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We show how to construct 133 x 133 matrices over GF(5)
generating the Harada—Norton group. We also obtain gen-
erators for its automorphism group. For many purposes this
permits much faster calculations in the group than the alterna-
tive of permutations on 1,140,000 points. More importantly, it
reduces storage requirements by a factor of around 500.

1. INTRODUCTION

The Harada—Norton group HN is one of the 26 spo-
radic simple groups. It has order

273,030,912,000,000 = 2'*.3%.5%.7.11.19.

It was first studied in [Harada 1976; Norton 1975].
The latter gives implicitly (but not explicitly) a
construction of both the 133-dimensional real rep-
resentation and the permutation representation on
1,140,000 points. Our goal is to construct a matrix
representation of HN that can be used to carry out
explicit calculations within the group: explicit ma-
trix generators are available from the authors by
electronic mail. Our paper provides a good illus-
tration of the computational methods available for
the construction of matrix groups.

We describe two constructions, the first closely
following the method outlined in [Parker and Wil-
son 1990], and the second using a modified proce-
dure that leads to a more complicated sequence of
smaller machine computations.

From the point of view of efficient computer cal-
culation, a small matrix representation over a small
field seems the most desirable. The smallest rep-
resentation of HN has degree 132 and is written
over GF(4). This representation is constructed in
[Wilson 1993] as a byproduct of the construction of
the Baby Monster. On the other hand, the smallest
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representation of HN: 2 is of degree 133 over GF(5),
so it will also be useful to construct this represen-
tation in characteristic 5, which is in a sense the
“natural” characteristic for this group. (In fact the
smallest representation of HN in any other charac-
teristic also has degree 133. This is easily seen by
restricting putative modular characters to various
subgroups, using [Jansen et al.].)

In Sections 2 and 3 we describe two constructions
of a 133-dimensional matrix representation of HN.
Both are based on the idea of amalgamating known
subgroups of HN inside GLj33(5):

GL133 (5)

fi fo
HN

H < > K
L
A general method for carrying out such compu-

tations is described in [Parker and Wilson 1990]; it
consists of the following steps:

1. Select subgroups H and K of HN, and let L =
HNK.

2. Construct representations f; : H — GLj33(5)
and fo : K — GLj33(5).

3. Find generators for f(L) inside f;(H) and f»(L)
inside f2(K).

4. Conjugate f; to an equivalent representation f;
with f(L) = fo(L).

5. Conjugate f] to a representation f;' while keep-
ing f'(L) = f{(L), until (f{'(H), f2(K)) = HN.

This plan allows for considerable flexibility in the
choice of H and K; our two constructions show how
different choices of these subgroups can lead to very
different implementations of the basic plan. Other
similar constructions described in the literature in-
clude O’Nan’s group [Ryba 1988a; Jansen and Wil-
son 1994], Thompson’s group [Linton 1989], the
Baby Monster [Wilson 1993], Held’s group [Ryba
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1988b], and the double cover of the Higman-Sims
group [Suleiman and Wilson 1992]. Our notation
follows the Atlas [Conway et al. 1985].

In both constructions we perform our computer
calculations with the collection of matrix manip-
ulation programs known as the Meat-axe [Parker
1984]. In addition to well-known procedures for
matrix multiplication, nullspace calculation, etc.,
the Meat-axe contains a pair of specialized pro-
cedures: CH, which “chops” the matrix represen-
tation defined by a pair of matrices into its irre-
ducible constituents, and SB, which calculates a
canonical basis for an absolutely irreducible repre-
sentation. The complexity of the Meat-axe proce-
dures depends on the degree n of the representa-
tions that we work with: most of the procedures
require space proportional to n? and time propor-
tional to m3.

Our first construction was carried out by the sec-
ond author, using an implementation of the Meat-
axe system written by Richard Parker of Perihe-
lion Software Ltd., on the Birmingham University
Computer Centre’s IBM 3090. This version of the
Meat-axe allows for computations with representa-
tions of degrees up to around 1000: we were able
to treat HN as a “small” group and we followed
the steps of [Parker and Wilson 1990] very closely.
The largest computation that we used was a chop
on a 462-dimensional representation. In this case
the application of Step 5 involved testing 250 pos-
sibilities for fi'.

Our second construction was carried out by the
first author, using a smaller implementation of the
Meat-axe on a Sun workstation. This version of
the Meat-axe allows for matrices of dimensions up
to about 200: the size limitation forced us to treat
HN as a “large” group and we modified the steps of
[Parker and Wilson 1990] accordingly. The largest
individual step of this computation consisted of the
calculation of the nullspace of a matrix of size 134 x
168; we finished the construction by locating the
group HN as one of 12 possible matrix groups. As a
preliminary, we needed some local analysis of HN;
this is given in Sections 3.1 and 3.2.
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2. THE FIRST CONSTRUCTION OF HN IN GL;3;(5)

The general strategy is to start with Aj,, find a
subgroup M., and adjoin an outer automorphism
of Mi,. Since A;» is a maximal subgroup of HN
[Norton and Wilson 1986], the group can be gener-
ated in this way. The degree-133 character of HN
restricts to A, mod 5 as 1 + 43 + 89 [Jansen et
al.], and since the representation is self-dual it is a
direct sum. Restricting further to M,, the 43 be-
comes a uniserial module with factors 16, 11a, 16*,
while the 89 breaks up as 1 ®45® [43'], where [43']
denotes a uniserial module with factors 16*, 11b,
16. (The structure of these modules was deter-
mined using the Meat-axe: see below.) The outer
automorphism of M;, now fuses the two indecom-
posables [43] and [43'], and acts as the regular rep-
resentation of C, on the fixed space of M;,. The
situation is illustrated as follows:

HN

1043089 A

M2
1o [43]® 1o [43'] @ 45

2.1. Making the Representation of A,

All three required irreducibles are constituents of
the permutation representation of degree 462, on
the cosets of 412N (S61S2). This can easily be made
from the deleted permutation representation on 12
points, by using the Meat-axe program VP (vector
permute) to find the images of a vector fixed by
the given subgroup. This permutation representa-
tion on 462 points can then be made into a matrix
representation and chopped up with the Meat-axe
in the usual way [Parker 1984]. Finally we make
the direct sum of the three representations.

2.2. Finding a Subgroup M, in A,

A fixed-point-free element of order three and an in-
volution of cycle type 2*1* have a reasonable prob-
ability of generating M., so a random search will

M2 11 & [86] 45

quickly produce words giving a subgroup Mi,. If
we do this in such a way that the product of our
two generators has order 11, we have what we shall
call “standard generators” for Mi,. More precisely,
there are up to conjugacy just two such pairs of
generators, and these are interchanged by the outer
automorphism. In one case the product is in class
11A, in the other, 11B.

2.3. Putting the Representation into Canonical Form

Using our “standard generators” for M;, we need
to define a “standard basis” for the representa-
tion, and write all our matrices with respect to
this basis. Of course, the representation of M, is
not completely reducible, so this is not as easy as
it might otherwise be. One problem is that the
43-dimensional indecomposable summands are not
well-defined: there are five of each.

The usual way of using the Meat-axe program
SB (standard base) is to choose an element f of
the group algebra that has nullity 1 in its action
on one of the irreducibles, and nullity 0 on all the
others. Spinning up a null vector of f in its action
on the whole space then gives a standard basis for
an invariant subspace on which the group acts in
the specified manner. In the present instance we
can generalise slightly, by taking a group algebra
element f having nullity 1 on 16 and nullity 0 on
everything else. Then f has nullity 2 on the full
133-dimensional representation, and five of the six
1-spaces in this nullspace spin up to 43-dimensional
invariant subspaces. We can take any one of these
to be our standard indecomposable summand, and
SB will produce a standard base for the given 43-
space. Similarly, we obtain standard bases for the
other summands, and concatenate them in order,
to get a standard base for the whole space. (In fact
we chose our two 43-spaces to be the ones contained
in simple A;,-submodules. However, this choice
does not seem to be better than any other.)

2.4. A Second Set of Generators for M,

We now must find, as words in our standard gener-
ators for M;,, a second set of standard generators,

22 August 1996 at 13:31



140 Experimental Mathematics, Vol. 3 (1994), No. 2

conjugate to the first by an outer automorphism of
M;i5. A repeat of the random search will produce
candidates for these. To show that our new gener-
ators are not conjugate to the old ones inside Mj,,
it suffices to show that from a representation (such
as 1la) not invariant under Aut M;, we obtain an
inequivalent representation.

2.5. A Second Standard Base

What we are looking for is a suitable involution
conjugating our first set of generators for M, to
the second. First we use the same procedure as
above to produce a standard base for the space.
This time however we have to consider all five pos-
sibilities for each 43-dimensional indecomposable.
Thus there are 25 possibilities in all.

Now each of these 25 matrices will conjugate
our first pair of generators for M, to the second.
Moreover we can multiply this by any matrix cen-
tralizing My,. Thus we obtain a large number of
possible conjugating matrices. However, there is
no point in conjugating by something centralizing
Aj,, either before or after conjugating by our stan-
dard base matrix. This means that in fact we need
only consider elements which act as involutions of
GL2(5) on the fixed 2-space of Mj,, and trivially
elsewhere. Moreover, these only need to be con-
sidered modulo scalars, making ten cases for each
standard base matrix, or 250 in all.

Of these 250 cases, 249 give rise to groups con-
taining elements of order greater than 40. Thus
they cannot be HN. On the other hand, HN does
have a representation which can be constructed in
this way, so the one remaining case must generate

HN.

3. THE SECOND CONSTRUCTION OF HN IN GL,33(5)

We now give an alternative computer construction
of HN as an explicit subgroup of GLj33(5). Our
plan is to amalgamate representations of subgroups
U >~ Us(8):3 and T = 23.22.2%: (Fy; x 3) over an
intersection B = UNT = 23%6: (F}y; x 3) to produce
a representation of HN:
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T = (B,z)
> 23.22.2%:(Fy; x 3)

N

The biggest obstacle that we encounter is the
computation of 133-dimensional representations of
the subgroups U and T. We remark that there are
two isomorphism types of split extension U;(8): 3.
We shall reserve the notation for the group Us(8):3;
[Conway et al. 1985, p. 66]; this particular exten-
sion arises as a subgroup in both HN and E;(5)
(the latter embedding is exhibited in [Griess and
Ryba 1994]). A 56-dimensional representation of
Us(8): 3 was computed in [Griess and Ryba 1994];
in Section 3.3 we make use of the fact that this rep-
resentation of U extends to the simple group E7(5)
to obtain a 133-dimensional representation of U.

The group 7' is solvable, but it is not conve-
niently described in the literature: we devote Sec-
tions 3.1 and 3.2 to a theoretical study of 7' in
order to facilitate its construction. We show that
T can be constructed by adjoining a particular ele-
ment x to the readily accessible maximal subgroup
B of U. The results of Sections 3.1-3.3 are sum-
marized in Proposition 3.3, which can be regarded
as a link between the work on subgroups and the
construction of HN itself. The remaining sections
are devoted to a computer construction of a ma-
trix representation of the element z (and thus of
HN = (U, z)).

B= 23+6:(F21 X 3)

3.1. Properties of the Group B and its Subgroups
Let H =2 HN, and let H > U > B with U =
Us(8):3, B = 2°%%; (Fy; x 3) [Conway et al. 1985,
pp. 66, 166]. Let

W == Oz(B) = 23+6,

K =2Z(W) =2

W =W/K =2
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Let F' be a subgroup of B isomorphic to F5;, and
let @ be a 3-element of Cg(F).

The next proposition summarizes some struc-
tural information about the small solvable group
B and its subgroups. We computed these proper-
ties with the matrix represenation of B given in

[Griess and Ryba 1994, Sec. 3].

Proposition 3.1. (i) K is an absolutely trreducible F'-
module.

(i) W is a direct sum of two isomorphic absolutely
irreducible (three-dimensional) F-modules; thus
W has ezactly three proper F-submodules, Wy,
Wz, V_Vg, say.

(iii) Let W; be the preimage of W; in W then each
W; is the direct product of three cyclic groups of
order 4.

(iv) As F-modules, each W; = K the isomorphism
is given by the squaring map, 0 — w>.

(v) The element a cyclically permutes Wy, Wy and
W3.

3.2. The Subgroup T of HN

Let H = HN, U = Us(8):3, B = 23%5: (Fy, x 3),

W x223+6 K >23 W, XW, =W, =43 F~F),

and a be as in 3.1. Let o be a T-element in F'.
Let N = Ny(K), so that [Norton and Wilson

1986, Sec. 3.1]

N =2 2%.2%.2% (L3(2) x 3).

Let T = (Oy(N), F,a) = 23.22.25: (Fy; x 3); then
TNU = B (since B is maximal in U). More-
over, since U is maximal in H, H = (U,T). Let C
be the unique normal subgroup of N with struc-
ture 23.22.25.3; then C' = Cy(K), since N/C is the
unique quotient of N between Fy; and L3(2), and

Fyy = F/(F N COy(K)) € N/Oy(K) C Aut K = Ly(2).

Let X be any normal subgroup of N which contains
K and has structure 23.22. Let X = X/K = 22
We claim that |Cx(o)| = 4 (because |Cx(0)| =
|X| = 4 (mod 7), and |Cx(0)| < 4 since o acts
fixed point freely on K'). Let = be one of the three

nonidentity elements of Cx(o); « must be in class
2A of H [Conway et al. 1985, p. 164].

Lemma 3.2. () [X,W] < K.

(ii) The element x centralizes exactly one of Wiy,
Wa, and Ws; it inverts every element of the
other pair of these groups.

(iii) The group H can be generated from its subgroup
U by adjoining a 2A-involution that centralizes
(W1, F) and inverts all elements of Wy and Ws.

Proof. (i) Observe that W acts on X via the con-
jugation action of W on X (since W and X both
centralize K). Thus Cy (X) is an F-invariant sub-
module of W (since W and X are F-invariant).
But Aut X = S, so the co-dimension of Cyy (X) in
W is at most 1; hence Cy (X) = W (by 3.1(ii)).
Therefore [X, W] < K.

(ii) The map [z, | : W — K induces an F-
invariant linear map from W to K, because

[z, w'] = [z, w] = [z, w]”.

In particular, for each 7, [z, | : W; — K is either
the trivial map or the squaring map. Observe that
[, | cannot be trivial on all three groups W; (since
Cy(z)/(z) = HS.2 has no subgroup isomorphic to
W [Conway et al. 1985, p. 80]). Moreover, if w; €
Wi, then ws = w§ € Wy, and ws = wiwy, € Wi;
thus

[z, w;][z, ws] [z, ws] = 1

(since [z, W] < K < Z((X,W))). It follows that
[x, ] is trivial on exactly one of the three subgroups
W;, and it gives the squaring map on the other two
subgroups.

(iii) We may assume that [z, W;] = [z*, W] =
[2°°, W3] = 1 (by replacing = by a conjugate under
(a) if necessary). Hence,

{1,l‘} = CCX(U)(Wl)a
and therefore F' centralizes z (since F' normalizes

Wi, X and (o)). The claim follows, since U is
maximal in H, and z ¢ U. O

22 August 1996 at 13:31
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3.3. Representations of U;(8): 3

We begin by describing our computer construction
of a 133-dimensional representation of Us3(8): 3. We
made use of the explicit embedding

Us(8):3 < 2E(5) < GLsg(5)

and of the corresponding matrix representations of
the fundamental roots of an invariant Lie algebra
€ of type E7 over Fs (the relevant matrices for
Us(8):3 and € are displayed in Section 8 of [Griess
and Ryba 1994]).

Conjugation by Usz(8):3 preserves £ and there-
fore we can compute a 133-dimensional matrix rep-
resentation of Us(8):3 as follows:

1. Compute and store matrix rep-
8133 (lIl GL56(5)) for a

Calculation 3.3.
resentatives &, &, ...,
Chevalley basis of €.

2. Select a generating pair of 56 x 56 matrices Uy,
U, for Us(8): 3.

3. Calculate each of the 266 matrices £Y*, and find
the corresponding linear combinations €% =
nALE;.

Then the 133 x 133 matrices Aj; and A7, generate
a group U = U3(8): 3. In principle, Step 3 could be
carried out by applying Gaussian elimination 266
times to various 134 x 1332 matrices. In practice,
this process can be enormously speeded up by the
following standard sampling technique, which was
also used in [Griess and Ryba 1994, Sec. 8].

Calculation 3.3'. 3a. Select a random 3 x 56 matrix,
say M.

3b. Calculate the 3 x 56 matrices F* = ME* and
F; = ME;.

3c. Apply Gaussian elimination 266 times on 134 x
168 matrices to obtain the values of Af; as co-
efficients in: F} = LALF;. (In the unlikely
event that more than one such combination is
ever found we go back to (3a) and make a more
random choice for M. There must always be at
least one such linear combination since Us(8): 3
preserves the Lie algebra €.)
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The matrix generators of Us(8): 3 given in [Griess
and Ryba 1994] include matrix generators for the
subgroups B, F, Wy, W5, and W3;. We applied
the two preceding calculations to these matrices to
obtain explicit copies of these subgroups inside our
matrix group U = (A}, A%).

We used the Meat-axe program CH on U to
prove that this matrix group is irreducible (on its
natural 133-dimensional represenation). Note also
that U preserves the Killing form on &, so it gives
a self-dual irreducible 133-dimensional representa-
tion of U3(8):3. The group U;(8):3 has exactly
three different self-dual 133-dimensional represen-
tations; but these representations are equivalent
under another outer automorphism of Us;(8). Now,
observe that the 133-dimensional complex repre-
sentations of HN restrict to self-dual irreducible
complex representations of Us3(8):3 (see [Conway
et al. 1985]). It follows that any self-dual irre-
ducible 133-dimensional 5-modular representation
of U3(8):3 must extend to HN (because 5 does
not divide |U3(8):3|). We conclude that U can be
extended to HN inside GL133(5). Together with
Lemma 3.2 this gives:

Proposition 3.3. There is a matriz x in GL133(5)
with the following properties:

(i) (U,z) = HN.

(i) ¢ has trace 1 as an element of Fy.
(iii) [z, W] = [z, F] = 1.
(iv)wzw — x =0 for allw € Wy U W,
v) (B,z) =T.

3.4. Calculation of Centralizer Algebras

We now investigate the collection of all matrices
satisfying the condition (iii) of the previous propo-
sition. This requires the calculation of a central-
izer algebra, and, as a preliminary, an analysis of
the restriction of the natural 133-dimensional F5U-
module to a subgroup

G = <W]_, F> = 43: F21.

The proof of the following result is a computa-
tion carried out with the Meat-axe program CH.
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Lemma 3.4.1. Let V denote the natural 133-dimen-
stonal FsU-module. Then the restriction Vg has
constituents

106®T7a2® Tb? @ 7c? @ 21a? @ 21b2.

In this statement we use 1, 6, 7a, 7b, 7c, 21a and
21b to denote the different isomophism types of
irreducible constituents of V'; the superscripts de-
note multiplicities. The dimension of a constituent
representation is given by its name. Thus, for in-
stance, Vg has two irreducible summands of type
Ta; these summands are each 7-dimensional. We
remark that the restriction Vg actually has

52 —1
6 =
5—1

irreducible submodules of type 7a; our applica-
tion of the Meat-axe has selected an arbitrary pair
of these (and the other such submodules are con-
tained in the linear span of our selected pair). The
program CH shows that the 6-dimensional sub-
module of Vz decomposes as a direct sum of two al-
gebraically conjugate absolutely irreducible three-
dimensional summands defined over Fjs; the cal-
culation also shows that the other irreducible con-
stituents of Vg are absolutely irreducible.

Although we established Lemma 3.4.1 by apply-
ing the Meat-axe it is also easy to obtain a non-
computer proof by character theory. The advan-
tage of using the Meat-axe is that we obtain actual
lists of vectors giving bases of the irreducible con-
stituents of Vz. Once we have determined bases for
the constituents of Vg it is useful to turn them into
standard bases (by means of the Meat-axe program
SB). (We must work over the field Fps in order
to obtain a standard basis for the six-dimensional
constituent of Vg.)

The decomposition of Vg leads to a decomposi-
tion of €, the centralizer algebra, consisting of all
133 x 133 matrices that commute with the matrices
in G. For each isomorphism class, n say, of irre-
ducible summand of Vg, we let C,, denote the sub-
algebra of C consisting of matrices with row spaces
in the sum of the subspaces of type n in V.

Corollary 3.4. As an algebra,
C=CPCsD Cra®Crp @ Crc D Co1a @ Cotp.

Moreover, as Fs-algebras, C; = Fx, C¢ = Fas, and
Cra = Cp, & Cre & Copa & Cony, & M3(5), where
M;(5) is the algebra of 2 x 2 matrices over Fs.

This follows immediately from Lemma 3.4.1 and
Schur’s Lemma (see [Alperin 1986, Sec. 2], for ex-
ample). In particular, we see that dim € = 23. In
order to compute matrices corresponding to par-
ticular elements of the centralizer algebra C, we
make use of the standard bases described above.
For example, if by, by,...,b; and b},b5,...,0, are
standard bases of our two summands of type 7a,
the element of Gy, that corresponds to (3 ’?) is the
matrix of GL;33(5) that maps b; to ab; + 8b, and b
to vb; +6b;, and is zero on the complementary sub-
modules. A similar construction produces bases for
the matrix algebras C;, Crp, Crc, Co1a, and Coyp. A
slightly more complicated procedure yields a basis
of Cg; however, we shall only use elements of the
one-dimensional subalgebra C§ < Cg with C§ = F5.
As a basis element of Cf we take the 133 x 133 ma-
trix that acts as the identity on the 6-dimensional
summand of the F;G-module V, and acts as zero
on the complementary submodule.

Although this is not strictly necessary for our
later purposes, it is informative to carry out an ex-
actly similar calculation for the larger group W: F,
proving that:

Lemma 3.4.2. The centralizer algebra of the 133-
dimensional matriz group W: F is T-dimensional.

This implies that there is a 7-parameter family
of 133 x 133 matrices satisfying conditions (iii) and
(iv) of Proposition 3.3.

3.5. Computer Construction of a Representation of x

We are now in a position to compute all matrices x
that satisfy the conditions of Proposition 3.3. We
begin by noting that x belongs to the centralizer
algebra C (see Corollary 3.4), and that the com-
ponents of x in our decomposition of ¢ must all

22 August 1996 at 13:31
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square to 1. We observe that both square roots of 1
in Cg = Fy; lie in the prime subfield C; = F5; there-
fore = must actually belong to the 22-dimensional
subalgebra

C*'=CrDC;DCra ®Crp @ Crc ® Ca1a @ Comp

of €. We shall work with an explicit basis (consist-
ing of matrices) ¢y, ca, . . ., cop for C* (we described
the construction of such a basis immediately after
Corollary 3.4).

The elements of C* that satisfy condition (iv) of
Proposition 3.3 form a subspace C**. The following
calculation provides an explicit basis of C**.

Calculation 3.5. 1. Pick a 4-element, w say, of W.
Calculate the matrices ¢, = we,w — ¢;.

2. Use a sampling technique (similar to Calcula-
tion 3.3') to find a basis for the space of vectors
A with ¥, ¢, = 0.

3. Let C** be the subspace of C* spanned by the
corresponding combinations: X;\;c;.

We performed Calculation 3.5 with a particular
choice of w and obtained a seven-dimensional di-
mensional space C**. Lemma 3.4.2 shows that there
is no point in trying to cut down to an even smaller
candidate space for x by using further choices for
w. The seven-dimensional space C** consists of
matrices in C whose components correspond to the
elements of F5 and M,(5) given by a, «a, ( ﬁ27),

36 €

(57) (55 al)s (,5%) and (35 55), where ...,

are seven parameters from the field F5. (We note
that the actual 2 x 2 matrix components that we
have presented depend on the particular choices of
summands of Lemma 3.4.1. For example, Vg has
six subspaces of type 7a, and we selected two of
these as summands. A different choice of a pair of
summands would lead to a conjugate of the 2 x 2
matrix in the corresponding component of the cen-
tralizer algebra).

The trace condition, Proposition 3.3(ii), leads to
an equation: a+6a+7(8+¢)+7(C+ () +7(468+
4e) + 21(e + B) + 21(4e + 48) = 1 (mod 5), and
thus 2a+4¢ =1 (mod 5). Combined with Propo-
sition 3.3(i), this forces « = 1, ( = 1 and n = 0.

22 August 1996 at 13:31

The order of z, now leaves us with just twelve pos-
sible sets of choices for the other four parameters.
The corresponding twelve 133 x 133 matrices can be
calculated, as linear combinations of by, bs, . .., bas.
Eleven of the twelve possible matrices generate ele-
ments of order bigger than 40 when combined with
elements of U. The remaining choice of z must
therefore extend the matrices of U to a group iso-

morphic to HN (by Proposition 3.3).

4. EXTENDING HN TO HN: 2

The principle here is essentially the same as that
used in Section 2 to extend M, to M;,: 2, but this
time the procedure is much more straightforward,
since the representation is irreducible.

First we obtain “standard generators” x and y
for HN. We chose z € 2A, y € 3B with zy €
19A/B. Then we write our representation with
respect to a “standard base” defined by (z,y), as
before. Then we find, as words in z and y, a pair of
generators (z',y') that we believe to be automor-
phic to (z,y). Using the Meat-axe program SB
again we can verify this: (z',y') is automorphic to
(z,y) if and only if the matrices representing =’ and
y' with respect to their standard basis are identical
to those representing z and y with respect to the
standard basis for (z,y).

Further, the base change matrix conjugates (z, y)
to (z',y'). Thus by adjoining this matrix we ob-
tain some subgroup of 4 x HN: 2, where the central
4 is represented by scalar matrices. Provided (z,y)
and (z',y') are not conjugate in HN, we obtain gen-
erators for HN: 2 by multiplying our base-change
matrix by a suitable scalar. Two of the possible
scalars produce the two representations of HN: 2,
while any other scalar gives a group G containing
elements of order 50, so G cannot be HN: 2.
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