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Algebraic correspondences on the Riemann sphere generalise

both Kleinian groups and rational maps. We classify qua-

dratic correspondences satisfying certain “diagram conditions”

and derive canonical forms for them. We exhibit examples for

which the regular set and limit set are both nontrivial, and show

that such examples can simultaneously exhibit Kleinian-group-

like and rational-map-like behaviour. We also state some gen-

eral theorems and conjectures.

1. INTRODUCTIONA nondegenerate algebraic correspondence of bi-degree (m;n) on a closed Riemann surface S is analgebraic hypersurface f � S�S such that the pro-jections of f onto the two copies of S are locallyinjective almost everywhere and of degrees m andn respectively [Semple and Roth 1949]. If f and f 0are correspondences on the same surface S, theircomposite f 00 is the set of pairs (z; w) such thatthere exists v 2 S with (z; v) 2 f and (v; w) 2 f 0.When S is the Riemann sphere Ĉ , the hypersur-face f is de�ned by a polynomial equation
p(z; w) = 0;

and we think of f as the graph of the multivaluedfunction z 7! w (which we also denote by f) de-�ned implicitly by this equation. Composition ofcorrespondences is now just the usual compositionof (multivalued) functions.Here are some examples of correspondences onthe Riemann sphere:
Example 1.1. (a) Quadratic maps z 7! z2 + c are(2; 1) correspondences, since they can be writtenin the form w � (z2 + c) = 0.
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(b) The (two-valued) inverse of a quadratic map isa (1; 2) correspondence, since it can be writtenz � (w2 + c) = 0.
(c) The generators z 7! z + 1 and z 7! �1=z of themodular group PSL(2;Z) de�ne a (2; 2) corre-spondence (w � (z + 1))(w + 1=z) = 0.Note that in (c) the grand orbit of any point z un-der the correspondence (allowing arbitrary forwardand backward iterations) is precisely the orbit of zunder the modular group. More generally, to anyset of n elements of PSL(2; C ) (acting by fractionallinear transformations z 7! (az + b)=(cz + d)) wecan associate an (n; n) correspondence on the Rie-mann sphere, and the grand orbits will be those ofthe group generated by the transformations.It is well known that in example (b) the forwardorbit of a generic point accumulates on a set thatis independent of the generic point chosen (the Ju-lia set of the quadratic map of example (a)), andthat the same applies for any orbit of a discretesubgroup of PSL(2; C ) (in the case of the modulargroup, this limit set is the real line union in�nity).Discrete subgroups of PSL(2; C ) are of two types[Maskit 1987]: Kleinian groups of the �rst kind,which have limit set the whole sphere, and thoseof the second kind, where the complement of thelimit set (the regular set) is made up of copies of afundamental domain.For rational maps [Beardon 1991; Douady andHubbard 1982; 1984] there is an analogous dichot-omy: the Julia set may be either the whole sphereor a proper subset. The action of a rational mapon the complement of its Julia set (the Fatou set)again has a kind of \regular" behaviour, and thereis even the analogue of a \fundamental domain" inthe hyperbolic case, that is, when the Fatou set ismade up of basins of attraction of periodic orbits[Sullivan 1984].M�unzner and Rasch [Rasch 1988; M�unzner andRasch 1991] have shown that the same dynami-cal dichotomy exists on the space of orbits of analgebraic correspondence under one-way iteration,and that much of the classical Fatou{Julia theory

extends to this situation. Our interest here is quitedi�erent. We are concerned with the dynamical di-chotomy on the space on which the correspondenceacts (the Riemann sphere), and with grand orbitsof correspondences (mixed forward and backwarditeration), rather than one-way iteration.For generic algebraic correspondences on the Rie-mann sphere, one might expect generic grand or-bits to be dense. This is indeed the case for (2; 2)correspondences, as is not too di�cult to prove.However, there are also large classes of (2; 2) cor-respondences that have a \global limit set" that isa proper subset of the sphere, and where there is a\fundamental domain" for the action on the com-plement of this limit set, just as for Kleinian groupsof the second kind and hyperbolic rational maps.Examples vary from behaviour very like that of aKleinian group to very like that of a rational map,with some intriguing cases in between.In this paper we summarise our general resultsconcerning iterated (2; 2) correspondences on theRiemann sphere, survey the examples we have con-structed so far|in particular, \matings" betweenKleinian group and rational map actions|and in-dicate some directions for further study.Our motivation for undertaking this investiga-tion was the striking series of results of Sullivanobtained by applying quasiconformal deformationtheory to both rational maps and Kleinian groups[Sullivan 1984; 1985a; 1985b]. Our hope was thatby studying iterated correspondences we could ob-tain further insight into how these classes of dy-namical systems are related. The results outlinedin this paper are a step in that direction: we be-lieve the examples also have considerable interestin their own right.
2. QUADRATIC CORRESPONDENCES AND THEIR

GRAPHSWe restrict attention to quadratic correspondences,that is, nondegenerate (2; 2) correspondences onthe Riemann sphere. Much of what follows can begeneralised to higher degrees and to other Riemann
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surfaces, but there are often considerable compli-cations.A quadratic correspondence is an algebraic hy-persurface f � Ĉ � Ĉ , de�ned by an equationp(z; w) = 0, where p is of degree two in each ofz and w separately. Nondegeneracy means thatevery nonconstant factor of p(z; w) involves both zand w. An algebraic hypersurface has a normali-sation or desingularisation Q : � ! f , where � =�(f) is a closed Riemann surface and Q� = ��Qand Q+ = �+Q are holomorphic maps of degreetwo from � to Ĉ . Here �� and �+ denote the twoprojections from Ĉ � Ĉ onto Ĉ . See [Semple andRoth 1949; Shafarevich 1974] for details.Formally, to regard p(z; w) = 0 as a subset ofĈ � Ĉ = C P 1 � C P 1 we should homogenise thepolynomial p(z; w) into a homogeneous poynomialP ([z; t1]; [w; t2]) of degree four, where each term isseparately of total degree two in z and t1, and oftotal degree two in w and t2. However we shallfollow the usual convention and suppress the ho-mogenising variables, at the expense of allowing1 as a possible value for z and w.The correspondence de�ned by p(z; w) = 0 liftsto a correspondence on the graph f itself, de�nedby the subset F � f � f consisting of pairs ofpairs ((z; w); (w; �)) 2 f � f , that is, satisfyingp(z; w) = 0 and p(w; �) = 0. Normalising f viaQ : �! f , we de�ne ~f � �� � to consist of pairs(s; t) such that Q+(s) = Q�(t), where, as before,Q� = ��Q and Q+ = �+Q. Note that ~f is analgebraic hypersurface in �� �. We call ~f the liftof the correspondence f .Observe that we may write Q+Q�1� for f andQ�1� Q+ for ~f .
Remark. Given any Riemann surface � and any pairof degree-two holomorphic maps Q�; Q+ : � ! Ĉ ,the composition Q+Q�1� de�nes a correspondence.When � has genus two or higher, the covering invo-lutions of Q+ and Q� are identical, since � carriesa unique hyperelliptic involution, and thus Q+ =MQ� for some M�obius transformation M of Ĉ .It follows that Q+Q�1� (= M) is (1; 1). When �

has genus zero or 1, it is a pair of spheres (eachprojecting one-to-one onto Ĉ ), or a single sphere(branch-covering Ĉ ), or a torus (an elliptic curvebranch-covering Ĉ ). In each of these three casesone can apply standard theory of maps � ! Ĉto show that Q+Q�1� is algebraic and of bidegreeeither (1; 1) or (2; 2).
Singular Points and the Topological Type of the GraphSingular points for an algebraic correspondence fon any closed Riemann surface are of three types.Let Q : � ! f be the normalisation of f and let��; �+ be the two projections of f . As before writeQ� for ��Q and Q+ for �+Q. The types of specialpoint on f are best described after lifting to �.They are� the critical points of Q�;� the critical points of Q+; and� the singular points of Q.As we shall see, the possibilities for singular pointsof Q, and for points which are simultaneously ofdi�erent types, are quite limited for (2; 2) corre-spondences.The special points of various types project ontosingular points of the correspondence on the dy-namical plane, the Riemann sphere. By a forwardsingular point of the correspondence f = Q+Q�1�we mean a point z that has fewer images w under fthan its immediate neighbours, and by a backwardsingular point we mean a point w that has fewerpreimages than its immediate neighbours. Thusforward singular points are critical values of Q� orelse Q�-images of singular points of Q, and back-ward singular points are critical values of Q+ orelse Q+-images of singular points of Q.A quadratic correspondence on the sphere hasfour forward singular points and four backwardones, when counted with multiplicity [Semple andRoth 1949, Ch. IV]. If we write the correspondencein the formw2A(z) + wB(z) + C(z) = 0; (2.1)
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where A, B and C are quadratic polynomials, theforward singular points are given by the solutionsof B(z)2 = 4A(z)C(z) (2.2)Let z = z0 be a solution of (2.2) of multiplicityr and let w = w0 be the (unique) correspondingvalue of w. If we choose a coordinate system inwhich w0 6= 1, the solution of (2.1) has the localformw � w0 = (z � z0)'1(z)� (z � z0)r=2'2(z); (2.3)where '1 and '2 are analytic and '2(z0) 6= 0.If r is even, (z0; w0) is a double point of the corre-spondence, a point where the two sheets cut trans-versely (if r = 2) or touch (if r = 4). If r is odd,when we desingularise f there is a coordinate Z on� having Z2 = z � z0. Thus when lifted to � thepoint (z0; w0) becomes a critical point of Q�. Forr = 1, Equation (2.3) givesw � w0 = �Z + higher terms in Z;with � 6= 0, so (z0; w0) is an ordinary point of Q+,while for r = 3 the equation makes w � w0 equalto a sum of terms of degree two or higher in Z, so(z0; w0) is a critical point of Q+ as well as of Q�.To sum up:� for r = 1, z is a critical point of Q�;� for r = 2, z is a double point of Q;� for r = 3, z is a critical point of Q� and of Q+,and a nonsmooth point of Q;� for r = 4, two double points of Q coincide at z.We obtain di�erent topological types for the nor-malisation � of the graph of a quadratic correspon-dence f , depending on the various possibilities forthe multiplicities of the roots of (2.2). These typesare computed by calculating the Euler characteris-tic of �, using the branched double covering mapQ� : �! Ĉ .
(a) If there are four distinct roots, � is a torus (fis an elliptic curve).

(b) If there are three roots, one of which is double,or two roots, one of which is triple, � is a sphere,self-intersecting or with a nonsmooth point.
(c) If there are two double roots or one quadrupleroot, f is reducible, a pair of spheres intersect-ing at two points or touching at one. Its nor-malisation � is a disjoint pair of spheres.A quadratic correspondence is equivalent to a sub-group of PSL(2; C ) (with two generators) if andonly if its graph f is of type (c) above.As an example of an explicit computation ofsingular points consider the arithmetic-geometricmean correspondence4zw2 = (z + 1)2; (2.4)so-called because it sends z to the ratio w betweenthe arithmetic and geometric means of 1 and z.In the notation of (2.1), we haveA(z) = 4z;B(z) = 0; C(z) = �(z + 1)2:Thus (2.2) becomes16z(z + 1)2 = 0;with solutions z = �1 of multiplicity two and z =0;1 of multiplicity one. Therefore Q� has twocritical values z = 0 and z = 1, and Q : � ! fhas one double point (z; w) = (�1; 0). It followsthat � is a single sphere.
Maps of Pairs and Maps of TriplesA quadratic correspondence f comes equipped withtwo involutions I�; I+, the covering involutions forthe two projections ��; �+ of the graph f onto Ĉ .We shall use the same notation I�; I+ for the liftsof these involutions to the normalisation � of f ,namely the covering involutions for Q� = ��Q andQ+ = �+Q.
Remark. For correspondences of higher degree, theanalogues of I� and I+ are themselves correspon-dences rather than group elements.Commutation conditions on I� and I+ translateinto diagram conditions on the two-valued map
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z 7! w de�ned by the equation p(z; w) = 0 of f .The diagram conditions that will concern us arethose de�ning maps of pairs and maps of triples.We say that a quadratic correspondence is a mapof pairs if z1 7! w1, z1 7! w2 and z2 7! w1 implyz2 7! w2. Diagramatically,
z2z1 w2w1--���@@R (2.5)

Since I� is the involution on f that interchanges(z1; w1) and (z1; w2), and I+ interchanges (z1; w1)and (z2; w1), it is an elementary observation thatf is (the graph of) a map of pairs if and only ifI�I+ = I+I�.We say that a quadratic correspondence is a mapof triples if, for every z1, there are points z2, z3, w1,w2 and w3, not necessarily distinct, such that theimages of the zi and the preimages of the wi forma diagram
z3z2
z1

w3w2w1
������
��@@R�
��AAAAU

@@R
(2.6)

We say that a map of triples f is reversible if themap zi 7! wi that exists as a consequence of (2.6) isan involution of Ĉ . It is an elementary observationthat f is (the graph of) a map of triples if and onlyif I�I+I� = I+I�I+, and that the map of triplesis reversible if and only if I�I+I�(z; w) = (Jw; Jz)for an involution J .Of course one can consider other commutationconditions|indeed we do so in [Bullett and Pen-rose a]|but the conditions just given are particu-larly appealing, in that correspondences f satisfy-ing them have straightforward canonical forms fortheir equations p(z; w) = 0, as we now show.We say that a correspondence f is separable if ithas an equation of the form h1(z) = h2(w), whereh1 and h2 are rational functions.
Lemma 2.1. A quadratic correspondence f is a mapof pairs if and only if it is separable.

Proof. Let f have equation h1(z) = h2(w). Givenany z1 2 Ĉ , let � = h1(z1). Then z1, together withthe other root z2 of h1(z) = � and the two rootsw1 and w2 of h2(w) = �, obey diagram (2.5), sof is a map of pairs. Conversely, if f is a map ofpairs, then it is immediate from (2.5) that f hasan equation of the form j1(z) =Mj2(w), where j1identi�es z1 with z2, j2 identi�es w1 with w2, andM is a M�obius transformation. �
Remark. If f is a map of pairs, it has the form z 7!h�12 h1(z), and hence it is the lift of the \pusheddown" correspondence z 7! h1h�12 (z) to its graph.See the discussion of lifts of correspondences earlierin this section.
Lemma 2.2. A quadratic correspondence f is a mapof triples if and only if there exists a rational mapC of degree three and a M�obius transformation Msuch that f has equation (C(w) � C(Mz))=(w �Mz) = 0. In addition, f is a reversible map oftriples if and only if M is an involution.
Proof. If f has equation of this form, it is easilyseen to satisfy the diagram condition (2.6): just setwi = Mzi for i = 1; 2; 3. Conversely, if f satis�esthe diagram condition, we may de�ne M to be themap that associates each wi to the correspondingzi, and C to be any rational function of degreethree that maps each triple fz1; z2; z3g to a singlepoint. �In Section 3 one of our concerns will be maps oftriples where M is the identity (cyclically sym-metric correspondences), and in Section 6 we shallsee how certain classes of reversible maps of triplescan be viewed as \matings" between the modulargroup and quadratic maps.
3. RESOLVABLE CORRESPONDENCESIn this section we describe classes of correspon-dences which can be \resolved" to group actionsby lifting to suitable covering spaces. The problemof describing their dynamics is thereby reduced to
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group theory. We �rst introduce one more piece ofterminology.A forward critical point of the correspondencef = Q+Q�1� is the image Q�(c) 2 Ĉ of a criticalpoint c 2 � of Q+. The corresponding forwardcritical value of f is Q+(c) 2 Ĉ , in other wordsa critical value of Q+ (and hence, as we observedin the previous section, a backward singular pointof f). This agrees with the standard terminologywhen f = Q+Q�1� is a rational map, that is, whenQ� is a M�obius transformation.Similarly, a backward critical point of f is theimage Q+(c0) 2 Ĉ of a critical point c0 of Q�, andQ�(c0) is the corresponding backward critical valueof f (a forward singular point).
Critically Finite CorrespondencesAs for iterated rational maps, it is the behaviourof critical points that determines the overall be-haviour of a correspondence under iteration. Thesimplest situation to analyse is when the grand or-bits of all critical points are �nite [Bullett 1992].These critically �nite correspondences are analo-gous in some ways to postcritically �nite rationalmaps, which play an important role in that theory.However, critical �niteness in this sense is a muchstronger condition than postcritical �niteness forrational maps: for example, the only critically �-nite rational maps of degree two are z 7! z2 andz 7! 1=z2.Any critically �nite correspondence can be re-solved by removing the critical orbits and thenlifting to the universal cover of the resulting punc-tured sphere. On this universal cover, which is thecomplex upper half-plane if the critical orbits con-tain at least three points, the lifted correspondencehas no critical points, forwards or backwards, andtherefore factorises into biholomorphic transforma-tions of the upper half-plane|that is to say, el-ements of PSL(2; R ). For example, consider thearithmetic-geometric mean correspondence (2.4).This has forward critical values 1 and �1, andbackward critical values 0 and 1. All these points�t together in the (�nite) grand orbit

1! �1! 0!1 :The universal cover of the sphere punctured atthese four points is the complex upper half-planeH , with covering transformation groupG = �2(4) = � 1(4) 0(2)0(4) 1(4)� � PSL(2;Z):The arithmetic-geometric mean correspondencelifts to the map � 7! 2� on H , and of course also tolifts to the same map pre- or post-composed withany covering transformation. From analysis of how� 7! 2� interacts with the covering group it followsthat all grand orbits other than the critical oneare dense on the sphere. There is much interest-ing geometry underlying the arithmetic-geometricmean correspondence [Bullett 1991], in particularthat investigated by Gauss in his remarkable workon elliptic integrals and theta functions.Other critically �nite correspondences can be re-solved in a similar way. In [Bullett 1992] there isa classi�cation of all strongly critically �nite qua-dratic correspondences, together with the coveringgroups of the associated punctured spheres, andlifts of the correspondences to the upper half-plane.A correspondence is called strongly critically �-nite if not only are the critical orbits �nite, butall points on them are critical values, either for-wards or backwards. This is a technical conditionthat makes the classi�cation problem easier: thereare just eleven strongly critically �nite quadraticcorrespondences, and their covering groups are allsubgroups of PSL(2;Z) associated to regular solids.In each of these examples, every grand orbit of thecorrespondence, other than critical orbits, is denseon the Riemann sphere.
Critically Resolvable CorrespondencesWe say that a quadratic correspondence is criti-cally resolvable if every critical value of Q� is alsoa critical value of Q+, and vice versa. On the dy-namical plane Ĉ this is the condition that everyforward critical value of f = Q+Q�1� is also a back-ward one, and vice versa.
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Example 3.1. Consider the correspondence�z � 1z + 1�2= �4 aw(w � a)2 : (3.1)This has critical points 1 and�a, and double points�1 and a, with orbits
���@@R �1 - a���@@R and @@R��� 1���@@R1

0 @@R��� �a ���@@R :
Thus 0 and1 are both forward and backward crit-ical values. Note that the cases a = 1 and a = �1give critically �nite correspondences. Indeed inthese cases all orbits are �nite.
Lemma 3.2. A quadratic correspondence is criticallyresolvable if and only if it can be writtenf = Q�TQ�1�for some automorphism T of �.
Proof. Critical values determine a degree-two map� ! Ĉ up to premultiplication by an automor-phism T of �. �
Remark. Since, given any Q� and Q+, there ex-ist automorphisms S of Ĉ and T of � such thatQ+ = SQ�T , every quadratic correspondence isthe composition of a critically resolvable correspon-dence followed by a M�obius transformation.It follows from Lemma 3.2 that the lift ~f of a crit-ically resolvable correspondence f to the normal-isation � of its graph is the pair of (1; 1) mapsfT; I�Tg. Thus ~f is a reducible correspondence.We remark that when � is a pair of spheres we candistinguish between T and I�T by the fact thatone (say T ) maps each sphere to itself, and theother (I�T ) exchanges the spheres. When � is ageneric torus (generic means the only rotationalsymmetries of � are of order two) we can similarlydistinguish the translational lift (which we denoteT ) from the elliptic one (I�T ), but when � is asingle sphere we have no such distinction of typesof automorphism.The following theorem is now self-evident.

Theorem 3.3. Any critically resolvable (2; 2) corre-spondence lifts to an action on � of the free productC1�C2 of an in�nite cyclic group (generated by T )with a cyclic group of order two (generated by I�).Conversely , any action of C1 � C2 on a Riemannsurface � that is topologically a pairs of spheres,a single sphere or a torus is the lift of a criticallyresolvable quadratic correspondence on Ĉ , providedthat the generators T and I� of C1 � C2 satisfythese conditions:
(i) T and I� do not commute;
(ii) if � is a pair of spheres, I� exchanges spheresand T preserves them; and
(iii) if � is a torus, I� is elliptic.Condition (i) is necessary to ensure that the cor-respondence is not (1; 1). Note also that in thecase that � is a pair of spheres or a generic torusTheorem 3.3 can be sharpened to state that thereis a bijection between conformal conjugacy classesof critically resolvable correspondences and confor-mal conjugacy classes of (nonabelian) actions ofC1 � C2.As an example of how to resolve a critically re-solvable correspondence in practice, consider (3.1),which is in fact the family of all critically resolv-able maps of pairs with graph a single sphere. Thecritical values are 0 and 1, so we can resolve bysubstituting Z2 for z andW 2 for w in the equation.We deduce that the lift of the correspondence is thegroup generated by the M�obius transformationsT : Z 7! ipa Z + 1Z � 1 and I�T = TI+;where Z = (z; w) is a coordinate on f , and I� :Z 7! �Z is the covering involution for the projec-tion Z 7! z = Z2. (In this parametrization I+ isthe involution Z 7! 1=Z.)The class of critically resolvable quadratic cor-respondences contains two subclasses of particu-lar interest: symmetric correspondences, for whichz 7! w if and only if w 7! z; and cyclically symmet-ric correspondences [Semple and Roth 1949, Chap-ter IV], for which generic grand orbits have three
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points, and the correspondence maps each z to theother two points on its grand orbit (equivalently,there exists a rational function C : Ĉ ! Ĉ of de-gree three such that the correspondence is de�nedby (C(w)� C(z))=(w � z) = 0).It is evident that cyclically symmetric, symmet-ric and critically resolvable are successively weakerproperties.
Lemma 3.4. A critically resolvable quadratic corre-spondence f is symmetric if and only if one of itslifts T and I�T to � is an involution; it is cyclicallysymmetric if and only if one lift is an involutionand the other has order three.
Proof. If either T or I�T is an involution, it is im-mediate that f is symmetric. For the converse, ob-serve that if f is symmetric the involution (z; w) 7!(w; z), restricted to (z; w) 2 f , is a lift of f to itsgraph, and hence either T or I�T is this involution.The proof of the statement for cyclically symmet-ric correspondences is analogous. �We have the following immediate corollary of The-orem 3.3 and Lemma 3.4.
Corollary 3.5. Any symmetric (2; 2) correspondencelifts to an action of C2 �C2 on �. Conversely , anyaction of C2 � C2 on a Riemann surface � that istopologically a pair of spheres, a single sphere or atorus is the lift of a symmetric quadratic correspon-dence on Ĉ , provided that the generators T and I�of C2�C2 satisfy conditions (i){(iii) of Theorem 3.3.Every cyclically symmetric (2; 2) correspondencelifts to an action of the dihedral group D6 of or-der six on �. Conversely , any action of D6 on aRiemann surface � that is topologically a pair ofspheres, a single sphere or a torus is the lift of acyclically symmetric quadratic correspondence onĈ , provided that the generators T and I� of D6satisfy conditions (i){(iii) of Theorem 3.3.Note that when � is a generic torus, T is necessarilya translation and I�T is necessarily an involution.Thus critically resolvable implies symmetric in thiscase.

Remark. The prototype symmetric correspondencewith graph an elliptic curve (torus) is that whichappears in Poncelet's Porism [Berger 1987]. Givenany pair of (nonintersecting) real conics C1 andC2, consider the iteration de�ned by sending a rayfrom a point of C1 along a direction tangent toC2, then repeating the process at the point wherethe ray (again) hits C1. Poncelet's Porism statesthat whether the ray eventually returns to the ini-tial point depends only on C1 and C2, and not onthe initial point chosen. If one considers the setof pairs of points on C1 that lie at opposite endsof tangents to C2, one �nds that these pairs de-�ne (after complexi�cation) an elliptic curve, thegraph of the symmetric correspondence de�ned bysending each point on C1 to the opposite ends ofthe two tangents to C2 through the point. Sinceon the graph the lift T of the correspondence isa translation, we deduce Poncelet's Porism. If Thas order three (that is, if C2 is triangularly cir-cumscribed in C1), the correspondence describedabove is cyclically symmetric.The description in terms of group actions providesa method of writing down explicit forms for thegraph correspondences ~f that are lifts of criticallyresolvable correspondences f . It is also useful tohave canonical forms for f itself. In particular weshall need these later for cyclically symmetric cor-respondences.
Lemma 3.6. Every cyclically symmetric quadraticcorrespondence is conformally conjugate to one ofthe following :
(a) (w � jz)(w � j2z) = 0, where j = e2�i=3;
(b) w2 + zw + z2 = 3; or
(c) w2(z+1)+w(z2+ (a+1)z+ a)+ (z2+ az) = 0for some complex value of a 6= 0; 1; 9.
Proof. This follows from normalising the rationalcubic C to the three standard forms below, for thethree types of graph, by placing the branch points(critical values of the correspondence) at particularlocations:
(a) graph two spheres: C(z) = z3;
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(b) graph one sphere: C(z) = z3 � 3z;
(c) graph a torus: C(z) = z2(z + a)=(z + 1) fora 6= 0; 1; 9. �
Remark. By Lemma 2.2, any map of triples canbe decomposed into a cyclically symmetric corre-spondence followed by a M�obius transformation.Thus Lemma 3.6 yields canonical forms for maps oftriples and for reversible maps of triples. We shallmake use of these canonical forms in Section 6.
4. LIMIT SETS, REGULAR SETS, DIRECTIONALITIES

AND FUNDAMENTAL DOMAINSThe resolvable correspondences dealt with in Sec-tion 3 have all grand orbits either �nite or dense onĈ . In the present section we consider more generalcorrespondences, and the question of the existenceof regular sets and limit sets.The notions of Julia set for rational maps and oflimit set for Kleinian groups do not have a singleall-embracing generalisation for correspondences.Rather, we have a chain of limit setsL0(f) � J0(f) � �0(f) � �(f)de�ned in di�erent ways, but where certain of theinclusions in the chain become equalities in favour-able circumstances. Full details will be presentedin [Bullett and Penrose a], but we summarise ourpresent state of knowledge here.We need two notions to de�ne the various sets inthe chain. The omega limit set of z 2 X, where Xis the space on which the correspondence f acts, is!(z) = f�(z)� f�(z);where f�(z) denotes the grand orbit of z under fon X. The accumulator set of z 2 X is!�1(z) = fw 2 X : z 2 !(w)g:The minimal limit set of f isL0(f) = fz : ? 6= !�1(z) = X �E(f)g;where E(f) is the exceptional set of points z 2 Xhaving �nite grand orbit. We conjecture that L0(f)

is the intersection of all in�nite closed completelyinvariant subsets of X, and that J0(f) 6= ? if andonly if L0(f) 6= ?.The generic limit set isJ0(f) = fz : !�1(z) � 6= ?g:For a hyperbolic rational map this is the conven-tional Julia set together with the grand orbits ofattracting or superattracting cycles. We conjecturethat J0(f) is always closed.The global accumulation set is�0(f) = fz : !�1(z) 6= ?g:This set need not be closed. For example, thegrand orbit of the centre of a Siegel disc does notlie in �0(f), whereas the grand orbit of every otherpoint on the disc does.The domain of proper discontinuity or regularset 
(f) is the set of points z 2 X having a neigh-bourhood U with only a �nite number of distinctreturns under (mixed) iterates of f and f�1. Quo-tienting 
(f) by grand orbit equivalence gives aHausdor� space.The global limit set �(f) is the complement of
(f). We conjecture that �(f) is always the clo-sure of �0(f).In analogy with the classical theory for ratio-nal maps, it also seems reasonable to de�ne theshadowing-equicontinuity or normality set N(f) asthe set of z 2 X for which given " > 0 there exists� > 0 such that when z moves a distance less than� any point on the grand orbit f�z moves less than" (see [Bullett and Penrose a] for more details).The complement of N(f) has some right to the ti-tle of Julia set, and we denote it J(f). In [Bullettand Penrose a] it is shown that J(f) � �(f). If nogrand orbit of f is dense in an open set of X, thenJ0(f) � J(f) (possibly with equality in all cases),but the existence of grand orbits dense on opensets completely changes the picture, and there maythen be a large part of J0(f) contained in N(f); seeExample 4.3 below. In [Bullett and Penrose a] we
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present more details, but all terminology remainsprovisional until the situation is further clari�ed.
Example 4.1. If the orbits of f are those of a Klein-ian group G, then L0(f) = �(f) = �(G), the limitset of G in the Kleinian group sense. Also theshadowing-equicontinuity set N(f) is just the reg-ular set 
(G) in the Kleinian group sense.
Example 4.2. If f is a rational map, L0(f) is theJulia set of f in the usual rational map sense, J0(f)adds to L0(f) the grand orbits of attracting andsuperattracting periodic cycles, �0(f) further addsthe basins of superattracting cycles and the grandorbits of cycles of Siegel discs, except for the grandorbits of centres of Siegel discs, and �(f) �nallyadds these grand orbits of centres. The shadowing-equicontinuity set N(f) is the usual Fatou set fora rational map, minus grand orbits of attractingor superattracting cycles. In other words, J(f) =J0(f).
Example 4.3. If f is the arithmetic-geometric meancorrespondence (2.4), then L0(f) is the whole ofthe Riemann sphere Ĉ and thus so are J0(f), �0(f)and �(f). At the same time, the shadowing-equi-continuity set N(f) is all of Ĉ except for the criti-cal orbit f1;�1; 0;1g, as can easily be veri�ed bylifting f to � 7! 2� on the universal cover of thefour-punctured sphere.
Remark. The shadowing-equicontinuity set appearsto be the best set on which to generalise Ahlfors'�niteness theorem and Sullivan's analogues for ra-tional maps [Sullivan 1984; 1985a].We now move on to the more practical problemof identifying regions on which a correspondenceacts discontinuously. The dynamics of relations fon general Hausdor� spaces X have been consid-ered by McGehee [1992]. We adapt his approach toour speci�c situation of algebraic correspondences,and �nd that as well as enabling us to identify\fundamental domains" for correspondence actionson certain regions, it also enables us to show thatcertain correspondences have \polynomial-like" ac-tions on other regions, and to deduce, using the

theory of [Douady and Hubbard 1985], that thelimit sets of these correspondences are made up ofcopies of Julia sets of polynomial maps.We make some changes from McGehee's nota-tion: in particular we write f�1(S) rather thanf�(S) for the set of points with at least one imageunder f in S, and we reserve the notation f�(S)for the union of grand orbits of points in S.We say that a subset S � X de�nes a direc-tionality for f if f( �S) � �S. An equivalent way toexpress this condition is to require that( �S � Sc) \ f = ?;so the condition is also equivalent to f�1(Sc) �(Sc)�. The existence of a directionality ensures theexistence of an attractor �+(f; S) = Tn>0 fn(S)and a repeller ��(f; S) = Tn>0 f�n(Sc). The at-tractor and repeller will in general depend on ourchoice of S, but we conjecture them to be uniquewhen f is (2; 2), X is the Riemann sphere and S aJordan disc [Bullett and Penrose a].Forward orbits started in S � f(S) never returnto it, but accumulate on some subset of �+(f; S).Similarly backward orbits started in Sc � f�1(Sc)accumulate on some subset of ��(f; S). In thissense S�f(S) and Sc�f�1(Sc) behave rather likefundamental domains for the respective actions off and f�1 on appropriate regions of X. Howeverwhat we are really concerned with is arbitrarilymixed iteration under f and f�1.Behaviour under mixed iteration depends on thediagram conditions (if any) satis�ed by f , and wecon�ne ourselves here to a discussion of two casesthat particularly interest us|maps of pairs andreversible maps of triples. In each case we askthat the directionality S satisfy extra hypothesesrelated to the diagram condition, we de�ne a globalattractor �(f; S) associated to S, and we seek afundamental domain � for the action of f on thecomplement 
(f; S) of �(f; S) in the usual sense:the union of all images of � under the full actionof the correspondence should �ll 
(f; S), with notwo images meeting except at common boundaries.
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The existence of such a � will ensure that 
(f; S)is contained in the regular set 
(f) and thus thatthe global limit set �(f) is contained in �(f; S). Ingeneral in these circumstances �(f; S) is a �lled-inversion of �(f), and in the particular situations ofTheorems 5.1 and 6.2 below (and also conjecturallyin that of Theorem 6.1), its boundary @�(f; S) isthe minimal limit set L0(f).When f is a map of pairs, we de�ne the globalattractor �(f; S) as follows. We construct a newcorrespondence F on the disjoint union X+ [ X�of two copies of the dynamical space X of f , withthe property that the directed orbits of F through(copies z+ or z� of) a point z 2 X account pre-cisely for all (copies of) points on the grand or-bit of z under f (the two copies of X are neededto keep track of switches between \forward mode"and \backward mode"). A bi-injective directional-ity for f (de�ned below) gives rise to a direction-ality � for F such that�(�+(F;�)) = �(��(F;�));where � is the projection from X+[X� to X, andwe de�ne �(f; S) to be this set. See [Bullett andPenrose a] for details on all of this.When f is a reversible map of triples, the de�ni-tion of �(f; S) is more straightforward. We askthat S be an equivariant directionality (see thede�nition below) and it then follows [Bullett andPenrose a] that �+(f; S) [ ��(f; S) is completelyinvariant under f . We de�ne �(f; S) as this union.
Remark. The construction of F for a map of pairs f(and similar constructions for other diagram con-ditions) amounts to organising an ordered explo-ration of a generic grand orbit of f , visiting eachpoint on the orbit exactly once. Finding a funda-mental domain for directed iteration of F amountsto doing this in a way that is continuous almosteverywhere. In the case of a group of M�obiustransformations, the possibility of performing sucha continuous (almost everywhere) ordered explo-ration is equivalent to discreteness of the group[Sullivan 1982].

Bi-injective directionalities for maps of pairsBy Lemma 2.1, any map of pairs on the Riemannsphere is a composition g = Q�1� Q+, where Q�and Q+ are rational functions of degree two, andhence g = ~f , the lift of the (2; 2) correspondencef = Q+Q�1� to the normalisation � of its graph.A bi-injective directionality for the map of pairs~f is a pair of subsets D1;D2 � � such that:
(i) Q+(D1) and Q�(D2) partition the (downstairs)sphere;
(ii) the interiors of D1 and D2 together cover �; and
(iii) Q+ is injective on D1 and Q� is injective onD2.Note that (i) and (ii) imply that D1 de�nes a di-rectionality for ~f in the previous sense. Condition(iii) ensures, among other things, that �D1 and �D2are contained in fundamental domains for I+ andI�, the covering involutions for Q+ and Q�, and(ii) now tells us, by Klein's Combination Theorem[Maskit 1987], that I+ and I� generate a faithfulaction of the free product C2 � C2, with the com-position I�I+ a loxodromic element.Figure 1 illustrates the graph of a real piecewise-linear (2; 2) correspondence f = Q+Q�1� , and a bi-injective directionality for the lift~f = Q�1� Q+of f to the normalisation � of this graph (the �gureof eight with its crossing point resolved). Note thatin the �gure the maps Q+ and Q� are projectionsof the graph of f onto the vertical and horizontalaxes respectively.
Theorem 4.4 [Bullett and Penrose a]. If the map ofpairs ~f has a bi-injective directionality de�ned byD1 and D2, the intersection �D1\�D2 is a fundamen-tal domain for the full action (forwards, backwardsand mixed) of ~f on 
( ~f;D1), the complement ofthe global attractor �( ~f;D1).In particular, 
( ~f;D1) is contained in the regularset 
( ~f).
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Q�(D2)

Q+(D1) D1
D2

FIGURE 1. A bi-injective directionality for a realpiecewise linear map of pairs ~f = Q�1� Q+. Notehow the ends of D1 (thick dashed line) and D2(thin solid line) overlap.
Equivariant Directionalities for Reversible Maps of

TriplesA reversible map of triples f can be written asa cyclically symmetric correspondence followed byan involution J on Ĉ , by Lemma 2.2 and the def-inition of cyclically symmetric in Section 3. Forsuch a correspondence, the involutions I� and I+generate a dihedral group D6 of order 6, by theremark following diagram (2.6). (Note that I+ andI� act on the graph f ; in the case of maps of pairswe were considering this as the dynamical space of~f .) We say that a subset D of the Riemann spherede�nes an equivariant directionality [Bullett andPenrose 1994] for f if:
(i) D is the projection Q�(�0) of the closure of afundamental domain �0 for the action of the D6generated by I�; I+ on �; and
(ii) f( �D) � �D (thus D de�nes a directionality inthe ordinary sense, i.e., ( �D�Dc)\ f is empty).We say that f de�nes an equivariant contact direc-tionality if the second condition is modi�ed to
(ii)0 ( �D �Dc) \ f = f(z0; z0)g for a single point z0.

D
JD

�

FIGURE 2. Equivariant directionality for a reversiblereal piecewise linear map of triples f = Q+Q�1� .
This new condition allows f(D) to have boundarymeeting that of D, but only at a single point, andmoreover requires that this single point be a �xedpoint of f . The \attractor" and \repeller" will alsomeet at this special contact point.Figure 2 provides an illustration of the graph fof a real piecewise linear (2,2) correspondence withan equivariant directionality.
Theorem 4.5 [Bullett and Penrose a]. Suppose D de-�nes an equivariant directionality or contact direc-tionality for the reversible map of triples f . Then��(f;D) is the image of �+(f;D) under the time-reversal symmetry J, and the union �(f;D) of thesetwo sets is fully invariant under f . Moreover facts discontinuously on the complement 
(f;D) of�(f;D), and any fundamental domain � for theaction of J on D \ JD is a fundamental domainfor the full action of f on 
(f;D).We now have all the tools we need to investigateregular and limit sets for some speci�c classes ofexamples of correspondences. This we do in theremaining sections.
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5. COMBINING QUADRATIC-LIKE JULIA SETSA bi-injective Jordan directionality for a map ofpairs ~f on the Riemann sphere is a bi-injective di-rectionality with the property that Q+(D1) is aJordan disc (and hence so is Q�(D2)).
Theorem 5.1 [Bullett and Penrose a]. If (D1;D2) isa bi-injective Jordan directionality for the map ofpairs ~f , then:
(i) �+( ~f;D1) and ��( ~f;D1) are hybrid equivalentto �lled-in Julia sets Kc1 and Kc2 of the familyqc : z 7! z2 + c (possibly Cantor sets).
(ii) On ��( ~f;D1) the correspondence ~f has a branchconjugate to qc2 , and on �+( ~f;D1) its inverse( ~f)�1 has a branch conjugate to qc1 .Recall that a hybrid equivalence [Douady and Hub-bard 1985] between qc and a holomorphic map g isa quasiconformal equivalence ' such that �@' = 0almost everywhere on Kc.The proof of this theorem is an application of thetheory of polynomial-like mappings [Douady andHubbard 1985]. It is also shown in [Bullett andPenrose a] that the boundaries of �+( ~f;D1) and��( ~f;D1) (which by the theorem are copies of qua-dratic Julia sets Jc1 and Jc2) can be characterisedby the properties that @�+( ~f;D1) is the set of allpoints z having arbitrarily small neighbourhoodsU such that Sn>0 ~f�n(U) covers the whole sphere

except for at most two points, and that @��( ~f;D1)satis�es the analogous condition with ~f�1 in placeof ~f .Any pair of quadratic Julia sets Jc1 and Jc2 canbe realised as @�+( ~f;D1) and @��( ~f;D1) for somemap of pairs ~f with a bi-injective Jordan direction-ality [Bullett and Penrose a]. Figure 3 (left) dis-plays the set of images of a single point under for-ward iteration and under backward iteration (butnot mixed iteration) for an example in the familyz(z + a)cz(z + a) + 1 = w2w + b=a + abd: (5.1)

Here @�+( ~f;D1) and @��( ~f;D1) are the omegalimit sets of the forward and backward orbits re-spectively. In Figure 3 (right) we display a sin-gle grand orbit, the omega limit set of which is@�( ~f;D1), for the same correspondence.Observe that in this case the global attractor�( ~f;D1) is the closure of a disjoint union of copiesof �+( ~f;D1) and ��( ~f;D1). We show in [Bul-lett and Penrose a] that this is true in general inthe situation of Theorem 5.1, provided that �+and �� are connected, and true in certain cases(such as that illustrated in Figure 3) when one orboth of these sets is not connected. Moreover inall these cases @�( ~f;D1) is the minimal limit setL0( ~f).

FIGURE 3. Left: forward and backward orbits for (5.1) with parameters a = 0:8, b = �0:15, c = 0, d = 0:5.Right: a grand orbit for the same correspondence.
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FIGURE 4. Left: a grand orbit for (5.1) with parameters a = 0:8, b = �0:15, c = 0, d = 0. Right: a grand orbitfor a = 0:8, b = �0:15, c = �0:35 � 0:55i, d = �0:35 + 0:55i. Both examples are reversible, and in particularthe forward and backward limit sets are isomorphic. For the picture on the right each is a copy of Douady'srabbit.Figure 4 illustrates @�( ~f;D1) = L0( ~f) for twoother examples, in each of which �+ and �� areconnected and isomorphic.
6. MATING QUADRATIC MAPS WITH THE MODULAR

GROUPBy Lemma 3.6 and the subsequent remark, a re-versible map of triples with graph a pair of spheresis equivalent to one that can be written(Jz)2 + (Jz)w + w2 = 0;where J is an involution. Thus it factorises into apair of M�obius transformationsw = e�2�i=3Jz:It follows that there is a bijection between equiv-alence classes of such correspondences and con-jugacy classes of representations of the modulargroup PSL(2;Z) in PSL(2; C ), since PSL(2;Z) isthe free product of a cyclic group of order two andone of order three, being generated by the matrices� 0�1 10� and � 01 �11�.Again by the same lemma and remark, a re-versible map of triples with graph a single sphereis equivalent to one that can be written(Jz)2 + (Jz)w + w2 = 3;

with J an involution. One parametrisation forthese equivalence classes is to represent them asfa;k : z 7! w, where [Bullett and Penrose 1994]�az + 1z + 1 �2+�az + 1z + 1 ��aw � 1w � 1 �+�aw � 1w � 1 �2 = 3k;
(6.1)with parameters a; k 2 C . This exhibits the time-reversal symmetry in the form z 7! �z.We now specialise to the one (complex) param-eter family fa de�ned by (6.1) when k = 1. Thisis the so-called contact condition [Bullett and Pen-rose 1994], namely that the �xed point 0 of thetime-reversal symmetry be also a �xed point forthe correspondence. In [Bullett and Penrose 1994]we show that for real a with 4 � a � 7, and conjec-turally for all a in a set M of parameter values re-sembling the Mandelbrot set, this correspondenceis a mating of a quadratic map with the modulargroup, in the following sense.

Theorem 6.1 [Bullett and Penrose 1994]. For a real ,4 � a � 7 and k = 1, the Riemann sphere is parti-tioned into two subsets 
 and �, both fully invari-ant under fa, such that :
(i) 
 is conformally equivalent to the (open) com-plex upper half-plane, and the action of fa on itis conjugate to that of the generators z 7! z + 1
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and z 7! z=(z + 1) of PSL(2;Z) on the half-plane;
(ii) � is the union of closed simply connected sub-sets �+ and ��, which meet at a single point .These sets are forward and backward invariant ,respectively . Moreover , fa has a branch map-ping �� onto itself with degree two, and fa�1has a branch mapping �+ onto itself with de-gree two. The remaining forward branch of faon �+ [ �� sends �� homeomorphically onto�+.The sets �+ and �� appear to be homeomorphic toKc (for some c in the Mandelbrot set), and appro-priate branches of fa and fa�1 appear to be topo-logically conjugate to qc on appropriate regions.There are technical di�culties in establishing a for-mal proof (see [Bullett and Penrose 1994]) and sofar we have succeeded in proving this only for smallperturbations of k away from k = 1 (but the cor-respondence then no longer acts on 
 as a group):
Theorem 6.2 [Bullett and Penrose 1994]. For 4 <a < 7 and su�ciently small perturbations k = 1�" of k = 1 (with " > 0), the Riemann sphere ispartitioned into two subsets 
 and �, both fullyinvariant under fa;k, such that :
(i) 
 is conformally equivalent to an annulus, andthe action of f on it is discontinuous;
(ii) � is the disjoint union of �+ and ��, whichare forward and backward invariant respectively .On a neighbourhood of �� there is a branch off that is hybrid equivalent to a quadratic mapqc : z 7! z2 + c, with a connected �lled-in Juliaset Kc; this hybrid equivalence sends �� to Kcby a quasiconformal bijection. On a neighbour-hood of �+ there is a branch of f�1 with thesame property (for the same c). The remainingforward branch of f on � sends �� onto �+ bya conformal bijection.The proof of this result, like that of Theorem 5.1,is based on the theory of polynomial-like mappings[Douady and Hubbard 1985]. We conjecture that�+ and �� in Theorem 6.1 are also homeomorphic

to �lled-in quadratic Julia sets Kc, and that ap-propriate branches of fa and f�1a are topologicallyconjugate to qc on them. It therefore seems reason-able to describe the correspondences fa as topolog-ical matings of the modular group with qc, mat-ings in which the the generators of z 7! z + 1,z 7! z=(z + 1) of PSL(2; C ) acting on the bound-ary of the complex upper half-plane are matchedwith those of q�1c : z 7! pz � c on the Julia setJc bounding Kc. It appears that every connectedJulia set Kc in the quadratic family can be realisedin this way. Figures 5, 6 and 7 illustrate examples.
Remark. For a = 4 and k = 1 the correspondenceis critically resolvable (Section 3) and therefore itslift to its graph f has orbits those of a group. Thisgroup is PGL(2;Z), with the standard action [Bul-lett and Penrose 1994]. For other values of a 2M(and k = 1), the lifted correspondence continues toact as PGL(2;Z) on the lift ~
 of 
, which remainsconformally a pair of open discs. Thus we mayregard M as parametrising a family of perturba-tions of PGL(2;Z) as a correspondence, the actionremaining unchanged on a pair of regular domains.

FIGURE 5. Limit set and tiling of 
 by copies ofa fundamental domain, for (6.1) with k = 1 anda = 5; this corresponds to c = 0 in the quadraticfamily z 7! z2 + c.
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FIGURE 6. Limit set and tiling of 
 for (6.1) withk = 1 and a = 7; this corresponds to c = 1=4 inthe quadratic family. The limit set appears to bea quasicircle (unlike the Julia set of the quadraticmap: see [Bullett and Penrose 1994] for an expla-nation). the plot is incomplete near the origin forcomputational reasons.

FIGURE 7. Limit set and tiling of 
 for (6.1) withk = 1 and a = 4:54+0:44i; a mating of the modulargroup with Douady's rabbit.

7. PERTURBING CIRCLE PACKING KLEINIAN GROUPS
AS CORRESPONDENCESConsider the two-generator subgroups of PSL(2; C )generated by M�obius transformations z 7! Az andz 7! Bz such that BA�1 is an involution (this isthe condition that the correspondence be a map ofpairs), and that there exists an involution N suchthat B = NAN (this is a time-preserving involu-tion of the correspondence). It is shown in [Bullettand Penrose b] that there is a one (complex) pa-rameter moduli space of such groups, in particularthat each conjugacy class contains a group gener-ated by a pair of maps A;B : z 7! w satisfying arelation � �w � w� ��z � 1z� = 4; (7.1)

and that, for each conjugacy class, � 2 C � f0gis unique up to � $ 1=� . These groups comeequipped with certain extra structure. For exam-ple, for every two-generator subgroup of PSL(2; C )as described (and almost all others) there is an in-volution J such that JAJ = A�1 and JBJ = B�1[Bullett and Penrose b]. We can de�ne a new time-reversing involution K by K = JN , and it is thena short exercise in algebra to show that (KA)4 isthe identity, and that the one-parameter family ofgroups de�ned above is simply the moduli spaceof all representations of the free product C4 � C2(generated by KA and K respectively). Note thathA;Bi has index two in hA;B;Ki = hKA;Ki;since B = K(KA)�1. Explicitly, in the parametri-sation above, we have A = � �1 ��1�, B = � ��1 �1 �,N = ��10 01�, J = � 01 �0�, K = � 01 ��0�, and KA =��11 �1�1�.We can generalise these groups to correspon-dences retaining the properties of separability andreversibility, and having a time-preserving involu-tion that exchanges the two critical points for theforwards map and simultaneously exchanges thetwo critical points for the backwards map. Thuswe retain J , N and K as in the group case, andobtain a two (complex) parameter family
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FIGURE 8. The set T of � where the representation(7.1) of C2 � C4 is faithful and discrete.� �w � w� ��z � 1z� = k: (7.2)These are the correspondences among which weshall perturb our representations of C4 � C2.The moduli space of representations of C4 � C2is already a complicated object. It has a struc-ture analogous to that of the Riley slice [Keen andSeries 1991] of representations of C1 � C1 withparabolic generators. Let T denote the subset ofparameter space such that for � 2 T the group actsdiscontinuously on an open set 
 and has a totallydisconnected limit set �. It appears (Figure 8)that T is a once-punctured topological disc, andthat on its boundary there is a dense set of valuesof � where the action of C4 � C2 remains faithful,but where the limit set becomes a circle packing,due to the appropriate group elements becomingparabolic (for related results see [Keen and Series1992; Keen et al. 1993; McMullen 1991]).For � outside T the action of C4 �C2 is no longerdiscrete, except at some isolated values of � wherethe elements just described become elliptic of �niteorder. In particular, the representation is no longerfaithful. When we regard the action of C4 � C2as that of a correspondence z 7! w, it has a bi-injective directionality when � is in the interior of

T, but this degenerates into a contact directionalityat the boundary points of T which correspond tocircle packings. Here the contact condition is anal-ogous to that of Section 4 when the packing is a sin-gle circle (at � = 3�2p2), where it is the conditionthat one �xed point of J be �xed by the correspon-dence, but it is a more complicated cycle conditionfor other circle packings. See [Bullett and Penroseb] for details. Figure 9 illustrates two of the circlepackings that occur on the boundary of T.

FIGURE 9. Circle packing for correspondences inthe family (7.1). Top: � = (2 � p3)i. Bottom:� is a solution of T = 12 (� + ��1 + 2), whereT 3 � 4T 2 + 5T + 2 = 0.
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We can perturb C4 � C2 as a correspondence insuch a way as to obtain topologically unchangedlimit set behaviour for any � 2 T, but it is the val-ues of � on the boundary of T that will be of par-ticular interest to us. The reason is that althoughcircle packing actions of Kleinian groups are geo-metrically rigid [Keen et al. 1993], we are able todeform the limit sets topologically by perturbingthe groups as correspondences.In order to maintain the topological conjugacytype of the limit set we perturb the pair (k; �) insuch a way as to maintain the contact condition as-sociated to the circle packing in question [Bullettand Penrose b]. In Figure 10 we deform the circlepacking group of Figure 9 (top) as a correspon-dence, maintaining the contact condition that the�xed point p� of J map under the correspondenceto the �xed point ip� of K. Algebraically, thiscondition is k = (��1 � �)i. On the left, the cir-cles of original packing have been partly \pinched"by pulling an opposite pair of points towards eachother, and on the right this pinching process iscomplete|the circles have now each been dividedin two. In principle, any circle packing action ofC4�C2 can be deformed in this way, though contactconditions become increasingly di�cult to computeexplicitly for more complicated packings. Similardeformations should be possible for actions of otherfree products Cm � Cn of two cyclic groups.

Remark. In all the examples above we have L0 =� = J in the notation of Section 4. In other words,the di�erent de�nitions of limit set for these cor-respondences are all equivalent. Note also thatwhen deform away from groups, the correspon-dences above cease to act as groups on the regularset 
 (since critical points are introduced there),but continue to act as groups on the limit set �.This should be contrasted with the behaviour weobserved for matings of quadratic maps with themodular group, where a group action was retainedon the regular set but lost on the limit set.
8. MORE EXOTIC EXAMPLES: TWEAKED JULIA SETS

AND BULL’S-EYESThe examples in this section have the property thatthe forward or backward limit set is a \quotient"of a quadratic-like Julia set. We refer to these quo-tients as tweaked Julia sets. We con�ne ourselvesto a few remarks and otherwise let the picturesspeak for themselves.Suppose our quadratic correspondence f has theproperty that there is a point z0 that is an attrac-tive �xed point for one branch, but for which allother values of fn(z0), for n > 0, are bounded awayfrom z0. Let D be the immediate basin of attrac-tion of z0. The space S of orbitsz1 7! z2 7! z3 7! � � �

FIGURE 10. Deformations of Figure 9 (top). Left: k = 10=3 and � = i=3 in (7.2). Right: k = (1+p17)=2 and� = (k �pk)i=2 in (7.2).
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FIGURE 11. Forward images of backward critical point and backward images of the forward critical point, forcorrespondences in the family (8.1). Left: a = �4=15 and b = 2=5. Middle: a = 25i=78 and b = 5=13� 10i=39.Right: a = �1=2 and b = 1=2.that converge to z0 and have all zi in D is homeo-morphic to a disc, but the projection of S onto D(sending each orbit onto its �rst point z1) may bemany-to-one near the boundary of D, as for z1 wellaway from z0 there may be several forward routesconverging to z0. The Julia set that we plot in thedynamical plane by back iteration from a startingpoint near z0 is the projection of the boundary ofS, so what we see may be a set that appears tocross over itself again and again. This e�ect canbe observed in Figure 11 (middle). The Julia setis a topological circle in orbit space, but is tweakedby projection to the dynamical plane (as is also thecase in [Bullett 1988, Fig. 3]).Similar tweaking can be performed with basinsof attraction of periodic points, with increasinglycomplicated pictures as the period increases. Theconstruction can also produce combinations anal-ogous to those of Section 5, but now in the casethat there is only a noninjective directionality. Fi-nally the bull's-eye examples (Figure 11) displaythe phenomenon of tweaking particularly clearly.These are correspondences in the family
z(z + a) = w2w + b with a = b2b� 1 ; (8.1)and have the property that the superattractive �xedpoint 1 has an orbit mapping (in four iterations)

to the superrepulsive �xed point 0. What Figure 11shows is a complete set of all forward images, up toa certain depth, of the backward critical point �2b,plus all backward images, up to the same depth, ofthe forward critical point �a=2. The starting point�2b has a forward orbit taking it close to 1, butat each step when it approaches 1 it has a pathof length four leading close to the superrepeller 0;points on the path have subsequent images spread-ing out from near the superrepeller and accumulat-ing on the forward limit set. It is these subsequentimages that fall into the bands we see the com-puter plots. The backward orbits started at �a=2behave in a similar (time-reversal symmetric) way.
9. CONCLUDING REMARKSWhat conclusions can be drawn from our galleryof exhibits? First, it should be possible to provethat the examples of Sections 5, 6 and 7 are gener-ically structurally stable, by which we mean thatusing the techniques developed in [Sullivan 1984;1985a; 1985b] it should be possible to prove thatan open dense set of each type of example hasa family of perturbations with dynamics that istopologically unchanged, and that these familiesof perturbations form open sets in the spaces ofcorrespondences satisfying the same constraints as
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the unperturbed examples (i.e., the same diagramconditions).This phenomenon should provide a bridge be-tween the situation for rational maps, where suchstability is now reasonably understood, and thatfor Kleinian groups, where it is a major unsolvedquestion as to whether structural stability is anopen dense property among discrete representa-tions [Sullivan 1985b] (for Kleinian groups, rela-tions play the role of our diagram conditions).Our matings of the modular group with qua-dratic maps also o�er the possibility of exploitingthe bijection between the dynamics of the modulargroup and that of the shift. This has always beenpossible at the combinatorial level [Gutzwiller andMandelbrot 1988], but our examples provide a ge-ometrisation in the realm of complex analysis.Finally we remark that in this article we havebeen concerned mainly with discrete actions of cor-respondences. Another class of correspondencesof great potential interest are those exhibiting be-haviour of Hamiltonian type. A start on the studyof such correspondences was made in [Bullett 1988].
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