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We show how to construct 133 � 133 matrices over GF(5)
generating the Harada–Norton group. We also obtain gen-

erators for its automorphism group. For many purposes this

permits much faster calculations in the group than the alterna-

tive of permutations on 1,140,000 points. More importantly, it

reduces storage requirements by a factor of around 500.

1. INTRODUCTIONThe Harada{Norton group HN is one of the 26 spo-radic simple groups. It has order273;030;912;000;000 = 214:36:56:7:11:19:It was �rst studied in [Harada 1976; Norton 1975].The latter gives implicitly (but not explicitly) aconstruction of both the 133-dimensional real rep-resentation and the permutation representation on1,140,000 points. Our goal is to construct a matrixrepresentation of HN that can be used to carry outexplicit calculations within the group: explicit ma-trix generators are available from the authors byelectronic mail. Our paper provides a good illus-tration of the computational methods available forthe construction of matrix groups.We describe two constructions, the �rst closelyfollowing the method outlined in [Parker and Wil-son 1990], and the second using a modi�ed proce-dure that leads to a more complicated sequence ofsmaller machine computations.From the point of view of e�cient computer cal-culation, a small matrix representation over a small�eld seems the most desirable. The smallest rep-resentation of HN has degree 132 and is writtenover GF(4). This representation is constructed in[Wilson 1993] as a byproduct of the construction ofthe Baby Monster. On the other hand, the smallest
c
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representation of HN: 2 is of degree 133 over GF(5),so it will also be useful to construct this represen-tation in characteristic 5, which is in a sense the\natural" characteristic for this group. (In fact thesmallest representation of HN in any other charac-teristic also has degree 133. This is easily seen byrestricting putative modular characters to varioussubgroups, using [Jansen et al.].)In Sections 2 and 3 we describe two constructionsof a 133-dimensional matrix representation of HN.Both are based on the idea of amalgamating knownsubgroups of HN inside GL133(5):GL133(5)

L
HNH K

f1 f2

A general method for carrying out such compu-tations is described in [Parker and Wilson 1990]; itconsists of the following steps:
1. Select subgroups H and K of HN, and let L =H \K.
2. Construct representations f1 : H ! GL133(5)and f2 : K ! GL133(5).
3. Find generators for f1(L) inside f1(H) and f2(L)inside f2(K).
4. Conjugate f1 to an equivalent representation f 01with f 01(L) = f2(L).
5. Conjugate f 01 to a representation f 001 while keep-ing f 001 (L) = f 01(L), until hf 001 (H); f2(K)i �= HN.This plan allows for considerable 
exibility in thechoice ofH andK; our two constructions show howdi�erent choices of these subgroups can lead to verydi�erent implementations of the basic plan. Othersimilar constructions described in the literature in-clude O'Nan's group [Ryba 1988a; Jansen and Wil-son 1994], Thompson's group [Linton 1989], theBaby Monster [Wilson 1993], Held's group [Ryba

1988b], and the double cover of the Higman{Simsgroup [Suleiman and Wilson 1992]. Our notationfollows the Atlas [Conway et al. 1985].In both constructions we perform our computercalculations with the collection of matrix manip-ulation programs known as the Meat-axe [Parker1984]. In addition to well-known procedures formatrix multiplication, nullspace calculation, etc.,the Meat-axe contains a pair of specialized pro-cedures: CH, which \chops" the matrix represen-tation de�ned by a pair of matrices into its irre-ducible constituents, and SB, which calculates acanonical basis for an absolutely irreducible repre-sentation. The complexity of the Meat-axe proce-dures depends on the degree n of the representa-tions that we work with: most of the proceduresrequire space proportional to n2 and time propor-tional to n3.Our �rst construction was carried out by the sec-ond author, using an implementation of the Meat-axe system written by Richard Parker of Perihe-lion Software Ltd., on the Birmingham UniversityComputer Centre's IBM 3090. This version of theMeat-axe allows for computations with representa-tions of degrees up to around 1000: we were ableto treat HN as a \small" group and we followedthe steps of [Parker and Wilson 1990] very closely.The largest computation that we used was a chopon a 462-dimensional representation. In this casethe application of Step 5 involved testing 250 pos-sibilities for f 001 .Our second construction was carried out by the�rst author, using a smaller implementation of theMeat-axe on a Sun workstation. This version ofthe Meat-axe allows for matrices of dimensions upto about 200: the size limitation forced us to treatHN as a \large" group and we modi�ed the steps of[Parker and Wilson 1990] accordingly. The largestindividual step of this computation consisted of thecalculation of the nullspace of a matrix of size 134�168; we �nished the construction by locating thegroup HN as one of 12 possible matrix groups. As apreliminary, we needed some local analysis of HN;this is given in Sections 3.1 and 3.2.
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2. THE FIRST CONSTRUCTION OF HN IN GL133(5)The general strategy is to start with A12, �nd asubgroup M12, and adjoin an outer automorphismof M12. Since A12 is a maximal subgroup of HN[Norton and Wilson 1986], the group can be gener-ated in this way. The degree-133 character of HNrestricts to A12 mod 5 as 1 + 43 + 89 [Jansen etal.], and since the representation is self-dual it is adirect sum. Restricting further to M12, the 43 be-comes a uniserial module with factors 16, 11a, 16*,while the 89 breaks up as 1�45� [430], where [430]denotes a uniserial module with factors 16*, 11b,16. (The structure of these modules was deter-mined using the Meat-axe: see below.) The outerautomorphism of M12 now fuses the two indecom-posables [43] and [430], and acts as the regular rep-resentation of C2 on the �xed space of M12. Thesituation is illustrated as follows:HN
M12:2 1� 10 � [86]� 451� 43� 89 A12

M121� [43]� 1� [430]� 45
2.1. Making the Representation of A12All three required irreducibles are constituents ofthe permutation representation of degree 462, onthe cosets of A12\(S6 oS2). This can easily be madefrom the deleted permutation representation on 12points, by using the Meat-axe program VP (vectorpermute) to �nd the images of a vector �xed bythe given subgroup. This permutation representa-tion on 462 points can then be made into a matrixrepresentation and chopped up with the Meat-axein the usual way [Parker 1984]. Finally we makethe direct sum of the three representations.
2.2. Finding a Subgroup M12 in A12A �xed-point-free element of order three and an in-volution of cycle type 2414 have a reasonable prob-ability of generating M12, so a random search will

quickly produce words giving a subgroup M12. Ifwe do this in such a way that the product of ourtwo generators has order 11, we have what we shallcall \standard generators" forM12. More precisely,there are up to conjugacy just two such pairs ofgenerators, and these are interchanged by the outerautomorphism. In one case the product is in class11A, in the other, 11B.
2.3. Putting the Representation into Canonical FormUsing our \standard generators" for M12 we needto de�ne a \standard basis" for the representa-tion, and write all our matrices with respect tothis basis. Of course, the representation of M12 isnot completely reducible, so this is not as easy asit might otherwise be. One problem is that the43-dimensional indecomposable summands are notwell-de�ned: there are �ve of each.The usual way of using the Meat-axe programSB (standard base) is to choose an element f ofthe group algebra that has nullity 1 in its actionon one of the irreducibles, and nullity 0 on all theothers. Spinning up a null vector of f in its actionon the whole space then gives a standard basis foran invariant subspace on which the group acts inthe speci�ed manner. In the present instance wecan generalise slightly, by taking a group algebraelement f having nullity 1 on 16 and nullity 0 oneverything else. Then f has nullity 2 on the full133-dimensional representation, and �ve of the six1-spaces in this nullspace spin up to 43-dimensionalinvariant subspaces. We can take any one of theseto be our standard indecomposable summand, andSB will produce a standard base for the given 43-space. Similarly, we obtain standard bases for theother summands, and concatenate them in order,to get a standard base for the whole space. (In factwe chose our two 43-spaces to be the ones containedin simple A12-submodules. However, this choicedoes not seem to be better than any other.)
2.4. A Second Set of Generators for M12We now must �nd, as words in our standard gener-ators for M12, a second set of standard generators,
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conjugate to the �rst by an outer automorphism ofM12. A repeat of the random search will producecandidates for these. To show that our new gener-ators are not conjugate to the old ones inside M12,it su�ces to show that from a representation (suchas 11a) not invariant under AutM12 we obtain aninequivalent representation.
2.5. A Second Standard BaseWhat we are looking for is a suitable involutionconjugating our �rst set of generators for M12 tothe second. First we use the same procedure asabove to produce a standard base for the space.This time however we have to consider all �ve pos-sibilities for each 43-dimensional indecomposable.Thus there are 25 possibilities in all.Now each of these 25 matrices will conjugateour �rst pair of generators for M12 to the second.Moreover we can multiply this by any matrix cen-tralizing M12. Thus we obtain a large number ofpossible conjugating matrices. However, there isno point in conjugating by something centralizingA12, either before or after conjugating by our stan-dard base matrix. This means that in fact we needonly consider elements which act as involutions ofGL2(5) on the �xed 2-space of M12, and triviallyelsewhere. Moreover, these only need to be con-sidered modulo scalars, making ten cases for eachstandard base matrix, or 250 in all.Of these 250 cases, 249 give rise to groups con-taining elements of order greater than 40. Thusthey cannot be HN. On the other hand, HN doeshave a representation which can be constructed inthis way, so the one remaining case must generateHN.
3. THE SECOND CONSTRUCTION OF HN IN GL133(5)We now give an alternative computer constructionof HN as an explicit subgroup of GL133(5). Ourplan is to amalgamate representations of subgroupsU �= U3(8): 3 and T �= 23:22:26: (F21 � 3) over anintersection B = U\T �= 23+6: (F21�3) to producea representation of HN:

HN
U3(8):3 �= U

B �= 23+6:(F21 � 3)
T = hB; xi�= 23:22:26:(F21 � 3)

The biggest obstacle that we encounter is thecomputation of 133-dimensional representations ofthe subgroups U and T . We remark that there aretwo isomorphism types of split extension U3(8): 3.We shall reserve the notation for the group U3(8):31[Conway et al. 1985, p. 66]; this particular exten-sion arises as a subgroup in both HN and E7(5)(the latter embedding is exhibited in [Griess andRyba 1994]). A 56-dimensional representation ofU3(8): 3 was computed in [Griess and Ryba 1994];in Section 3.3 we make use of the fact that this rep-resentation of U extends to the simple group E7(5)to obtain a 133-dimensional representation of U .The group T is solvable, but it is not conve-niently described in the literature: we devote Sec-tions 3.1 and 3.2 to a theoretical study of T inorder to facilitate its construction. We show thatT can be constructed by adjoining a particular ele-ment x to the readily accessible maximal subgroupB of U . The results of Sections 3.1{3.3 are sum-marized in Proposition 3.3, which can be regardedas a link between the work on subgroups and theconstruction of HN itself. The remaining sectionsare devoted to a computer construction of a ma-trix representation of the element x (and thus ofHN �= hU; xi).
3.1. Properties of the Group B and its SubgroupsLet H �= HN, and let H � U � B with U �=U3(8): 3, B �= 23+6: (F21 � 3) [Conway et al. 1985,pp. 66, 166]. LetW = O2(B) �= 23+6;K = Z(W ) �= 23;�W =W=K �= 26:
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Let F be a subgroup of B isomorphic to F21, andlet � be a 3-element of CB(F ).The next proposition summarizes some struc-tural information about the small solvable groupB and its subgroups. We computed these proper-ties with the matrix represenation of B given in[Griess and Ryba 1994, Sec. 3].
Proposition 3.1. (i) K is an absolutely irreducible F -module.
(ii) �W is a direct sum of two isomorphic absolutelyirreducible (three-dimensional) F -modules; thus�W has exactly three proper F -submodules, �W1,�W2, �W3, say .
(iii) Let Wi be the preimage of �Wi in W ; then eachWi is the direct product of three cyclic groups oforder 4.
(iv) As F -modules, each �Wi �= K; the isomorphismis given by the squaring map, �w 7! w2.
(v) The element � cyclically permutes W1, W2 andW3.
3.2. The Subgroup T of HNLet H �= HN, U �= U3(8): 3, B �= 23+6: (F21 � 3),W �= 23+6, K �= 23, W1 �= W2 �= W3 �= 43, F �= F21and � be as in 3.1. Let � be a 7-element in F .Let N = NH(K), so that [Norton and Wilson1986, Sec. 3.1]N �= 23:22:26:(L3(2)� 3):Let T = hO2(N); F; �i �= 23:22:26: (F21 � 3); thenT \ U = B (since B is maximal in U). More-over, since U is maximal in H, H = hU; T i. Let Cbe the unique normal subgroup of N with struc-ture 23:22:26:3; then C = CN(K), since N=C is theunique quotient of N between F21 and L3(2), andF21 �= F=(F \ CN (K)) � N=CN (K) � AutK �= L3(2):LetX be any normal subgroup ofN which containsK and has structure 23:22. Let �X = X=K �= 22.We claim that jCX(�)j = 4 (because jCX(�)j �jXj � 4 (mod 7), and jCX(�)j � 4 since � acts�xed point freely on K). Let x be one of the three

nonidentity elements of CX(�); x must be in class2A of H [Conway et al. 1985, p. 164].
Lemma 3.2. (i) [X;W ] � K.
(ii) The element x centralizes exactly one of W1,W2, and W3; it inverts every element of theother pair of these groups.
(iii) The group H can be generated from its subgroupU by adjoining a 2A-involution that centralizeshW1; F i and inverts all elements of W2 and W3.
Proof. (i) Observe that �W acts on �X via the con-jugation action of W on X (since W and X bothcentralize K). Thus C �W ( �X) is an F -invariant sub-module of �W (since W and X are F -invariant).But Aut �X �= S3, so the co-dimension of C �W ( �X) in�W is at most 1; hence C �W ( �X) = �W (by 3.1(ii)).Therefore [X;W ] � K.(ii) The map [x; ] : W ! K induces an F -invariant linear map from �W to K, because[x;wf ] = [xf ; wf ] = [x;w]f :In particular, for each i, [x; ] : Wi ! K is eitherthe trivial map or the squaring map. Observe that[x; ] cannot be trivial on all three groupsWi (sinceCH(x)=hxi �= HS:2 has no subgroup isomorphic toW [Conway et al. 1985, p. 80]). Moreover, if w1 2W1, then w2 = w�1 2 W2, and w3 = w1w2 2 W3;thus [x;w1][x;w2][x;w3] = 1(since [x;W ] � K � Z(hX;W i)). It follows that[x; ] is trivial on exactly one of the three subgroupsWi, and it gives the squaring map on the other twosubgroups.(iii) We may assume that [x;W1] = [x�;W2] =[x�2 ;W3] = 1 (by replacing x by a conjugate underh�i if necessary). Hence,f1; xg = CCX(�)(W1);and therefore F centralizes x (since F normalizesW1, X and h�i). The claim follows, since U ismaximal in H, and x =2 U . �
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3.3. Representations of U3(8): 3We begin by describing our computer constructionof a 133-dimensional representation of U3(8): 3. Wemade use of the explicit embeddingU3(8): 3 � 2E7(5) � GL56(5)and of the corresponding matrix representations ofthe fundamental roots of an invariant Lie algebraE of type E7 over F5 (the relevant matrices forU3(8): 3 and E are displayed in Section 8 of [Griessand Ryba 1994]).Conjugation by U3(8): 3 preserves E and there-fore we can compute a 133-dimensional matrix rep-resentation of U3(8): 3 as follows:
Calculation 3.3. 1. Compute and store matrix rep-resentatives E1, E2, : : :, E133 (in GL56(5)) for aChevalley basis of E.
2. Select a generating pair of 56� 56 matrices U1,U2 for U3(8): 3.
3. Calculate each of the 266 matrices EUki , and �ndthe corresponding linear combinations EUki =�AkijEj.Then the 133� 133 matrices A1ij and A2ij generatea group U �= U3(8): 3. In principle, Step 3 could becarried out by applying Gaussian elimination 266times to various 134 � 1332 matrices. In practice,this process can be enormously speeded up by thefollowing standard sampling technique, which wasalso used in [Griess and Ryba 1994, Sec. 8].
Calculation 3.30. 3a. Select a random 3� 56 matrix,say M .
3b. Calculate the 3� 56 matrices F ki =MEUki andFj =MEj.
3c. Apply Gaussian elimination 266 times on 134�168 matrices to obtain the values of Akij as co-e�cients in: F ki = �AkijFj. (In the unlikelyevent that more than one such combination isever found we go back to (3a) and make a morerandom choice for M . There must always be atleast one such linear combination since U3(8): 3preserves the Lie algebra E.)

The matrix generators of U3(8): 3 given in [Griessand Ryba 1994] include matrix generators for thesubgroups B, F , W1, W2, and W3. We appliedthe two preceding calculations to these matrices toobtain explicit copies of these subgroups inside ourmatrix group U = hA1ij; A2iji.We used the Meat-axe program CH on U toprove that this matrix group is irreducible (on itsnatural 133-dimensional represenation). Note alsothat U preserves the Killing form on E, so it givesa self-dual irreducible 133-dimensional representa-tion of U3(8): 3. The group U3(8): 3 has exactlythree di�erent self-dual 133-dimensional represen-tations; but these representations are equivalentunder another outer automorphism of U3(8). Now,observe that the 133-dimensional complex repre-sentations of HN restrict to self-dual irreduciblecomplex representations of U3(8): 3 (see [Conwayet al. 1985]). It follows that any self-dual irre-ducible 133-dimensional 5-modular representationof U3(8): 3 must extend to HN (because 5 doesnot divide jU3(8): 3j). We conclude that U can beextended to HN inside GL133(5). Together withLemma 3.2 this gives:
Proposition 3.3. There is a matrix x in GL133(5)with the following properties:
(i) hU; xi �= HN.
(ii) x has trace 1 as an element of F5.
(iii) [x;W1] = [x; F ] = 1.
(iv) wxw � x = 0 for all w 2W2 [W3.
(v) hB; xi = T .
3.4. Calculation of Centralizer AlgebrasWe now investigate the collection of all matricessatisfying the condition (iii) of the previous propo-sition. This requires the calculation of a central-izer algebra, and, as a preliminary, an analysis ofthe restriction of the natural 133-dimensional F5U -module to a subgroupG = hW1; F i �= 43:F21:The proof of the following result is a computa-tion carried out with the Meat-axe program CH.
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Lemma 3.4.1. Let V denote the natural 133-dimen-sional F5U -module. Then the restriction VG hasconstituents1� 6� 7a2 � 7b2 � 7c2 � 21a2 � 21b2:In this statement we use 1, 6, 7a, 7b, 7c, 21a and21b to denote the di�erent isomophism types ofirreducible constituents of V ; the superscripts de-note multiplicities. The dimension of a constituentrepresentation is given by its name. Thus, for in-stance, VG has two irreducible summands of type7a; these summands are each 7-dimensional. Weremark that the restriction VG actually has6 = 52 � 15� 1irreducible submodules of type 7a; our applica-tion of the Meat-axe has selected an arbitrary pairof these (and the other such submodules are con-tained in the linear span of our selected pair). Theprogram CH shows that the 6-dimensional sub-module of VG decomposes as a direct sum of two al-gebraically conjugate absolutely irreducible three-dimensional summands de�ned over F25; the cal-culation also shows that the other irreducible con-stituents of VG are absolutely irreducible.Although we established Lemma 3.4.1 by apply-ing the Meat-axe it is also easy to obtain a non-computer proof by character theory. The advan-tage of using the Meat-axe is that we obtain actuallists of vectors giving bases of the irreducible con-stituents of VG. Once we have determined bases forthe constituents of VG it is useful to turn them intostandard bases (by means of the Meat-axe programSB). (We must work over the �eld F25 in orderto obtain a standard basis for the six-dimensionalconstituent of VG.)The decomposition of VG leads to a decomposi-tion of C, the centralizer algebra, consisting of all133�133 matrices that commute with the matricesin G. For each isomorphism class, n say, of irre-ducible summand of VG, we let Cn denote the sub-algebra of C consisting of matrices with row spacesin the sum of the subspaces of type n in VG.

Corollary 3.4. As an algebra,C = C1 � C6 � C7a � C7b � C7c � C21a � C21b:Moreover , as F5-algebras, C1 �= F5, C6 �= F25, andC7a �= C7b �= C7c �= C21a �= C21b �= M2(5), whereM2(5) is the algebra of 2� 2 matrices over F5.This follows immediately from Lemma 3.4.1 andSchur's Lemma (see [Alperin 1986, Sec. 2], for ex-ample). In particular, we see that dimC = 23. Inorder to compute matrices corresponding to par-ticular elements of the centralizer algebra C, wemake use of the standard bases described above.For example, if b1; b2; : : : ; b7 and b01; b02; : : : ; b07 arestandard bases of our two summands of type 7a,the element of C7a that corresponds to ��
 �� � is thematrix of GL133(5) that maps bi to �bi+�b0i and b0ito 
bi+�b0i, and is zero on the complementary sub-modules. A similar construction produces bases forthe matrix algebras C1, C7b, C7c, C21a, and C21b. Aslightly more complicated procedure yields a basisof C6; however, we shall only use elements of theone-dimensional subalgebra C�6 � C6 with C�6 �= F5.As a basis element of C�6 we take the 133�133 ma-trix that acts as the identity on the 6-dimensionalsummand of the F5G-module V , and acts as zeroon the complementary submodule.Although this is not strictly necessary for ourlater purposes, it is informative to carry out an ex-actly similar calculation for the larger groupW :F ,proving that:
Lemma 3.4.2. The centralizer algebra of the 133-dimensional matrix group W :F is 7-dimensional .This implies that there is a 7-parameter familyof 133�133 matrices satisfying conditions (iii) and(iv) of Proposition 3.3.
3.5. Computer Construction of a Representation of xWe are now in a position to compute all matrices xthat satisfy the conditions of Proposition 3.3. Webegin by noting that x belongs to the centralizeralgebra C (see Corollary 3.4), and that the com-ponents of x in our decomposition of C must all
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square to 1. We observe that both square roots of 1in C6 �= F25 lie in the prime sub�eld C�6 �= F5; there-fore x must actually belong to the 22-dimensionalsubalgebraC� = C1 � C�6 � C7a � C7b � C7c � C21a � C21bof C. We shall work with an explicit basis (consist-ing of matrices) c1; c2; : : : ; c22 for C� (we describedthe construction of such a basis immediately afterCorollary 3.4).The elements of C� that satisfy condition (iv) ofProposition 3.3 form a subspace C��. The followingcalculation provides an explicit basis of C��.
Calculation 3.5. 1. Pick a 4-element, w say, of W2.Calculate the matrices c0i = wciw � ci.
2. Use a sampling technique (similar to Calcula-tion 3.30) to �nd a basis for the space of vectors�i with �i�ic0i = 0.
3. Let C�� be the subspace of C� spanned by thecorresponding combinations: �i�ici.We performed Calculation 3.5 with a particularchoice of w and obtained a seven-dimensional di-mensional space C��. Lemma 3.4.2 shows that thereis no point in trying to cut down to an even smallercandidate space for x by using further choices forw. The seven-dimensional space C�� consists ofmatrices in C whose components correspond to theelements of F5 and M2(5) given by �, �, � �3� 2
" �;� �� �� �; � 4�2� 
4" �; � "2
 3�� � and � 4"4
 4�4� �, where �; : : : ; �are seven parameters from the �eld F5. (We notethat the actual 2 � 2 matrix components that wehave presented depend on the particular choices ofsummands of Lemma 3.4.1. For example, VG hassix subspaces of type 7a, and we selected two ofthese as summands. A di�erent choice of a pair ofsummands would lead to a conjugate of the 2 � 2matrix in the corresponding component of the cen-tralizer algebra).The trace condition, Proposition 3.3(ii), leads toan equation: �+6�+7(�+ ")+ 7(� + �)+ 7(4�+4") + 21(" + �) + 21(4" + 4�) � 1 (mod 5), andthus 2�+4� � 1 (mod 5). Combined with Propo-sition 3.3(i), this forces � = 1, � = 1 and � = 0.

The order of x, now leaves us with just twelve pos-sible sets of choices for the other four parameters.The corresponding twelve 133�133 matrices can becalculated, as linear combinations of b1; b2; : : : ; b22.Eleven of the twelve possible matrices generate ele-ments of order bigger than 40 when combined withelements of U . The remaining choice of x musttherefore extend the matrices of U to a group iso-morphic to HN (by Proposition 3.3).
4. EXTENDING HN TO HN: 2The principle here is essentially the same as thatused in Section 2 to extend M12 to M12: 2, but thistime the procedure is much more straightforward,since the representation is irreducible.First we obtain \standard generators" x and yfor HN. We chose x 2 2A, y 2 3B with xy 219A=B. Then we write our representation withrespect to a \standard base" de�ned by (x; y), asbefore. Then we �nd, as words in x and y, a pair ofgenerators (x0; y0) that we believe to be automor-phic to (x; y). Using the Meat-axe program SBagain we can verify this: (x0; y0) is automorphic to(x; y) if and only if the matrices representing x0 andy0 with respect to their standard basis are identicalto those representing x and y with respect to thestandard basis for (x; y).Further, the base change matrix conjugates (x; y)to (x0; y0). Thus by adjoining this matrix we ob-tain some subgroup of 4�HN: 2, where the central4 is represented by scalar matrices. Provided (x; y)and (x0; y0) are not conjugate in HN, we obtain gen-erators for HN: 2 by multiplying our base-changematrix by a suitable scalar. Two of the possiblescalars produce the two representations of HN: 2,while any other scalar gives a group G containingelements of order 50, so G cannot be HN: 2.
REFERENCES[Alperin 1986] J. L. Alperin, Local RepresentationTheory, Cambridge University Press, New York andCambridge (UK), 1986.
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