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Real Quadratic Fields

We describe an algorithm to compute the trace of Hecke op-
erators acting on the space of Hilbert cusp forms defined rel-
ative to a real quadratic field with class number greater than
one. Using this algorithm, we obtain numerical data for eigen-
values and characteristic polynomials of the Hecke operators.
Within the limit of our computation, the conductors of the or-
ders spanned by the Hecke eigenvalue for any principal split
prime ideal contain a nontrivial common factor, which is equal
to a Hecke L-value.

1. INTRODUCTION

Let F be a totally real algebraic number field with non-
trivial class group. We shall study the space Sk(c,v) of
Hilbert cusp forms (relative to F') and the Hecke opera-
tors T'(a) acting on it. We shall describe our result us-
ing the framework first introduced in [Shimura 78]. Fol-
lowing Shimura’s work, the trace formula (whose origin
goes back to fundamental work of Eichler, Selberg, and
Shimizu) was made more explicit in [Saito 84]. Saito’s
formula gives us a method for computing Hecke eigenval-
ues as long as the dimension of the space remains reason-
ably small. It is then natural to expect Hecke eigenvalues
for prime ideals p in a given ideal class to have a new fea-
ture specific to the ideal class. Such a new feature can
be detected only by computing Hecke eigenvalues for the
base field with nonprincipal ideal classes. The purpose of
this paper is to compute examples of such Hecke eigen-
values for real quadratic fields with class number greater
than 1 and to present a new phenomenon that we have
discovered through our numerical examples.

We summarize our observations for the data of Hecke
eigenvalues when the weight is parallel (k1, k1), the level
¢ is the maximal order op of F', and the Hecke charac-
ter v is the identity 7. Let f be a primitive form con-
tained in Sz, x,)(0F, 1) that is orthogonal to any base
change lift from Q (that is, f is a primitive form in the
“F-proper” subspace of S, x,)(0F, 1) as defined in [Doi
et al. 98]). We denote by Ce(p) the eigenvalue of T'(p)
satisfying f|T(p) = Ce(p)f, by K the subfield of the
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Hecke field Ky of f generated by C¢((p) ) for all rational
primes p, and by o K} the maximal order of Ktj' . For
split prime ideals p, we computed the discriminant of the
order A¢(p) spanned by the eigenvalue of T'(p) (that is,
Ae(p) = Opt+ + Of(p)N(p)(kl_z)/QoK?) to see whether it
has extra factors outside the discriminant of the maxi-
Extra factors show up as the conductor of
the order (for the definition of the conductor, see just
above Lemma 2.3); so, we write ¢(Ag(p)) for the conduc-
tor. Surprisingly enough, as long as the prime ideals p

mal order.

are principal and split, the conductors c(As(p)) contain a
nontrivial common factor §¢, at least within the limit of
our computations. (see Sections 4.1 and 4.2).

In Section 2, we recall the space of Hilbert cusp forms
for totally real number fields and Hecke operators. We
then reformulate Saito’s formula into a more computable
one. The notion of the conductor of an order plays an
important role in this process. In Section 3, we give an
algorithm to compute the trace of Hecke operators for a
real quadratic field F. Key points of the computation
are the determination of the relative discriminant Dy /p,
the character (%), and the Hecke L-value Lr(0,xk/r)
for any totally imaginary quadratic extension K over F.
In particular, the computation of the Hecke L-value by
Shintani’s method [Shintani 76] has been reduced to that
of Hilbert symbols (cf. [Okazaki 91]). In Section 4, we
give examples of eigenvalues and characteristic polyno-
mials of Hecke operators restricted to the case where the
weight is (2,2) and F is Q(v/257) or Q(+/401), and we
describe our analysis of the data to convince the reader
of the conclusion we have already described.

While I was preparing the revision of this paper follow-
ing the request of the referee to provide a more detailed
study of §¢, Professor Haruzo Hida provided the follow-
ing crucial suggestion:

(1) Within the limits of the computations carried out,
check that §rog, is divisible by the common factor
of 1+ N(p) — Ct(p) for the principal primes p.

(2) As is well known, several outstanding mathemati-
cians have worked out the congruence primes be-
tween a primitive cusp form and an Eisenstein se-
ries, which are essentially given by the value at the
weight of a Hecke L-function of the base field. No-
tably, A. Wiles studied in depth such an Eisenstein
congruence, which is a key step in his proof of the
Iwasawa conjecture for totally real fields. Therefore,
if (1) is affirmative, his result presumably implies
that §¢ is divisible by the congruence primes. Here

the congruence prime can be found in the prime fac-
tors of the numerator of the algebraic part of the
Hecke L-value Lp(2,x) associated with a nontrivial
class character x .

(3) Moreover, it is expected that the set of the primes
of §¢ coincides with that of the congruence primes
between the F-proper cusp form f and the Eisen-
stein series of weight (k1, k1) with Mellin transform
Lr(s,x)Lr(s +1 — ky,x~!) for a nontrivial class
character .

We shall give affirmative numerical evidence for (1)
and (2) in Section 4.3. As for (3), we hope to discuss this
property in a subsequent paper.

Notation

For an associative ring R with identity element, we de-
note by R* the group of invertible elements of R. We
write Ma(R) for the ring of 2 x 2 matrices over R, and
1o for the identity element of Ms(R).

For an algebraic number field F' of finite degree, we
denote by o, 0, and D the maximal order of F', the
different of F' over Q, and the discriminant of F' over
Q. We write I(F) for the ideal group of F, and P(F),
CI(F), and h (respectively P*(F), CI*(F), and h},) for
the principal ideal group of F', the ideal class group of
F, and the class number of F' (respectively those in the
narrow sense). For o € F*, we put (a)p = aop. For a
prime ideal p of F' and m € I(F'), we denote by ord,(m)
the order of m at p. For o € F, we set a > 0 if a is
totally positive. We define o, = {a € oy | a > 0}.
For integral ideals a, b of F', we write a | b if ba™! C op;
for elements a(# 0),3 of op, we write a | 3 if Ba™1 €
op. For ay,...,a, € F, we write [ay,..., .| for the Z-
submodule of F' generated by aj,...,a,. We denote by
(r the Dedekind zeta function of F'.

For an extension K of F' of finite degree, we denote
by Dk ,r the relative discriminant of K over F. For an
element o of K, we denote by Dg/p(a), Ng,r(a), and
Trg/r(a) the relative discriminant, the norm, and the
trace of a in K over F. We denote by N(a) the norm
of an ideal a of F. (We also use the symbols N, p(a),
Trg/r(a), and N(a) when K and F are local fields.)

For a € R, we denote by [a] the greatest integer not
greater than a. Let (%) be the Legendre symbol for a €
Z and a prime number p. For a set X, we denote the
cardinality of X by |X| and also by §X. For a subgroup
H of a group G, we write [G : H] = |G/H]|. For a subfield
F of a field K, the symbol [K : F'] means the degree of K



over F'. The disjoint union of sets Y7,...,Ys is denoted

by |_|;:1 \

2. THE TRACE FORMULA FOR TOTALLY REAL
NUMBER FIELDS

In this section, we first recall the definition of Hecke op-
erators acting on the space of Hilbert cusp forms as given
in [Shimura 78, §2]. (Cf. also [Shimura 91].)

2.1 Hilbert Cusp Forms and Hecke Operators

Let F be a totally real algebraic number field of degree
g, and denote by a and h the sets of archimedean primes
and nonarchimedean primes of F. For p € h, we also
denote by p the corresponding prime ideal of F'. For any
set X, we write X2 for the set of all indexed elements
(zy)pea with x, € X. Let Fa be the ring of adeles of
F, and F the group of ideles of F. For v € aUh and
x € Fa, let F, be the v-completion of F, and z, its v-
component. We write F, and Fy for the archimedean
and nonarchimedean factors of Fia, and identify F, with
R?. For a € I(F) and p € h, we denote by a, the
topological closure of a in F,. We abbreviate (o), and
(0F)p by 0y and 0y, for short. We then set op = [],¢}, 0p
and 0 = [[ ¢, 0p. For a € F, we denote by aop the
fractional ideal of F' such that (aor), = ap0, for every
p € h (ie, aop = F N Fall,cpap0p). Fora € Fy,
we set ordy(a) = ordy(aor). We denote by 7, a prime
element of F,. By a Hecke character of F', we understand
a character of F{ with valuesin T = {z € C | |z| = 1}
that is trivial on F'*.

Let G = GLao(F). We set G, = GLo(F,) for every v €
aUh. We consider the adelization G 5 of GG, and denote by
G4 and Gy, its archimedean and nonarchimedean factors.
We set Gayr = {z € Ga | det(z) > 0} and G4 = GN
GarGh. For an element x of Ga, we denote by x, its
a-component. For z € Ga, we set ¢ = det(z)z~! and
x7" = (2*)"!. We take an element d of F}, such that
O0nOn = On, define subsets Y}, and Wy, of Gy, by

—1
1 0 1 0
Yh = (0 5h) M;(on) (0 5h> N Gh,

-1
1 0 1 0
Wh - ( 6h) GLQ(Uh) (O 61’1) )

Y = Ga+Yh7

o

and set
W = Ga+Wh-

We denote by H the complex upper half-plane. For
a = (av)UEa = ((lcl: ZZ))vea € Ga+a z = (Zv)UEa S Haa
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k = (ky)vea € Z?, and a C-valued function f on H?, we
set

a(z) = ((avzv +by)/(cvzy + dv))an,
Jil, ) = T (det(an) ™™/ (eoz, +du)),

(fllre)(2) = Jr(e, 2) 7" f((2)),

and denote by Sy, the space of all holomorphic functions
f on H? satisfying the following two conditions:

(ia) There exists 0 < N € Z such that f|zy = f for all
v € SLa(op) N (12 + N - Ma(oF)).

(i) For every a € G, one has

(fllsa)(z) = > cal@)er(&2)
0<é€La
with a lattice L, of F and c,(§) € C, where

er(£2) = exp(2my/—1 Y vea &v2v)-

Let 1) be a Hecke character of F' of finite order such
that the nonarchimedean part of its conductor is equal to
or (ie. ¢(op) = {1}). We denote by Si(0r, 1)) the space
of all C-valued functions f on G satisfying the following
two conditions:

(ila) f(saaw) = (s)f(z) for s € Fi, a € G, and w €
Wh (Z‘ € GA)

(iip) For every x € Gh, there exists an element f, of Sk
such that f(z7'u) = (fzllxu)(i) for all u € Gay,
where i = (v/—1,...,v/—1) € H?.

The elements of Sk (0r, 1)) are called (adelic) Hilbert cusp
forms of weight k, level op, and character 1. We note
that if Sg(or,v) # {0}, then 1,(—1) = (=1)k* for all
v € a; moreover, k, > 0 for all v € a (cf. [Shimura 78,
Proposition 1.1]).

Let Rc(W,Y) be the free C-module generated by
the double cosets W\Y/W. For WyW, W W, WuwW €
W\Y/W, we take coset decompositions WyW =
L2, Wy; and WeW = | |7, Wz;, and set

m(WyW, WzW; WwW) = 8{(i,j) | Wyiz; = Ww}.
We then define the product (WyW)(WzW) by
(WyW)(W=W)

= > m(WyW, WzW; WuwW)WwW.
WuwWeW\Y/W

Note that the above sum is finite. We extend this product
C-linearly on Rc(W,Y). Then Rc(W,Y') becomes a C-
algebra, which is called the Hecke algebra for W and Y.
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For every y € Y, we may assume that WyW =
LI, Wy; and (yi)a = 1 (€ Ga). For f € Si(op, 1),
we define a function f|WyW on Ga by

m

= fay!) (2 €Ca).

i=1

(EWyW)(z)

Then, for s € Ff, a € G, w € Wy, and = € Ga,
we have (f|WyW)(sazw) = (s) Y-, f(z(yw')") =
P(s)(f|WyW)(x); moreover, for z € Gy, we have

F((ay ") "u)

NE

(EWyW)(z™"u) =

3

= (

(foy ) lrw) (i)

=1

for all u € Gay, where f, -1 is as in (ii,). Thus
fWyW € Si(op, ). Extendmg this action C-linearly to
the whole of Rc(W,Y'), we have a ring homomorphism
¢ of Rc(W,Y) into the C-linear endomorphism algebra
Endc (Sk(or,v)). We call an element of ¢(Rc(W,Y)) a
Hecke operator.

We now determine the generators of Rc(W,Y). For
each integral ideal a of F', we define elements T'(a) and
S(a) of Re(W,Y) by

T(a) = Z

WyW,  S(a) =W (“ 0) W,

0 a
WyWeW\Y/W
det(y)op=a
where a = (Wgrd”(u))peh € F' (C FX). Now we set
7'(L
T(wé,wé) =W( 0‘° ?/ YW for 1,I' € Z. (Note that m, €
p

Fy (C Fy).) Fory,z € Y, we have

(WyWY(WzW) = WyzW
if ged(det(y)op,det(z)op) =o0p. (2-1)
Thus we have
[ord, ()/2]
=TI et ).
pla lp,=0
and hence
T(ab) =T(a)T'(b) if ged(a,b) =op. (2-2)

For any integer e > 0, we have

e e—f
e T
ram =1 U W( "
f=0 1<G<N(p?)

gcd(mfj,rr{:,rrgff)zl

-1
mfj?p > ’
Th

s
where {m; };V:(’la )is a complete set of representatives of

op/ﬂ'{;op. Moreover, for I,m,n > 0, we have

T(’]Té,ﬁé)T(ﬂ';n,Wg) = T(Wé+m, é"’”) (2-3)
Thus
T(1,m)T(1,my)
_ {T(l ) £ N(p)T(mp, ) T(1, )0 if e > 2,
T(1,77) + (N(p) + )T (mp, mp) ife=1.
(2-4)

Therefore, we have

T(p)T(p) = T(p+")
+NP)S(p)T(pe") forpchande>1.

(2-5)

From (2-1), (2-3), and (2-4), we see that Rc(W,Y) is
the commutative C-algebra generated by T'(p) and S(p)
for all prime ideals p of F'. We also denote by T'(a) the
image ¢(T'(a)) in Endc (Sk(op,)).

An element f of Sk(op,v) is called a primitive form
if £ is a normalized common eigenfunction of T'(p)
for all prime ideals p.
the coefficient ¢(1) of the Fourier expansion f,(z) =
Yoecl§er(€z) for ¥ = 1y (€ Gh) is equal to 1, where
fz is as in (iip). (Cf. [Shimura 78, p. 650].)

Here normalized means that

2.2 The Trace Formula

It is known that the characteristic polynomial of a Hecke
operator can be obtained immediately from traces of
Hecke operators by using (2-2), (2-5), and Newton’s
identities ([Miyake 89, pp. 266-267]). In particular if
we take a prime ideal p of F, we can obtain the charac-
teristic polynomial X" +a; X" ' + -+ + a,_1 X + a, of
T(p) as follows:

Let ¢,. .., ¢ be the eigenvalues of T'(p), and set b, =
i+ +c =tr(T(p)'). Then by (2-5), we have

T =3 (()-(.1,) ) vwromyere=

i=0

0. Therefore, we can

for I = 1,...,r, where ( ) =
=0,...,[l/2]). By Newton’s

obtain b; from tr T'(p'=2%) (i
formula, we have
by+b_1a1 +by_2a0+ - +bia_1+1la; =0

forl = 1,...,r.
bi,..., b

Thus we can obtain ay,...,a, from



Now we describe the trace formula of a Hecke operator
T'(a) on Si(or,1) given by [Saito 84, Theorem 2.1]. But
first, we introduce the following notation.

Let K be a quadratic extension of F. We denote by
Ok r the set of all orders in K containing op. Let A €
Ok/p. Since A is an F-lattice, we can take r1,72 € K
and a;,as € I(F) such that A = ayz1 + agze. Then we
define the integral ideal Dy /r(A) of F' by

OO

(2) )

Di/r(A) = (ara2)? |*

)

where xg-l), x§-2) are the conjugates of xz; over F'. We call
Dy /p(A) the relative discriminant of A with respect to

K/F.

Theorem 2.1. Let F' (# Q) be a totally real algebraic
number field of degree g, ¢ a Hecke character of F of fi-
nite order such that the nonarchimedean part of its con-
ductor is equal to op, and k = (k1,...,kg) € Z* such
that kj > 2 and v,,(—1) = (—1)% for each v; € a. For
every element bP(F) € CI(F), we define a mapping n of
CI(F) into CI*(F) by n(bP(F)) = b2P*(F). Then, for
any integral ideal a of F, we have

tr T'(a)

3/2
— £(a)5(a) 2¢r(2)|Dr| ¢<(

ordy (a)/2
(2729 o )peh)
g

(Il =) +e@nr2
Dpen)

' Z w((ﬂ_;rdp(m
S ([Tre) ¥

-1

meM,
n€Ny s€S, j=1 AER;,

+ 07w S A ),0) D N

AeC () bla
bCop
bel(F)
(2-6)
Here
e c(a) = 1 or 0 depending on whether aP*(F) €
n(CLF )) or not;
e §(a) =1 or 0 depending on whether a is a square or
not;
o M, {m} s the set of all representatives of

{mP(F) € CI(F) | m?a € P*(F)} such that m C op
and ged(m, a) = op;
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o for everym € M, we take an element ny, of op such
that (nm)r = m?a and ny > 0, and we set N,
naEr, where Er is a complete set of representatives
of 0;‘4—/(0;‘)2;

o forn € Ny, we set S, = {s€m|s?—4n < 0};

o let s;, n; be the vj-components of s, n in Fy, and
aj, B; the roots of X2 - 5;X +nj; then we set

k -1 kj—1
— By,

-8 ’
o Ky, = F(vs?2—4n), and Ry, is the set of all dis-
tinct orders A in Ok /p satisfying Di, /r(A) |

(s —4n)pm~—2;

®(sj,mj, kj) =

o h(A) is the class number of A; that is, h(A) =
|(Ksn®@p Fn) /K5, [1pen Ay |, where Ay is the topo-

logical closure of A in K, ®p F;

e b(k) =1 or 0 depending on whether k = (2,...,2)
or not;

o C(v) is the set of all unramified Hecke characters A
of F such that A2 = .

Note that the second sum of the right-hand side of
(2-6) is independent of the choice of My, ny, and Ep.
We remark also that (2-6) is shortened and corrected
from the original formula which appeared in [Saito 84].

2.3 Preliminary Lemmas

We now present five lemmas for transforming (2-6) into
a more computable form.

Lemma 2.2. Let F' be an algebraic number field of finite
degree, and K a quadratic extension of F'. For an integral
ideal ¢ of F', we put p(c) = op+cox. Then p is a bijection
of the set of all integral ideals of F' onto Ok /p.

Proof: Thie result follows immediately from [Shimura
71, Proposition 4.11] when F' = Q, and we prove our
assertion in a similar fashion. It is well known that there
exist @ € K and a € I(F) such that ox = op +0a. Let ¢
be an integral ideal of F'. Since cox C op+cox C 0x, we
see that o +cox is a Q-lattice in K. Moreover, 0p+cox
is a subring of K containing op. Thus op +cox € Ok,
and hence p is a mapping. If op + cox = o + /o with
integral ideals ¢, ¢’ of F, then o + fac = op + cox =
op +dox = op + fac’. Since {1,0} is a basis of K over
F, we have ¢ = ¢/. Thus p is injective. Let A be any
order in Ok, p. Since o is the unique maximal order of
K, we have A C og. Set b = {c € a | Oc € A}. Since
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or C A Cox =op+0a, we have {0} C b C a. Moreover,
b is an op-module. Thus b € I(F). For any x € A, we
have z = r + s with » € o and s € a, since A C ogk.
Then s = x — r € A, and hence s € b. Therefore,
A =op +0b. Now we set ¢ = ba~!. Then ¢ is an integral
ideal of F', and A = op + 0b = op + fac = op + cog.
Thus p is surjective. |

We denote the mapping p~! by ¢, and we call ¢(A) the
conductor of A for A € Ok /p.

Lemma 2.3. Let F and K be as in Lemma 2.2. Then for
A € Ok, we have

Dy r(A) - Dyyp " =c(A)?

Proof: By Lemma 2.2, we have og = op + fa and
A = op + fac(A) with 0§ € K and a € I(F). Now let
6 92 be the conjugates of @ over F. Then we have
Dir = Diyr(ox) = a®(0®) — 61))? and Dg/p(A) =
(ac(A))?(6P) — ()2, |

Let F' be an algebraic number field of finite degree,
and K a quadratic extension of F'. For p € h, we define

1 if p splits in K,
(%) =< —1 if p remains prime in K,
0 if p ramifies in K.
Lemma 2.4. Let F be a totally real algebraic number
field of finite degree, and K a totally imaginary quadratic
extension of F'. Then for A € Ok, we have

h(A) = hic[of : A] 7' N(e(A) T (1—(§)N(p)—1).
ple(A)
p€h

Proof: This can be proved in exactly the same way as
in [Miyake 89, Theorem 6.7.2], which deals with the case
F = Q. For any lattice L in K and p € h, we write L, for
the topological closure of L in K @ Fy,. For A € Ok,
we have

h(A) = ‘ K or )" | K* [] A
peh

= ‘(K®F F)* | K~ H(OK);‘
pch

.‘KX [T ex)y / &= T AF|-

peh peh

Generally for an abelian group G and subgroups H, I,
and J satisfying I O J, the sequence

1= (HND/HNJ)—1)J— HI/HJ -1

is exact. Thus

8= [TTer / TT A

peh peh
| TTex)) / 0 T A7)
peh peh
= e+ (TLHm)5 /A3 - Joie/a| "
peh
Since (0x)p # Ay if and only if p | ¢(A), we need to show
only that

(ex)y /A1 = N(e(A)y) (1= (K)N(R)T)  (2-7)

for (ox)p # Ap. We denote an element a ® 3 of K @ F,
simply by «f. Let p satisty (0x), # Ap. Assume first
that p splits in K. Set o = op + fa with § € K and
a € I(F), and take o, € F}, such that oyo, = a,. Let
f be the minimal polynomial of 6 over F', and let 64, 62
be the two roots of f in F,. For a,b € Fy, we set 7(a +
bayl) = (a+baybr, a+baybs). Then 7 is a topological Fj-
algebra isomorphism of K @r F}, onto F}, x F,. (cf. [Weil
67, Chapter III, Theorem 4]). Since (ay (62 — 61))%0,
(Dg/r)p = 0p, we have 7((0f)p) = 0p X 0p and 7(A,)
{(a, ) € 0, x 05 | @ — 3 € ¢(A)p}. Hence 7(Ap)* =
{(e, B) € o) x 05 | a—p € ¢(A)p}. For (o, B) € 05 x 0,
we set p((a,8)) = af~1(1+ c¢(A)y). Then p is a group
homomorphism of oy x oy onto o, /(1 + ¢(A),). Since
Ker(p) = 7(Ap)*, we have 7((0k)y)/T(Ay) = (05 X
0p)/T(Ap)* =0y /(14 ¢(A)y). Therefore,

(0 )p /A5 | = Jog /(L+c(A)y)] = N )JA=N(p)~").

Thus we obtain (2-7) in this case. Now assume that p
remains prime or ramifies in K. Then K ®@r F), is a field.
For 8 € o, and v € (0x),, we set p1(B(1 4 c¢(A)p)) =
B(1 + c(A)p(ox)p) and pa(v(1 + c(A)p(ok)p)) = YAy
Since (14 ¢(A)p(ox)p) Noy = (14 c(A), +00( )pap)
op =14 c¢(A)p and Ay = o, + c(A)p(0k)y = 0p (1 +
c(A)p(0k)p), the sequence

1= 0, /(14 ¢(A)y) 2 (0k)y /(1 + c(M)y(0K)y)
‘3( ) /AX =1
is exact. Therefore,
[(0r)5 /A | = [(0m)y /(1 +e(A)p(0)p)| - |0 /(L +e(A)p)|
Here we have
(0 )y /(L +c(A)p(0x)p)| = [((0K)p /c(A)p (0K )p) |

if p remains prime in K,

_{ (e(A)p)2(1 — N(p)~2)
N(e(A)p)2(1 = N(p)™h)

if p ramifies in K,



and |o;/
N(p)™

(14 c(A)y)| = |(0p/c(A)p)*| = N (1 -
), which proves (2-7) in thls case. O

Lemma 2.5. Let F' and K be as in Lemma 2.4. Let g be
the degree of F' over Q. Let x r be the ideal character

corresponding to the extension K/F (by means of class
field theory). Then

hi
hrog :op]’
where Lp(s,xk/r) is the Hecke L-function associated

Lr(0,xx/p) =297"

Proof: Let Wy (respectively Wr) be the group of the
roots of 1 in K (respectively F'), and Ry (respectively
Rp) the regulator of K (respectively F). Set wx = |[Wk]|
and wp = [Wp|. Let Zg(s) = ((2m)'7°I(s))? (x(s)
and Zp(s) = (T_S/ZF(8/2))QCF(S). Then we have
Ress—o Zk (s) = —(27r)ghKRKw;{1 and Resg—o Zp(s) =
—29hpRpwi'. By Ci(s) = Cr(s)Lr(s, Xx/F), We have
Zk(s) = m9U=)/2T ((s 4+ 1)/2)¢ Zr(s)Lr(s, xx/F), and

hence Res;—g Zk(s) = m Res;—o Zr(s) - Lr(0,xx/F)-
Therefore,
hKRK’U)I_{l
Lr(0, = —2
F( XK/F) hFRF’lUEl

Thus we need to show that

[0 :05] =29 ' wrwr' R Rp. (2-8)

Let [ be the mapping from o to RY defined by [(§) =
(log [6M)],...,log |[6()]), where §(),... ) are the con-
jugates of 6 over F. Then oy /Wkop = l(ox)/l(of).
Since [I(0)) : l(of)] = 29 'Ri'Rp, we have [0} :
Wiop] = 297'R'Rp. On the other hand, we have
[(Wioy:05] = wp'wg. Thus we obtain (2-8). O

Lemma 2.6. Let F' and K be as in Lemma 2.4. Then,
for any integral ideal § of F', we have

> (O TL (- Ene) )

clf plc
cCoFr pch
ceI(F)
( H N(p)ordp(f)'H + N(p)ordp(f) _ 2)
p[f Np)—1
()=
peh
N(p)ordp(f)+1 -1
. N Ordp(f)) ( .
( 1L ) 11 N(p) -1
plf plf
(5)=1 ()0
p€h peh
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Proof: For every prime ideal p of F' and 0 < s € Z, we
set

o 1 if s =0,
p(p®) = {N(p)s <1 _ (%)N(p)‘l) if s > 1.

Now let f = pi* - - - p&~ be the factorization of f into prime

( )

factors.

clf

ple (
2(

= pff"))
Here we have
N(py)* if () =1,
€j oy ( ( )e]+1 +N(p )e] _2)
2002 -y it () = -1,
((mﬁ*l D(N(p) 1) i (F) =0
Therefore, we obtain our lemma. O

2.4 Formula for Computation
From the above lemmas, we obtain the following result:

Proposition 2.7. With the notation of Theorem 2.1, we have

trT(a) = E(u)é(a)(_l)gffch(_l)w((ﬂgrdp(a)h)peh)

(f[ k= 1) +e@(-1)227 > p((m ™), )

j=1 meMq

Z (ﬁ@ (85,15, k ) “Lr(0,XK.,/F)

nENpy s€S, j=1

( H N(p)ordv(fsn)+1 + N(p)ordp(fsn) _
p

')

Ifan Np) -1
S
or N 0rdp(fsn)+1 —1
( I v dpum))( I oo)N(p)_1 )
Kp\fsn Kplfsn
(F5=)=1 (F5=)=0
pEh p€h
D70 3 A ),0) S N
AEC(Y) [Iéla
bel ()
(2-9)

-1
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where fon = c(op + ((s + Vs? — 4n)/2)op)m~ = ((s* —
4n)FDKsn/F_1)1/2m_1, and Xr,, /F s the ideal charac-
ter corresponding to the extension Kgp,/F. (We note that
(s? — 4”)FDKM/F_1 is a square by Lemma 2.3.)

Proof: In view of Theorem 2.1, we only need to show
that

2¢r(2)|Dr 2 _

(—1)?2'7%¢r(~1), (2-10)

(2m)2a
h(A) —
— —979r (0,
B e O

< H N(p)ordp(fanl +N(p)ordp(fsn) _ 2)
X plfsn N(p) -1
(Fgm)=-1

or N(p)ordp(fsn)+1 -1
. N dp(fsn>> (

( 1~ I ==
K sn 1% sn
()=t (Fgm)=0

(2-11)
By the functional equation of (r, we have (r(2) =

|Dp|=3/2(=272)9¢p(~1), and hence we obtain (2-10).
Next, by Lemma 2.4 and Lemma 2.5, we have

h(A)
Z hF[AX :0;]

AERsn
hk., b »
AEZRM helor, ror] ))p‘I;[A)( (£ )N(p) )
=2""9Lp(0,Xx,,/r) Y. N(c(A))
AERqn
T (1= (BN ).
ple(A)

Now, from Lemma 2.3, we have

Ry ={A € Ok, /r | Di,,/r(A) | (s* —4n)pm =2}
={A €Ok, /r| e(A)?| (s> —4n)rDi,, p~'m~ %}
= {A S oKsn/F | C(A) | fsn}

Thus we have

> Ne) IT (1= (BN )
A€ER, ple(A)
= > NOIT(1- (E=)N ),
|fsn ple

since the mapping c is bijective by Lemma 2.2. Therefore
we obtain (2-11) by Lemma 2.6. O

3. COMPUTATION FOR REAL QUADRATIC FIELDS

In this section, we give an algorithm to compute For-
mula (2-9) for a real quadratic field F. In particular, we
assume F' = Q(y/m) with a square-free integer m satisfy-
ing m =1 (mod 4Z) exclusively, though the case m # 1
(mod 4Z) can be handled by a similar consideration be-
low. Throughout this section, we let w = (1 + /m)/2,
and denote by o the nontrivial automorphism of F. We
note that for every integral ideal a of F' there exist ratio-
nal integers @ > 0 and b such that a = [a, b+w]; moreover,
it is well known how to check whether a € P(F") (respec-
tively a € PT(F')) and to find an explicit generator of a
when a € P(F) (respectively a € PT(F)) by the theory
of continued fractions (cf. [Dirichlet 1894], for example).
For p € h, we call p odd (respectively even) if p 1 (2)p
(respectively p | (2)F).

3.1 Preliminaries
We note that (p(—1) = ((—1)-L(-1, (&) = 24_132’(2),
where B, () is the second generalized Bernoulli number

associated with (ﬂ) Here (—) is the character corre-
sponding to Q(y/m)/Q. It is known that

Bzw(ﬂ) = (6m)~! (Z)(6a® — 6am +m?)

a=1

(cf. [Iwasawa 72, §2]). Hence

Cr(—1) = (144m) ™" ) () (602 — 6am + m?).

a=1

Thus the first and third sums of the right-hand side of
(2-9) are easily computable.

Hereinafter, we consider the second sum for the case
e(a) = 1, which implies M, # 0. We first explain a
method for choosing M,, Ny, and S, in (2-9). Choose
an arbitrary complete set of integral representatives C
of CI(F). Take the set of all elements by,...,b, of C
such that b?a € PT(F). If ged(bj,a) = oF, then set
m; = bj; if ged(bj, a) # op, then take a prime ideal p;
of F satisfying p; 1 a and p7b; € P(F) (ie., p; P(F) =
b P(F)), and set m; = p;. Then the set M, is given by

Ma = {mla"'amu}'

We fix m € M,. Then we can take n, satisfying 0 <
nm € op and (nym)r = m?a. Now we can choose {1} as
Er when hg = h}, and {1,e} as Er when hr # h},
where € is the fundamental unit of F' satisfying ¢ > 1.
Thus we can take Ny, = n Er. (Note that the choice of



M, and Ny, has no effect on tr7(a), as remarked after
Theorem 2.1.) We also fix n € Ny,. Now we set m =
[11,lo+w] with I3, s € Z satisfying 1 < l; and 0 < Iy < [5.
For s € m, we can set s = yly + z(ly + w) with y,z € Z.
Then we have

s? < dn = s <dn, (s7)? < 4n°
= —2v/n < s < 2y/n, —2v/n7 <57 < 2v/n°
2l 1 2
- 2+2l+\/mx+ ;/ﬁ7
1 1
A+ 1+ym  2n
> — xr — s
2l I

2l +1—+/m 2v/n°

< — x ,
21, l

21 1— 24/n°

> 22 i ma: — z .
211 l1

Thus we have
Sp =A{yli + z(lo + w) | y, x € Z satisfying (3-1)}.

Set K = F(y/a) with a € o satisfying o < 0. Then our
study is reduced to the computation of the following :

(1) DK/F :HpehDP7
(i) (§) forp €h,

where [], ., Dy is the prime factorization of Dy, p.

peh
3.2 Determination of D, and () for an
Odd Prime p

First we explain a way to determine D, and (%) for an
odd prime ideal p of F'.

Proposition 3.1. Let F be an algebraic number field of
finite degree, and K = F(y/a) a quadratic extension of
F with o € op. Let p be an odd prime ideal of F'. Then

op
_D =
-1

Proof: 1If 2 | ord,(a), then we can find a; € op such
that K = F(,/a1) and ordy(a;) = 0. Since Dg/p |
Dy p(y/ar) and Dg/p(y/ar) = (4a1)r, we have D, =
or. Now assume 2 { ord, (), take a prime ideal P of K
that lies above p, and let e be the ramification index of 3
in K/F. Then 2-ordg(y/a) = ordg (o) = e-ordy(a), and
hence e = 2. Since [Ky : Fy] =2 and p 1 (2)p, we have
D, = p~! = p (cf. [Weil 67, Chapter VIII, Corollary 3
of Proposition 7). d

if 2 | ordy(a),

otherwise.

Okada: Hecke Eigenvalues for Real Quadratic Fields 415

We can determine D, from this proposition.
Let F, K, and p be as in Proposition 3.1. By
Dedekind’s discriminant theorem, we know that

(£)=0<=1p| Dg/p. (3-2)

p

For an explicit determination of (%) for pt Dg/p, we
start with the following lemma.

Lemma 3.2. Let F be a Galois extension of Q of
prime degree, and K = F(y/a) a quadratic extension
of F with o € op. Let p be an odd prime ideal of
F satisfying p 1 Dk, and p the prime number in
Q that lies below p (i.e., p | (p)r, which means that
pNZ = pZ). If p remains prime in F/Q, then we
set a = Np/q(ap™ ordp (@) if p ramifies in F/Q, then
we take a € (omp_ord"(a) + my0p) N Z; if p splits in
F/Q, then we take ag € (o + p% (D +o, ) N Z, and set

ordy (@) - Then we have

(%) =(5)-

a = aop~

Note that this criterion does not depend on the choices
of a and a from the proof below.

Proof: Put [F : Q] = g. Now, p splits or remains prime
in K/F by (3-2), and 2 | ord,(c) by Proposition 3.1.
Since p is odd, we have

(1 +mp0p)* = 14 mp0p;
indeed, for any element 1+m,y € 1+m,0,, the polynomial
7rpX2 +2X —y has aroot 2 € 0, by Hensel’s lemma,and
thus (1 + myz)? = 1 + mpy. Note that p splits in K/F if
and only if the polynomial X? — « is reducible over F;
that is,

(%) =1l<= ac (F)).
Assume first that p remains prime in F/Q. Then
[Fy : Qp] = g and ordy(p) = 1. Write Gal(F/Q) =
{o1,...,04} and ag = ap~ %@ (e o) Nop). Then

J R T .
{ag +op1j=0,...,g—1}={ay’ top[j=1,...,9}
(cf. [Weil 67, Chapter I, Corollary 2 of Theorem 7]). Thus

a € (F))? < ao € (0))°

= (apal ol )P/
= aéN(p)fl)/z € 1+ poy
— (aglagz . agg)(lﬂfl)ﬁ
= ]\]-F/Q(OZO)(pil)/2 cl —|—p0p
= a2 = Ny (ao)? V2 €1 4 pz
= (2) =1
P
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Next assume that p ramifies in F//Q. Since arr, ordp (<) c

o, and o, /my0, = Z/pZ, we can take a € (am, ordy (@)

mpop) N Z. Thus

_|_

a€ (F))? < am, ordp(@) ¢ (0,)?
> ac (o))’
— a? V21470,
(ie. aP~V/2 14 p7Z)

= (%) =1

Finally, assume that p splits in F/Q. Then F, = Q,
and ord,(p) = 1. Since Z is dense in o,, we can take
ap € (a+ po(@+lo )N Z. Then a(l + poy) = a +
porde (0 Flo = a4(1 + poy). Thus

a € (F))? < ag € (F))’
—ordp (o) e (0;)2)
= a2 1470,

(ie. a'P~V/2 ¢ 14 pZ)

= (&) =1

(i.e. a=agp

This completes the proof. O

Lemma 3.3. Let F = Q(y/m) be a real quadratic field
with a square-free integer m satisfying m =1 (mod 47Z).
Let p be an odd prime number in Q such that (%) =1,
and p the prime ideal of F that lies above p. Let r be an
integer such that p = [p,r + w|. Then, for u € Z and
1<j€eZ, u=+/m (modploy) if and only if u> =m
(mod p'Z) and u = —2r — 1 (mod pZ).

Proof: We first prove that u = \/m or —y/m (mod p’o,)
if and only if u? = m (mod p’Z) for u € Z and 1 <
j€Z Ifu—+m e plo, or u+ /m € ploy, then
u? —m = (u—/m)(u+ /m) € plop,, and hence u® —
m € plo, NZ = pZ. Conversely, X? = m (mod p’Z)
has exactly two solutions modulo p/Z, since p # 2 and
(%) = 1. Since p is odd and /m € oy, we have \/m #
—y/m (mod p’o,). Thus if u € Z satisfies the condition
u? =m (mod pZ), then u = /m or —y/m (mod p’oy).
Now, 27'(2r+1++m) = r+w € p C po,. Thus
2r + 1+ /m € poy, that is, /m = —2r — 1 (mod poy).
Therefore, we obtain our assertion. O

From the two lemmas above, we obtain the following
proposition:

Proposition 3.4. Let F' and m be as in Lemma 3.3, and
0> a € op. Set K =F(/a), and a = a1 + asw with

ai,as € Z. Let p be an odd prime ideal of F satisfying
p 1 Dk, and p the prime number in Q that lies below p.
Put t = ordy (). In particular, if p splits in F/Q, we set
p=[p,r+w] withr € Z, | = ord,(ged(as,az)), and take
u € Z such that u?> = m (mod p*~'*1Z) and u = —2r —1
(mod pZ). Set

p2t (a% +ajay +a3(1 - m)/4)

if p remains prime in F/Q,
(mp~?)"/? (a1 — az(p — 1)/2)

if p ramifies in F/Q,
pH((p+1)/2) (201 + aa(1 +u))

if p splits in F/Q.

Then we have

()= @)

Proof: If p remains prime in F'/Q, our assertion follows
immediately from Lemma 3.2. Next we assume that p
ramifies in F/Q. Then p = [p,(p — 1)/2 + w|. Since
vmp~t € F*, ord,(y/mp~') = —1, and ordy(y/mp~') >
0 for any q € h — {p}, we see that m, = \/E_lp is a
prime element of F,, and am, * = a(mp=2)*/? € op. Thus
a1 (mp=2)t/% az(mp~2)*/? € Z, and hence am, * +mp0, D
a(mp=2)t24+p 5 (mp~2)*/2(a; —az(p—1)/2). Therefore,
we obtain a in Lemma 3.2 in this case. Now assume
that p splits in F//Q. By Lemma 3.3, we have u = /m
(mod pt~*1o,). Since p' | az, we have asu = as\/m
(mod p**lo,), and hence

((p + 1)/2) (2a1 +as(1+ u)) = ((p—|— 1)/2)
- (2a1 + ax(1 + v/m))
=(p+1)a
a (mod p'toy).

Thus ((p 4+ 1)/2)(2a1 + a2(1 + w)) € (a + pttlo,) N Z.
Therefore, our assertion follows from Lemma 3.2. O

Remark 3.5. Note that we can find u € Z satisfying
u?=m (mod p'~'T1Z) (3-3)

when (%) = 1. Then we have u = —2r — 1 or 2r + 1
(mod pZ), as we see in the proof of Lemma 3.3. Finding a
solution u of (3-3) can be reduced to mod p calculation by
the following procedure: Let u = co +c1p+- -+ c;_pt ™!
with 0 < ¢; <p—1, and set u; = co +c1p+ -+ ¢;p’
for 0 < j < t—1. Since m = uf = (uj_1 +¢;p’)? =
u?_ ) 4 2u;_1¢;p7 (mod pt1Z), we have

(mod pZ), (3-4a)
(mod pZ) (3-4b)

m = c2
pI(m — u?_l) = 2uj_1¢j



for 1 < j < t—1. Thus we can determine cy, ...
inductively by (3—4a, b).

y Ct—1

From Proposition 3.4 and Remark 3.5, we can immedi-
ately determine (%) for every odd prime ideal p satisfying

p1Dg/p.

3.3 Determination of D,, and (%) for an Even Prime p

Next we give a method for determining D, and (%) for
an even prime ideal p of F.

Proposition 3.6. Let F, m, o, K, a1, and as be as in
Proposition 3.4. Let p be an even prime ideal of F. As-
sume p* 1 (a)p. Ifm =1 (mod 8Z), we setl = (m—1)/8
and p = [2,r + w], where r =0 or 1; we also set
A ={(a,b) € Z% | a +b(2U(—1)" +7) — 1 € 8Z},
Al ={(a,b) € Z® | a—b(2l — 1) — 1 € AZ}.

If m =5 (mod 8Z), we set | = (m —5)/8,

A = {(a,b) € Z* | (a — 1,b) € 4Z x 8Z
or (a—2l—2,b—3) € 8Z x 4Z
or (a—21—1,b—1) € (8Z)?
or(a—2l—5b—5) ¢ (8Z)2},
Al ={(a,b) € Z* | (a — 1,b) € (4Z)?
or (a—21 —2,b—3) € (4Z)?
or (a—21 —1,b—1) € (4Z)?}.

Then we have

1 ifpt(a)r and (a1,a2) € A,
-1 pr * (OZ)F, (a17a2) §é Am7
and (a1,a2) € AL,

0 otherwise,

and
D, =< p? if (%) =0andpt(a)r,
p> ifp | (a)F.

Proof: We set

f=max{j €Z|0<j<3,

there exists v € o such that v> = a  (mod p)}.
Then, by [Okazaki 91, Proposition 3], we have
1 iff=3,
o o P i p (),
(3)=3-1 iff=2 Dy=4, _
p ifp|(a)p.

0 iff<l,
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When p | (a)p, we have o+ p? C mpo,, thus f =1, and

hence (%) = 0; moreover, D, = p3. Thus our proposition
holds in this case. Therefore, we may assume p 1 (a)p.

To prove our proposition, we need to show only that

f =3 < (al,ag) S Am,

f>2< (a1,a2) € A,,.
We first assume that m =1 (mod 8Z). Then ord, (o) =
0,and {t € Z | 0 <t < 27,2} t} is a complete set
of representatives of (op/p?)* for j > 1. Therefore, for
j > 1, there exists v € op such that v2 = a (mod p?) if
and only if there exists t € {t € Z | 0 <t < 27,2 { ¢}
such that o — t2 € p/. Now we have
p? =8, -21(-1)" —r +w].
Since a—t? = (a1+az(21(—1)"+7)—t?) +az (—21(-1)"—
r+w) and 1 =1% =32 =52 = 7% (mod 8Z), we have

f =3 < there exists t € {1,3,5,7}
such that a — t? € p?

p? =[4,20 — r + wl,

<~ (a1,a2) € A,

Moreover, since a—t% = (a1 —az(2l—7)—t?)+az(2l—r+w)
and 1 =12 = 32 (mod 4Z), we have

f > 2 <= there exists ¢t € {1,3} such that a — t* € p?
< (a1,a2) € Al,.

Thus the assertion is proved in this case. Now assume

that m =5 (mod 8Z). Then ord, (o) =0, and {u + vw |

0 <wu,v <2, (u,v) ¢ (2Z)%} is a complete set of repre-

sentatives of (ox/p?)* for j > 1. Thus for j > 1, there

exists 7 € op such that 42 = o (mod p?) if and only if

there exists (u,v) € {(u,v) € Z? | 0 < u,v < 27, (u,v) ¢

(2Z)?} such that o — (u +vw)? € p/ = [27,29w]. Since

a—(ut+vw)? = (ag —u? — (21 +1)v?) + (ag — 2uv — v?)w

and

(a1 —u® — (2l + 1)v°, az — 2uv — v?)

if 2twuand 4 | v,

if 2tu, 2| v, and 41 v,

if2tu,2fv,and 4 | u— v,

if24u, 2fv,and 44 u — v,

if4]wuand 24w,

if 2| u, 44w, and 21 v,
(mod 8Z),

(a1 —1,a2)

(a1 — 5, az)

(a1 —2l—2,a2 -3
(

(

(

a1 — 2l —2,a2 — 7
ar —2l—1,a2 — 1
a1 —2l—5,a2—5

)
)
)
)

we have
f = 3 <= there exists (u,v) € {(u,v) | 0 <wu,v <7,
(u,v) ¢ (2Z)%}
such that a — (u +ww)? € [8,8u]
<~ (a1,a2) € Ay,
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Moreover, since

(ar —u? — (21 + 1% ap — 2uv — v?)

if 2twand 2| v,

if 24w and 21w,

if 2| uwand 2tw,
(mod 47Z),

(a1 —1,az)
=< (a3 — 2l —2,a5 — 3)
(a1 —21—1,@2—1)

we have

f > 2 <= there exists (u,v) € {(u,v) |0 <wu,v <3,

(u,v) & (22)%}
such that a — (u +wvw)? € [4,4w]
< (al,a2) S A;n

This completes the proof. O
Remark 3.7. Let F, m, o, and K be as in Proposition
3.4. Let p be an even prime ideal of F. When p? | (o),

we cannot apply this case to Proposition 3.6. However
we can take aq, instead of «, satisfying

K = F(,/ar),

as follows:

o €op, p°f(a1)p (3-5)

(i) If m =1 (mod 8Z), then we take v € op such that
(7)F = (p7)"" € Pp, and put

ap = a(2_17)2[0rdp(a)/21_

Then «; satisfies (3-5), since (27'9)p =

Pt (p7)te
(ii) If m =5 (mod 8Z), set

oy = o - 27 2lordp(@)/2]
Then oy satisfies (3-5), since p = (2)p.
Thus, by Proposition 3.6 and Remark 3.7, we can
immediately determine D, and (%) for an even prime
ideal p.

3.4 Hecke L-Values

Finally, we explain the method for computing
Lr(0,xx/r) that was established by [Shintani 76]
for totally real algebraic number fields F. [Okazaki
91] deals with Shintani’s formula for the case of real
quadratic fields F', and we observe that the ideal charac-
ter corresponding to K/F is expressed by the Legendre
symbols and the Hilbert symbols. Applying this result
to Shintani’s formula, we obtain Formula (3-6) with

simple calculation. We note that the conductor of xg/r
is equal to Dg/p (cf. [Weil 67, Chapter XIII, Theorem
9]), and we can determine D /r by Proposition 3.1 and
Proposition 3.6.

Let F, m, a, K, a1, and as be as in Proposition 3.4.
Let € be the fundamental unit of F' that is greater than 1,

and set
e ife>0,
£ fr
* €2 otherwise.
We take e, e’ € Z such that e, = e+¢e'w. Let aq,..., At

be a complete set of representatives of CI7(F) such that
a, Cop forall p. For 1 < pu < h;, we can determine
uniquely integers d,,, d,, and d; such that

du[dl d” +w] = auDK/F,

w

/!

dy,d;, > 0, and 0 < dj] < d;,; we take integers sy, s),,

% )
and @, as follows:

(i) If a,Dg/r € P(F), then take s, s;, such that
(su+ s;w)p = auDgyr,

and set

Q. =1.

(ii) If a,Dg/p ¢ P(F), then we can take an odd
prime ideal g, of F such that q, splits in F/Q,
ged(qy, ()F) = o, and qua,Dg/r € P(F). Then
du = [qu>Tu + w] with g, 7, € Z. We take s, s),
such that

(su + S;Lw)p = 4,0, Dk/F,
and set
Qu= (al_qizr )

Moreover, for 1 < i < d, and 1 < j < e'dud;” we take
the integer 1 < r,;; < e'dud; such that
ruij = €di— (e+¢€(d; +1))j (mod e'd,d,Z),

and we set

Bij = 4_1(e/dud:)_2((26 + 6/)(7"31]' + j2) + 47'm'jj)
_ 4_1(e'dudz)_1(2e + e +2)(rui; +7)
+1271(2e + €' 4 3),

m — 1))
4 K

Vpij = (€'dyud),) ™ (rmjs; +j(es), +€'s, + e'sL)).

Upij = (e’dudL)‘l (Tﬂijsﬂ +3 (es# +¢€'s,



Note that u,;j,vui; € Z. Now, for an odd prime ideal p
of F and u+ vw € op, we set

NF/Q(u+vw)

ot o) = {E_)

where p is the prime number in Q that lies below p, and

r an integer satisfying p = [p,r + w]. For an even prime
ideal p of F' dividing Dk, and (3 € oF, we set

Xp(ﬂ): {(ﬂ7a)Fp lfpf(ﬁ)F’

0 otherwise,

) if p remains prime in F/Q,

otherwise,

where ( , )p, is the Hilbert symbol (and « is retained as
in Proposition 3.4). Then we obtain

hi
Lr(0,xr/F) = Z sgn(Np/q(su + 5,w)) Qy
p=1
e’ Md;

(Z Z Buij |1 xouis + vuijw)

=1 j=1 p|Dk/F
pcEh

dp

=1 " p|Dgr

p€h
(3-6)

Thus, if we can compute the Hilbert symbol (8, a)r,
for an even prime p and a, 8 € op — {0} satisfying p 1
(B)F, we can determine L (0, xx/r) by (3-6). We note
that the Hilbert symbol

(, )Fp :pr X pr — {£1}
satisfies

(a,b)p, = (b,a)p,, (3-7a)

(a,bc)r, = (a,b)F, (a,¢)F,, (3-7b)

for a,b, ¢ € F,* and naturally induces the mapping
FYJ(FS)? x FYJ(FY)? — {1} (3-8)

(for the Hilbert symbol, see [Neukirch 86|, for example).

3.5 Hilbert Symbol for m =1 ( mod 8Z)

We first give a method for computing the Hilbert symbol
when m =1 (mod 8Z).

Lemma 3.8. Let u € Z satisfying pu*> € Z. Then u =
p (mod 27Zy) if and only if u?> = p? (mod 27H1Z) and
u=p (mod 4Zs) foru € Z and 2 < j € Z.

+ Z 212; dy H Xp (ld;l(su + st)))
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Proof: Suppose u = p (mod 29Z,) with v € Z and 2 <
j € Z. Then u = pu (mod 4Z5). Since u + p = 24
(mod 4Zs) and p € Z, we have 27! (u+pu) € p+2Zy =
Z, and hence ords(u + p) = 1. Thus v? — p? = (u —
w)(u+p) € 2911 Zy, that is, u? —p? € 2771Z. Conversely,
if u?> = p? (mod 2771Z) and u = p (mod 4Z,), then
ordy(u+p) = 1, and hence v — p = (u? — p?)(u+p)~t €
2Z,. 0

Lemma 3.9. Let F = Q(y/m) be a real quadratic field
with a square-free integer m satisfying m = 1 (mod 8Z).
Letp = [2,r+w] be an even prime ideal of F', where r = 0
or 1. Then, forw € Z and 2 < j € Z, it follows that
u=+/m (mod 270,) if and only if u> = m (mod 277'Z)
and u = —2r — 1 (mod 47Z).

Proof: Since m = 1 (mod 8Z), we have F}, = Q. Thus,
by Lemma 3.8, we see that u = \/m (mod 270,) if and
only if > = m (mod 277'Z) and u = /m (mod 4oy,)
foru € Z and 2 < j € Z. Since 271(2r + 1+ /m) =
r+w € p C 20, we have /m = —2r — 1 (mod 4o,).
Thus v = /m (mod 4o,) if and only if v = —2r — 1
(mod 4Z). This completes the proof. O

From the two lemmas above, we obtain the following
result:

Proposition 3.10. Let F', m, p, and r be as in Lemma
3.9. Let 01,02 € op — {0}, and set ,Bj = ¢ + djw
with ¢j,d; € Z. We take u; € Z such that u3 = m
(mod 2074 (B)=Li+5Z) and w; = —2r — 1 (mod 4Z),
where 1; = min{ordy(2¢; + d;),orda(d;)}. We set t; =
27 (Bi) (¢; 4 dj(1 +u;)/2). Then we have

(B1,B2)F,

— (_1)(t1—1)(t2—1)/4+0rdv(ﬂl)(tg—l)/8+0rdp(ﬂ2)(tf—1)/3.

Proof: Since o, = (14 2%0,) U (3 + 2%0,) U (5 + 2%0,) U
(7 + 2%0p), we have (0, )% C 1+ 2%,. Conversely, for
any element 1+ 23y € 1+ 230, we can take a root z €
op of the polynomial 2X? + X — y by Hensel’s lemma,
then 1+ 2%y = (1 + 2%z)?, and hence 1+ 2%0, C (0;)?.
Therefore,

(0;)? =1+ 2%,. (3-9)

Now set e; = ordy(3;). Since 8; = 2b71(274(2¢; +
dj) + 27%d;\/m), we have e; > l; — 1. Thus u; =
vm (mod 2¢~ti+40,) by Lemma 3.9, and hence d;(1 +
u;)/2 = djw (mod 2%730,). Therefore, t; = 27% (¢c; +
d;(1+u;)/2) = 27%3; (mod 2%0,), that is, t;(0, ) =
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27¢% ﬂj(O;( )2. It follows that (ﬁl, ﬂQ)Fp = (2€1t1, 262t2)pp .
Since F, = Q2, we have

(2°1¢4, 262t2)Fp — (_1)(tl—1)(1;2—1)/4—&-@1(tg—l)/S—&-eg(tf—l)/S

(cf. [Neukirch 86, Chapter III, Theorem 5.6], for exam-
ple). This completes the proof. |

Remark 3.11. It is well known that X2 = a (mod 2/Z)
has exactly four solutions modulo 27Z for a € 14 8Z and
3 < j € Z. If z; is one of the solutions, then all the
solutions are z;, z; + 27!, —z;, and —z; + 2771, since
x; is odd. Now we can inductively determine x; by

z3 =1,
U if 2| 277 (23_; — a),
’ Tj_1+ 2772 otherwise,

for 4 < j € Z. To prove this, we assume that z;_; is a
solution of X% = a (mod 2/~'Z) with j > 4, and set

e 0 if2[277 (27 —a),
1 otherwise,

and z; = x;_1 + ¢2/7%. Since 277 (25 | —a) = ¢ =
—xj_1c (mod 2Z), we have z7 | —a = —x; 1c277"
(mod 27Z). Thus

of = a2l g a2 4 P

j
x?_l - (1’?_1 —a)=a (mod 2/Z).

From this, we can easily find u; of Proposition 3.10 and
u of Proposition 3.14 below.

From Proposition 3.10 and Remark 3.11, we can im-
mediately compute the Hilbert symbol when m = 1
(mod 8Z).

3.6 Hilbert Symbol for m = 5 (mod 8Z)

Now we explain a method for computing the Hilbert sym-
bol when m =5 (mod 8Z).
By [Okazaki 91, Proposition 4], we have

Proposition 3.12. Let F = Q(y/m) be a real quadratic
field with o square-free integer m satisfying m = 5
(mod 8Z). Let p be an even prime ideal of F. Put
T=1+4w and £ = (m —9)/4 +w. Then F,*/(F,)?
is generated by —1,7,&,2, and we have
1 if(bya)=(-1,-1)

or (—=1,7) or (—=1,2)

or (1,7) or (1,€)

or (&,2) or (2,2),
—1 if (b,a) = (=1,§) or (7,2) or (&,§).

(b, a)pp =

From this proposition, we can take
{(=1)nrt2gs2% | iy, ig,is, 04 € {0,1}}

as a complete set of representatives of F},*/(F,)?. Thus
for any B1,02 in op — {0}, we can compute (01, 052)F,
by (3-7a), (3-7b), (3-8), and Proposition 3.12, if we
can find ljl,ljg,ljg,lj4 S {0,1} such that ,Bj(FpX)z =
(—1)lirrlizglizalia(F)? for j = 0,1. Now we have
6j(—1)ij17'ij2§ij32_Ordp(ﬂj) € OFQO; for any ijl,ijg,ijg S
{0,1}, and

/Bj(_l)ileij2§i]‘32—Ordp(ﬁj) c (0§)2
= B(F)? = (—1)r gl (Y2,

where ij4 = 0 or 1 according as 2 | ord,(8;) or 2 {
ordy(8;). Thus, for an element 6 of o, we wish to give
an effective method to see that § € (0;)2. (In fact, this
will be given in Proposition 3.14 below.)

For v € (Q2)?, we denote by v'/? the root of X2 —

7 contained in (|72 27(1 + 4Z,)) U {0}. Note that

111212 = (7172)1/2 for 1,72 € (Q2)%.

Lemma 3.13. Let F', m, and p be as in Proposition 3.12.
Let § € F,. Then § € (0;)? if and only if

(Z) NFp/Qz(é) € (Z;)2; and

(ii) Trp, /q,(8) + 2NF, /q, (0)'/2,
Ter/Q?, (5) - 2NFp/Q2 (5)1/2 € (Z2)2 U m(z2)2'

Proof: In this proof, we abbreviate Trr, /q, and N, /q,
by Tr and N. Since o, is the topological closure of o in
F,, we have

op = {27z +yv'm) |,y € Zo, © —y € 2Zs}.

We first prove the “only if” part. Since § € (o, )?, there
exist z,y € Zy such that § = (27 (z+y+/m))?, and hence
Tr(6) = 274(2? + y?m) and N(§) = (471 (z? — y?>m))>.
Since ord,(§) = 0, we have N(§) € (Z3)?. Now we
have N(0)Y/? = (=1)"4=Y(2? — y®m) with [ = 0 or 1.
Therefore,

Tr(6) + (—1)'2N(6)Y/2 = 22 € (Zy)?,
Tr(6) — (—1)'2N(6)/2 = y*m € m(Z,)>.
Now we prove the “if” part. Since N(§) € (Z))?, we

have § € o, . Set § = 27! (a+by/m) with a,b € Z5. Since
Tr(6)? — 4N () = b’*m, we have

a=Tr(8), b= (=1)(m *(Tx(6)% —4N(5)))'/?



with j = 0 or 1. On the other hand, since (Tr(5)? —
4N(8)) € m(Z9)?, we have Tr(8)+(—1)'2N(6)'/2 € (Z)?
and Tr(8) — (=1)'2N(6)"/? € m(Z2)? with [ = 0 or 1.
Thus we set

vz (6 Z2)7

(€ Zy).

z = (~1) (Tx(8) + (—1)'2N(5)"/?)

y = (m™1(Tx(5) — (~1)2N(8)/2)"?

Then

(27 (& +yvm))’
= 27 (Tr(8) + (=1 (m ™ (Tx(8)* - 4N (8))) " V/m)
= 2_1(a + by/m) = 6.

Since § € o, , we have § € (o0, )% This completes the
proof. O

From the above lemma, we obtain the following result:

Proposition 3.14. Let F', m, and p be as in Proposition
3.12. Let§ € op, and set § = 271 (a+by/m) with a,b € Z.
Then é € (0, )? if and only if

(i) 8|47 (a® —b?>m) — 1; and

(i) b=0 and 4|2 ta — 1; or
b#£0and4|a+1; or
b#0,ords(a)=1,2|r, and 4|2 "(a+ 2u) — 1,

where u is a rational integer such that u?> = 471 (a®>—b%*m)
(mod 22°742()Z) gnd u = 1 (mod 4Z), and r = ordy(a+
2u).

Proof: In this proof, again abbreviate Trp, q, and
Np,/q, by Tr and N. Then Tr(§) = a and N(§) =
471(a® — v*m) € Z. By Lemma 3.13, we have

§ € (o)) <= N(9) € (Z5)?,
Tr(6) + 2N (6)/2,
Tr(6) — 2N (6)Y/2? € (Zy)? Um(Zs)>.
(3-10)

Here, by (3-9), we have (Z)? = 1 + 8Z>, and hence

o0

(Z2)* Um(Z2)* = (| | 47(1+ 4Z2)) U {0}.

=0
Since N(0) € Z, we have

N(@©) € (25)* <= 8|47 (a®> = b*m) —1.  (3-11)
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Henceforth, until the end of this proof, we may assume
N(6) € (Z5)?. When b = 0, we have N(5)'/2 =
(=1)!27a € Z with I =0 or 1, and hence

Tr(6) + (—1)'2N(8)/2 = 4-271q,
Tr(6) — (—1)'2N(8)Y/% = 0.

Note that 27ta € ZX NZ =1+2Z. If 4| 27'a — 1, then
4-271a € 4(144Z) C (Z2)*Um(Zy)?;if 4 | 27ta—3, then
4-27% ¢ (2o 4(1 4 4Z9)) U {0} = (Z2)* Um(Zy)*.
Therefore, by (3-10), we have

§e (o)) =4]27a—1

Now we also assume b # 0. Since (Tr(6) +
2N(6)1/2)(Tr(8) — 2N(0)/?) = b®>m # 0, we have
Tr(8) + 2N(6)Y/2 # 0. Hence, if Tr(5) + 2N(6)'/? €
(Z2)?> Um(Z2)?, then

Tr(5) — 2N(8)Y/2 = b2m(Te(6) + 2N (6)1/2) !
€ ((Q2)*Um(Q3)*) N Ze
C (Z2)* Um(Zs)*.

Thus

Tr(6) + 2N (8)Y2, Tr(8) — 2N (0)Y/? € (Z2)? Um(Zy)?
— Tr(8) + 2N(8)Y? € (Z2)? Um(Z2)%.
(3-12)

When ordz(a) > 2, we have Tr(d) = a € 4Zy. Since
N(8)Y? € 1+ 2Z,, we have Tr(6) + 2N (8)'/? € 2(1 +
27,) = 2Z5. Thus Tr(8) + 2N(6)Y/? ¢ (Z2)? Um(Z)?,
and hence ¢ ¢ (0, )? by (3-10). When ords(a) = 0, we
have Tr(0) + 2N (6)'/2 € a + 2 + 4Z5 (C ZJ). Thus, by
(3-10) and (3-12), we have

Se(of)<=4|a+1l

When ordz(a) = 1, we have orda(b) > 2 by Equation
(3-11). Thus, by Lemma 3.8, we have u = N(5)'/2
(mod 22°72()=17,)  and hence a + 2u = Tr(d) +
2N(6)/2 (mod 22°742(M7Z,).  Since Tr(8),2N(0)Y/? €
2(1+2Z5), we have Tr(6§) — 2N (8)*/? € 4Z,. Thus, since
(Tr(8) + 2N (8)Y/2)(Tr(8) — 2N (8)Y/2) = mb?, we have
ordy (Tr(6) 4+ 2N (8)'/2) < 20rdy(b) — 2, and hence

r = ordy(a 4 2u) = ordy(Tr(6) + 2N (6)1/?).

It follows that a -+ 2u = Tr(8) 4+ 2N (6)'/? (mod 27+2Z,),
that is,

27" (a + 2u) = 27" (Tr(8) + 2N (6)/2)  (mod 4Z,).
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| b | Ce(p) | N(Cep)re) |l b | Ct(p) | N((Ce(P))ke) ]
2, w] (1++13)/2 3 [349, 206 + w] —184+ 13 311
11, 4+ w] 1 1 [373, 233 + w] 27 36
(13, 9+ ] +/13 13 [379, 153 + w] 154213 173
(17, 11 4+ w] 4413 3 (397, 164 + w] —20 £ 313 283
(23, 10 + o] 4413 3 [401, 80 4 w] 14 +/13 3-61
29, 2 +w] 2413 32 [419, 222 + w]*| —194+ /13 22.3.29
[31, 29 +u] 14213 3-17 [433, 30 4 w] —24+/13 563
[59, 45 + w] +/13 13 [457, 43 + W) —-15 32.52
61, 23 +w] *| —14++13 22.3 [479, 434 + w] 54613 443
67, 24 +w] | —3£3V13 22. 33 [491, 340 + w] 14+ 513 3-43
(73, 14 + o] 44313 101 [499, 130 + w] * 9+ 713 22.139
[79, 19 + w] 124++/13 131 [503, 105 + w] 94 6v/13 32.43
[89, 68 + w] —142/13 3-17 [523, 303 4 w] 21 32.72
[113, 62 +w] = 54 3v/13 22.23 [563, 34 + w] 174413 34
(137, 89 + w] 144+ /13 3-61 [571, 172 + o] 21 +2/13 389
[139, 18 + w] —124+ /13 131 [587, 445 + w]*| —2+£4V13 22.3.17
(157, 73+ w] * +21/13 22.13 [593, 478 + w] —16 4+ /13 3°
[173, 27 + w] 34613 33.17 (613, 486 + w| -19 192
[193, 100 + w]*| —3++/13 22 [631, 559 + w]*| —1848+/13 22127
197, 40 + w] *| —1+3V13 22.29 [643, 336 + w] x| 124413 26
[199, 177 + w] —18 £+/13 311 [647, 51 + w] 39 32.132
[211, 136 + w] —4+ 313 101 [653, 173 +w]*| 10+ 813 22.3.61
[223, 152 + ] —8+3V13 53 [673, 620 + w] —21 4613 33
[227, 102 + w] = 24213 24.3 [683, 133 4 w] —16 + 13 3°
[239, 148 + w] —54 613 443 [701, 452 + «] 64313 34
[241, 122 + w]*| —1943+/13 22 .61 [709, 38 + w] 27 +44/13 521
[283, 95 + w] —16 +3V13 139 [719, 310 + w] —14+7/13 32.72
(293, 267 + w] 1 1 [727, 205 + w] —6+13v/13 2161
[307, 116 + w] —3+4/13 199 (739, 558 4+ w] * 14 22 .72
[317, 280 + w] +31/13 32.13 [769, 550 + w] —17 +£2/13 3-79

% : principal prime ideal

TABLE 1. The eigenvalues Ct(p) of T'(p)]

Therefore, by (3-10) and (3-12), we have

§ € (0))? <= Tr(6) + 2N (8)"/2 € | |4/(1 +4Zy)
j=0

— 2| ordy(Tr(6) + 2N (5)/?),
2—ord2(Tr(5)+2N(5)1/2)(T\r<6) + 2N(5)1/2)
€1+4Z,
<~ 2|r 4]27"(a+2u) — 1.

This completes the proof. O

Note that we can easily find u of Proposition 3.14 by
Remark 3.11, since 4! (a®> —b*m) = Np, /q,(d) € 1+ 8Z.

4. NUMERICAL EXAMPLES FOR Q(v/257) AND
Q(+/401)

In this section, we shall give numerical examples of eigen-
values and characteristic polynomials of Hecke operators

S(2,2)Cq(vasm)

1) and their norm for a split prime p.

for real quadratic fields Q(v/257) and Q(+/401), whose
class numbers are three and five, respectively.

Let F and m be as in Section 3. We treat only the case
k= (2,2) and ¢ 1is the identity (i.e., Yp(Fg) = {1}). We
denote this character by 1. Let S3(I'o(m), (%)) be the
space of elliptic cusp forms of “Neben”-type of level m,
and S(]g’Q)(oF, 1) the subspace of S5 2y(0F, 1) that con-
sists of Hilbert cusp forms coming from S5(I'o(m), (2))
through the Doi-Naganuma lifting (cf. [Doi and Na-
ganuma 69] and [Naganuma 73]). We denote by
88272)(01?, 1) the “F-proper” subspace of S(32)(0F, 1),
that is, the orthogonal complement of 8(1\2772)(0 r, 1) with
respect to the standard inner product. It is known that
8(02,2)(01?, 1) and 5(1\2772) (op, 1) are stable under the action
of T(p) for all prime ideals p of F. In the following, we
shall determine eigenvalues and characteristic polynomi-
als of T(p)\s?m)(%l) for several prime ideals p.

We denote by ¥,(X) the characteristic polynomial of
T(p)|5§>2’2)(0F’1). For a primitive form f in 88272)(01:, 1),
we denote by Cg(p) the eigenvalue of T'(p) satisfying



f|T(p) = Ce(p)f, and then denote by K the Hecke field
of f, that is, the field generated over Q by C¢(p) for all
prime ideals p. Let K;F be the subfield of K¢ gener-
ated by C¢((p)r) for all rational primes p. We note that
(K¢ : K] =2.

Now we set Ag(p) = Op+ + C’f(p)oK? for a split prime
p. Then A¢(p) is an order in OKf/K? in the sense of Sec-
tion 2.2, and the conductor ¢(Ag(p)) is given by Lemma
2.3 as follows:

e(Be(9)) = (Dyey st (Celp) - Dy s ™).

4.1 Example for Q(+/257)
Let F = Q(v/257). Then hp = h}, = 3. We have

dimc S(OZQ)(OF, 1) = dimc 8(2’2)(0}:', 1)
1.
— 5 dimg S5 (T (257), (1))
1
=trT(op) = 520 =2.

e Table 1 gives numerical data for the eigenvalues of
T(p)|5?2 2 (0 1) and their norms for split primes p
satisfying N (p) < 769.

e Table 2 gives numerical data for the eigenvalues of
T((p)p)|S?2’2)(aF’1) for rational primes p such that
p remains prime in F and p < 97. (Note that the
characteristic polynomial of T((p)p)\s&m(w,l) has
a double root.)

L e T CG® T » T Cm» [ » [ Cm |+
3)F —4 (37 r 52 (53)F -8

(5) 2 (4lp | —18 (71) ~30

(N 0 (43) 30 (83) 50

(19) 18 (47 p 46 (97 90

TABLE 2. The eigenvalue Ct(p) of T'(p)]
for p = (p)r.

Sl2,2) (Pq(vasF) 1)

For a primitive form f in Sp, 5 (0F, 1), we have
K =Q(V13), K{=Q.
Within the limit of Table 1, we observe that
p is principal <= (2)k, | Ce(p)
for split primes p; in particular, we remark that

2 | c(Ag(p))

for all principal split primes p in the table.
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4.2 Example for Q(1/401)
Let F = Q(v/401). Then hp = h}. = 5. We have

1
dime Spy 9y (0r, 1) = 24 — 5 32=8.

e Table 3 gives numerical data for the characteristic
polynomials \I/(p)F(X) of T((p)r)|so

(2.2)
tional primes p such that p remains prime in F' and

p < 23.

(op,1) for ra-

Wy (X) |
(X4 +7X3 +4X2 - 32X +1)2

( (X4 +24X3 +120X2 — 113X — 571)2

(17)p | (X*+2X3 —110X2% — 111X + 3019)2

( (

( (

X% 4+10X3 —339X2 — 1360X + 22759)2
X% —16X3 —495X2 + 8532X — 11671)2

TABLE 3. The characteristic polynomial ¥,(X) of
T(P)‘s&z)(oq(m)g) for p = (p)r.

e Table 4 gives numerical data for the coeflicients
of the characteristic polynomials ¥,(X) = X% +
a X"+ -+a7X +ag of T(p)LS?z,z)

split primes p satisfying N(p) < 643 and nonprinci-

pal split primes p satisfying N(p) < 263.

(or,1) for principal

The characteristic  polynomial
T([2,w])|5&,2)(0F’1) is irreducible over Q,
roots of Wy, (X)) are

\11[270.,] (X) of
and the

il = 4—10 (15 — (=1)*5v5 + (=1)"7/54/110 + 10v5

(—1)! \/4900 — (=1)i100v/5 + (—1)3 (150 — (—1)110v/5)1/110 + 10v/5

where 0 < 7, 5,1 < 1. Now we take the primitive form f
such that f|7T([2,w]) = cooof. Then we have

Ke=Q (\/4900 — 100v/5 + (150 — 10v/5)4/110 + 10«/5>,
K = Q<\/110+ 10«/5).

(The degree of the Galois closure of K¢ over Q is 128 =
27.) Then we have

Dg,/q = 5*-29% - 131 - 139,
Dyt )q =529,
N(Dy,/x¢) = 131-139.

e Table 5 gives numerical data for the norm of

c(Az(p))-
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| p | ai, az;, as, a4, as, as, az, as
2, w] -3, —10, 28, 37, —78, —58, 53, 19
[5, w} -3, —18, 41, 111, —163, —234, 155, 1
[7, 5+ w] -6, -—12, 120, —175, —42, 175, —83, 11
11, 7+ w] 9, 10, —101, —253, 149, 918, 809, 179
[29, 22 + w] 13, —5, —5H23, —408, 8053, 1917, —48078, 38359
[41, 27 + w) —16, —90, 2332, —2437, —86432, 249407, 263905, 43909
[43, 26 + w] —32, 309, —148, —11780, 43156, 18606, —138350, —42131
[47, 44 4 ] 15, —46, —1114, 861, 24682,  —30282,  —133239, 211541
(73, 39 + w) 4, —362, —1343, 36721, 107356, —1265768, —1867352, 14282224
83, 30 +w] x| —32, 92, 5761, —41264, —341588, 3084758, 6681459, —69332531
[89, 60 + w] —10, —278, 3166, 13505, —241434, 703443, —114403, —611281
[103, 85 + w] 27, —118, —6456, —10369, 372198, 1371298, —3479619, —15228421
(109, 74 + w)] 29, —186, —10994, —61417, 448682, 4111874, 7230513, ~1231091
[113, 23 + w] —34, 88, 7570, —T77675, —156608, 5544655, —26618987, 40066931
(149, 55+ w] | —68, 1775, —22208, 131704, —237922, —810800, 2670928, 1079011
(151, 924+ w] | —22, —151, 5415, —7430, —329865, 1334049, —291087, 2791879
[173, 110 + w] —11, —381, 7795, —37942, —157229, 2060155, —6349795, 5629151
[179, 107 + w] —88, 2950, —45092, 245937, 1261812, —21112768, 83231088, —104306576
(181, 21 + w] —7, —310, 2548, 18965, —210804, 594832,  —493872, —100624
[197, 45 + W] 40, 168, —9515, —110360, 121710, 6701416, 29340685, 31232399
[223, 31 + w] —68, 1453, —2076, —317709, 3811290, —9269721, —49448362, 130826831
[229, 57 + w] 33, —67, —8851, —51342, 253023, 1988777, —1662381, —18676169
[239, 206 + W] —53, 1066, —10574, 54335, —132516, 96784, 72897, —69191
[241, 167+ w] | —35, 218, 2705, —15695,  —84085, 59836, 48125, 30371
[257, 122 + w] = 10, —1119, —14842, 336025, 6080144, —T7871441, —548680256, —2339785241
[263, 201 + W] —36, —295, 12183, 91010, —605219, —5055489, —2431643, 17176609
[337, 172 + w| x| —47, 105, 24343, —327430, —1820659, 57625757, —337202462, 582948571
[379, 103 + w] x| —25, —1214, 26233, 458881, —6336001, —81101528, 302094243, 3696976091
[383, 205 + w] x| —63, 286, 61218, —1739923, 17945914, —49335124, —306466744, 1582083824
[397, 197 + w| *| —77, 690, 64185, —1089907, —15159265, 255263350, 1030269191, —910014589
[421, 304 + w] = 48, —494, —47086, —216435, 13127696, 123014259, —842081917, —9542329681
[487, 70+ w] =*| —25, —1553, 38867, 743048, —20170693, —84273537, 3477790992, —11951208719
[499, 264 + w] x| —22, —1402, 39386, 246139, —13711178, 90023337, 71238749, —717378001
[643, 474 + w] x| —72, —896, 147914, —1370115, —68019308, 937509055, 3125818491, —4860460921

% : principal prime ideal

TABLE 4. The coefficients of the characteristic polynomial X8+ a1 X"+ 4+arX +as of T(p)|

prime p.

From Table 5, we immediately observe that

Then we can observe that

5(,2)Cq(vao):

19 | N (c(Ag(p))) Pio | c(Ae(p))

for all principal split primes p in the table. Moreover, if for all principal split primes p in the table.
we set

Pro = c(Ae([83,30 + ), 4.3 Calculation Based on Hida’s Suggestion

We check (1), (2), and (3) of the Introduction.

When F = Q(+/257), the common factor of Nk, /q(1+
N(p) — Ce(p)) = Uy(1+ N(p)) is 22 from Table 6. More-
over, it follows immediately from Table 1 that the com-
mon factor of 1 + N(p) — C¢(p) is (2)x, = Frox,. When
F = Q(+/401), the common factor of Ny, /q(1+ N(p) —
Ce(p)) = Uy (1 + N(p)) is 192 from Table 7.

then P19 is a prime ideal of Kg" , and there exist prime
ideals Py, Py of K, such that

(19)1(;r = ‘1319‘13/19‘13/1/9>
ProPlo = [19,4 + (1 +V5)/2] - 0+,

To = 119,14+ (1+V5)/2] -0,



| P | N(c(Ae(n) |

2, W] 1

5, w] 1

[7, 5+ w] 1
(11, 7+ w] 1
29, 22+ w] 1
[41, 27 + W] 31
[43, 26 + w] 31
[47, 44 + w] 31
(73, 39 + w] 34
83, 30 +w] = 19
(89, 60 + w] 41
[103, 85 + w] 232
(109, 74 + w] 19-29
(113, 23 + ] 1
[149, 55 + w] 52
(151, 92 + w] 29
[173, 110 + o] 41
(179, 107 4 w] 19
(181, 21 + w] 11
(197, 45+ w] 379
(223, 31 + w] 61
[229, 57 + w] 19
[239, 206 + w] 1
[241, 167 + w] 72
[257, 122 4 w] * 19139
[263, 201 + w] 409
(337, 172 + w] * 19-41
[379, 103 + w] * 1931
(383, 205 + w] * 72.19
[397, 197 + w] * 19 - 41
[421, 304 + w] = 11-192
[487, 70 + w] = 192 -31
[499, 264 + w] * 11%2.19
(643, 474 + w] * 19-79

% : principal prime ideal

TABLE 5. The norm of ¢(Ag(p)) for the primitive form f
in S&’z)(oQ(m), 1) and a split prime p.

Moreover, we can observe that the common factor of
1+ N(p) — Cf(p) is s;3190[@ = ngKf. Thus (1) and (2)
are affirmative, and (3) is correct in this case.

By using [Siegel 69, (22)], we have calculated the value
at 2 of the Hecke L-function associated with a a nontrivial
class character y. In the case F' = Q(v/257), we have

D32
I Ghlr@x=2"

x:nontrivial

In the case F' = Q(+/401), we have

D32
11 WLF(Q,X) =192,

x:nontrivial
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| p | Nigq(L+N(p) —Ce(p) |
3)r 22.72
B)r 24.72
Mr 22 .54
(19) 24.52.192
BN r 22 . 6592
(4l)g 24.5%.172
(43)r 24.52.72.132
(Chors 24 . 5412
(53)F 22 . 14092
(") F 28 . 3172
(83)r 26.3%.52.192
97 F 26.52.2332
(61, 23 + w] 22.23.43
(67, 24 + w] 22.1231
[113, 62 + w] 22.17-173
(157, 73 + w] 24.32.173
[193, 100 + w] 22.3.53-61
[197, 40 + w] 22. 9871
[227, 102 + w] 24.3.1063
[241, 122 + w] 22.32.1889
[419, 222 + w] 22.32.53-101
[499, 130 + w] 22.32.6679
(587, 445 + w] 22.3.53.547
(631, 559 + w] 22.32.13.17-53
(643, 336 + w] 24.3.8317
[653, 173 + w] 24.3.8623
[739, 558 + w] 22.32.114

TABLE 6. Ny, q(1+ N(p)— Ce(p)) for a principal prime

p, where Ce(p) is an eigenvalue of T(p)‘s?z,a)("Q(\/ﬁ)*l)'

I Nicpo(L+ N —Cew) |
3)F 192 .292 . 312
(13)r 11%.19% . 612 - 3592
a7 g 112 - 192 - 340301812
(19)F 74.112.192 . 5212 - 32992
(23)F 192 - 40204338312
83, 30 + w] 192 - 31 - 11059 - 12836389

257, 122 + w| 11-192 - 1279 - 3191 - 1236962761
337, 172 + w]| 192 -641-1109-2011 - 8111 - 35099
379, 103 + w] 113 - 192 - 1638061 - 511689281
383, 205 +w]| 2%-11-192.1621 - 1790869 - 2150221
397, 197 + w| 112 - 192 - 131 - 94781 - 942456979
421, 304 + w] 192 - 60830069 - 50854477409
487, 70 4+ w] 111922699 - 17191 - 16454332679
499, 264 +w]| 112.192.61 - 829 - 1681246642091
643, 474 + w| 192 - 421 - 334889 - 515366804791

TABLE 7. Ny, q(1+ N(p) — Ce(p)) for a principal prime

p, where Ce(p) is an eigenvalue of T(p)‘s?z,a)("Q(\/M)*l)'
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