Bf((p;q)) for every (p; q) 2M(n).Note that f must be unique, since no two measure-ments coincide. The homometric pair is trivial ifand only if f is the identity or comes from re
ec-tion, that is, f((p; q)) = (n � q � 1; n� p� 1) forall (p; q) 2M(n).
3. STATEMENT OF THE RESULTIn Yovanof's formulation, the known six-mark ho-mometric rulers have marks atf0; a; 2a+ b; 2b� a; 2b+ a; 3b� ag

and at f0; a; b� 2a; 2b� 2a; 2b; 3b� ag;for values of a and b that result in Golomb rulers.When represented as segments instead of marks,the ruler pairs form two classes, depending on theorder in which the marks fall:(u; v; 3u+ v; 2u; 2u+ v) � (u; 4u+ v; v; 2u; u+ v)and(u; v; 3u+v; 2u+2v; 2u+v) � (u; 4u+v; v; 2u; u+v);where u and v are arbitrary positive values exceptfor the restriction that the A(p;q) are all distinct.The shortest pair of equivalent rulers with integerlengths is obtained when u is 1 and v is 3 in the�rst class, giving a length of 17.There are no nontrivial homometric pairs witheleven or fewer segments, apart from the familyjust given. We describe the algorithm by whichthis was proved.
4. ELEMENTARY PROPERTIESLet A and B be homometric rulers. The longestmeasurement of each ruler is its total length, soA(0;n�1) = B(0;n�1):This is a homogeneous linear equation in the ai'sand bi's, and each of these variables must be pos-itive. Any equation of two measurements is alsohomogeneous and linear in these variables.The second-longest measurement of a ruler mustbe A(0; n�2) or A(1; n�1), since any other block apartfrom (0; n � 1) is contained in one of these two.By 
ipping the ruler if necessary, we can stipulatethat (1; n � 1) measures the second-longest dis-tance. ThereforeA(1; n�1) = B(1; n�1);which together with A(0;n�1) = B(0;n�1) gives a0 =b0. We also conclude that a0 < an�1 and b0 < bn�1.
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One more linear equation holds for all pairs ofequivalent rulers. The sum of all the measurementsmust coincide for such a pair:X0�p�q�n�1A(p;q) = X0�p�q�n�1B(p;q):
This can also be writtenn�1Xi=0 (i+ 1)(n� i)ai = n�1Xi=0 (i+ 1)(n� i)bi; (4.1)

since segment i appears in every block (p; q) withp � i (giving i+ 1 choices) and q � i (giving n� ichoices).
5. STATEMENT OF THE ALGORITHMFor a �xed permutation f of M(n), the conditionthat AP = Bf(P ) for every P 2 M(n) gives a setof linear equations in the ai's and bi's, which musthave positive values. Our strategy is to try to buildup a permutation f using a depth-�rst search, us-ing the corresponding partial system of equationsto eliminate possibilities.
5.1. Search ProcedureFrom Section 4, we know that f takes each of theblocks (0; 0), (0; n � 1) and (1; n � 1) to itself.We view f as a subset of the Cartesian productM(n)�M(n), so that ((0; 0); (0; 0)) 2 f and so on.The question is to �nd what other pairs, besidesthese three, are in f .For this we keep a context consisting of the fol-lowing information:
(a) All ordered pairs of blocks known to be in f .
(b) All blocks in the domain of f that are not yetassigned, and all blocks in the range of f thatare not yet assigned.
(c) A set of linear equations that must be true giventhe pairs in f .
(d) A list of assignments that should not be triedagain in collateral branches of the search (seebelow).

(e) A 
ag indicating whether f is diagonal so far|that is, whether all pairs in (a) are of the form(P;P ).The algorithm consists essentially of a routine thattakes the current context, considers one at a timeall possible ordered pairs that can be added tof (see Section 5.3), and calls itself recursively foreach augmented f . This goes on until all elementsof the domain and range have been assigned, lead-ing to a homometric pair, or all possibilities areexhausted. Note that if symmetry still holds whenall elements have been assigned, the permutationis the identity. This trivial solution is discarded.The initial context includes the three pairs ofblocks mentioned above, their associated equations,and (4.1).When the routine considers a candidate (P;Q)to be added to f , it changes the context as follows:
(a) (P;Q) is added to the set of elements known tobe in f .
(b) P and Q are removed from the sets of unas-signed elements of the domain and range, re-spectively.
(c) The equation AP = BQ is asserted, and theaugmented system is analyzed (Section 5.2). Ifa forbidden situation is found, the routine failsand the search stops along this branch. If forcedequalities are found, the corresponding pairs areadded to the set of elements known to be in f .
(d) (P;Q) is added to the list of assignments not tobe tried again.
(e) If P 6= Q and f is diagonal, f is marked as nolonger diagonal and (Q;P ) is added to the listof assignments not to be tried again.The idea behind (d) is this: Suppose the searchroutine has determined (P;Q) and (P 0; Q0) as pos-sible next assignments. After (P;Q) is attemptedand discarded, (P 0; Q0) is tried. At this point,deeper calls to the search routine might want totry (P;Q) again, which is wasteful. Thus each pairthat is tested at a certain search depth should beforbidden until we return from that depth. (Once
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we return one level higher, some assignment madeprior to the testing of the pair in question is un-done, and it makes sense to test the pair again inthe new context.)Step (e) represents an optimization that allowsus to ignore the inverse of a permutation that wehave already investigated. We can do this because,if a valid permutation maps ruler A to ruler B, itsinverse maps B to A, and we don't care about theorder of the two rulers.
5.2. Analysis of the EquationsWe now spell out item (c) above. The �rst stepis to reduce the system of linear equations to row-echelon form. Independent variables are chosen,equal in number to the rank of the system; theremaining variables are considered dependent.Next we examine the coe�cients of the reducedsystem. If, in any single equation, all the nonzerocoe�cients (assumed to be all on the same side)have the same sign, a solution with all variablespositive is not possible, and we return with failure.Next we investigate what relations among mea-surements are forced by the context. We reduceeach measurement (which is a sum of certain vari-ables) to an expression in independent variablesonly. We compare these reduced expressions withone another, looking for the following cases:
1. Two di�erent blocks in the domain, or two dif-ferent blocks in the range, have measurementswhose reduced expressions coincide.
2. Two di�erent blocks in the domain or rangehave measurements whose reduced expressionsadd to zero.
3. An unassigned block in the domain and one inthe range have measurements whose reduced ex-pressions coincide.We return with failure in the �rst two cases, sinceall measurements for a ruler must be distinct andpositive. In the third case we add the ordered pairof blocks whose measurements coincide to the setof pairs known to be in f , and keep going.

The actual comparison is done by successivelyinserting reduced expressions and their negativesinto a sorted tree, so equalities can be detectedquickly.
5.3. Adding New PairsGiven the current context, we must �gure out a listof possible next assignments (P;Q) 2 M(n) thatwill cover all possibilities for constructing f . Thereare di�erent ways to do this.One way is to take a �xed P in the set of unas-signed domain blocks, and pair it with every Q inthe set of unassigned range blocks.A second way is to think in terms of measure-ments. In f , the unassigned domain block withgreatest length will turn out to be paired with theunassigned range block with greatest length. Wedon't know which unassigned blocks in the domainand range have the greatest length, but we caneliminate some candidates: any block contained inanother unassigned block cannot be longest. Wecan therefore make our list by pairing all maximalunassigned blocks in the domain with all maximalunassigned blocks in the range.A third possibility is similar to the second, butwe use minimal, rather than maximal, unassignedblocks.Any of these three lists will work. Our programchooses the shortest.
6. DISCUSSIONThe algorithm we have described was implementedin C (see Electronic Availability below) and rununder the Ultrix operating system on several DECworkstations. It �nds the expected solutions inthe �ve-segment case but �nds no other solutionsfor eleven or fewer segments. The eleven-segmentcase required 2:8 �107 seconds, or 320 days, of CPUtime, distributed among nine Mips R2000 proces-sors, and amounting to some 2:5�1014 RISC instruc-tions. The ten-segment case required ten CPU-days, and the nine-segment case under two CPU-hours.
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Further re�nement of the algorithm, and specif-ically of the analysis in Section 5.2, may speed upthe search and settle the case of rulers with moresegments. (For instance, our program does nottake advantage of the inequality a0 < an�1 provedin Section 4.) However, a di�erent approach mustbe found in order to obtain a proof that will workwith an arbitrary number of marks. The authorsare divided as to whether any additional nontrivialpairs of homometric rulers are to be found.
7. A GEOMETRIC OBSERVATIONYovanof described several other models for homo-metric rulers, such as numbered graphs and poly-nomials. We introduce another model. Take anequilateral triangle with, for example, vertices at(�2; 0) and (0; 2p3). Counterclockwise from eachvertex, extend a line segment half the length ofand parallel to the opposite side. In our exam-ple, this creates the points (�2; 2p3), (3;p3) and(�1;�p3). This set of six points has no re
ec-tional symmetry, but the set of 30 vectors joiningpairs of points is equal to the corresponding set forthe mirror image obtained by re
ection in a verti-cal line (Figure 1). We call a set with this propertyautometric.

FIGURE 1. An autometric set of points and a cor-responding pair of homometric Golomb rulers (seeSection 7).

Projecting the six points orthogonally onto anyline yields a six-mark Golomb ruler, provided noequal measurements are coincidentally formed bythe projection. Moreover, projecting the mirrorimage onto the same line yields a generally dif-ferent Golomb ruler. Because the sets of vectorsare equal, the projections of the vectors, which arethe measurements of the ruler, are equal, yield-ing homometric Golomb rulers. The reader cancheck that the six-point autometric set of Figure 1yields the family of homometric pairs of Section 3by the following procedure: multiply the points by� 13p3(a2 + b2 � ab), and project onto the liney = p3(2a� b)3b x;so that a point (x; y) on the plane is taken to thepoint on the line at a signed distance� 12bx� 13ayp3 + 16byp3from the origin.This leads to the question: Is every pair of homo-metric Golomb rulers formed by projecting someautometric set?
ELECTRONIC AVAILABILITYUpon request, the �rst author will provide the programby electronic mail or on 3.500 disks (Unix or DOS for-mat). The program has been tested only under Ultrix.
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