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Recall the well-known 3x + 1 conjecture: if T(n) = (3n + 1)/2
for n odd and T(n) = n/2 for n even, repeated application of T
to any positive integer eventually leads to the cycle

{1=2—-1}.

We study a natural generalization of the function T, where in-
stead of 3n + 1 one takes 3n + d, for d equal to —1 or to an
odd positive integer not divisible by 3. With this generalization
new cyclic phenomena appear, side by side with the general
convergent dynamics typical of the 3x + 1 case. Nonetheless,
experiments suggest the following conjecture: For any odd
d > —1 not divisible by 3 there exists a finite set of positive
integers such that iteration of the 3x + d function eventually
lands in this set.

Along with a new boundedness result, we present here an im-
proved formalism, more clear-cut and better suited for future
experimental research.

1. INTRODUCTION

The well-known 3x + 1 problem deals with the iter-
ative behavior of the function 7' : N* — N* (where
N is the set of positive integers) defined as follows:

~ [n/2
T(n) = { (3n+1)/2 if nis odd.

if n is even,

All known numerical checks, as well as a few in-
teresting heuristic arguments [Lagarias 1985], indi-
cate that a typical trajectory (sequence of iterates)
of T degenerates into repetitions of the finite cycle
{1 — 2 — 1}. The 3z + 1 conjecture asserts that
this is true for any positive integer n.

Since the problem became known about sixty
years ago, many interesting and deep facts con-
cerning the iteration of 7" have been discovered;
most are reported in [Lagarias 1985], where one can
find 70 relevant references. See also [Lagarias 1990;
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Lagarias and Weiss 1992; Applegate and Lagarias
1995]. Still, the 3z + 1 conjecture remains open.
One can only marvel at how such a straightforward
and primitive in extremis rule can produce such an
immensely rich and balanced dynamical pattern!

Remark 1.1. Generally speaking, a trajectory of a
map Z : N* — N can be either divergent (that is,
limsup Z*(n) = oo) or ultimately t-periodic (after
a finite number of initial iterations, the transfor-
mation enters into a cycle of length ¢). In the 1-
periodic case we say the trajectory terminates at a
fixed point. The 3z + 1 conjecture is equivalent to
the conjunction of the two following conjectures:

(CD) T has no divergent trajectories.
(CC) The only cycle of T is {1 — 2 — 1}.

Remark 1.2. Statements (CD) and (CC), simple and
natural as they are, might well turn out to be algo-
rithmacally undecidable, as is their rather straight-
forward arithmetical generalization due to John H.
Conway [1972]; hence the problem:

(PAD) Is the 3x + 1 conjecture algorithmically de-
cidable?

Past and present research on the 3z + 1 problem
has centered around the three themes (CD), (CC),
and (PAD), with their quite different and almost
unrelated methods and techniques. This paper at-
tempts to contribute to our understanding of all
the aspects of the 3z + 1 dynamics by extending it
to a more general 3x + d case. This extension was
originally studied in [Lagarias 1990], in a somewhat
different context, for d > 1; the case d = —1 was
briefly mentioned in [Béhm and Sontacchi 1978].

For reasons described in the next section, it is
more convenient to express the generalization as a
function involving odd numbers only. For n € N,
let odd(n) be the number obtaining by factoring
out the highest possible power of 2; thus odd(n) is
odd and n = 2* odd(n) for some k.

Now let d > —1 be an odd integer not divisible
by 3, and define the 3z + d function S, as follows:

Sq(n) = odd(3n + d).

Notice that S,;(d) = d, and thus the fact that d
is a fixed point of Sy is the 3z 4 d analogue of the
fixed point 1 of the 3z +1 transformation. But {d}
is, generally speaking, not the only cycle, and even
not the only fixed point, of the mapping S,;. For
example, 5, 13 and 65 are the fixed points of Sgs
(see Proposition 3.1 and Example 3.3). Here are
examples of cycles of length 2, 3, and 7:

d=—1: {5—7—5}
{17—+25—37—55—41—-61—-91—17}

d=5: {19—31-49—19}
{23 372923}

These facts illustrate how subtle, unique and,
apparently, extremely difficult is the 3x + 1 period-
icity conjecture (CC). In this light conjecture (CC)
may seem too optimistic; a weaker version, called
the finite cycles congecture in [Lagarias 1985], may
turn out to be the right one:

(FCQO) T has only a finite number of cycles.

In contrast, the plausibility of the 3z+1 divergence
conjecture (CD) is not weakened by the 3z + d
dynamics. These facts suggest the following 3z +d
generalization of the 3z + 1 conjecture (compare
[Lagarias 1990]):

The 3x+d Conjecture. For any odd d > —1 not divis-
wble by 3, there exists a finite set Ty € N such that,
for any odd positive integer n not divisible by 3, the
iterates S%(n) lie in T, for all high enough k (de-
pending onn). The set T, is called the termination
set.

Similarly to the 3x + 1 case, the 3x + d conjecture
is the conjunction of two weaker statements:

(CDy) S, has no divergent trajectories.
(FCCy) Sy has only a finite number of cycles.

2. REDUCTION FROM TTO S

The function 71" defined above acts surjectively on
the set N of positive integers, but the action is nei-
ther “regular” nor “simple”. Any positive integer
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m is the image of 2m under 7', and if m = 3a + 2
for integer a then m is also the image of 2a + 1.
Thus 77! (m) has one element if m # 2 mod 3, but
two elements otherwise.

The set of numbers not divisible by 3, denoted
(somewhat abusively) 3N* & 1, is stable under T

T(3N*+1) =3N* £ 1.

Moreover, 1" sends odd numbers divisible by 3 into
numbers not divisible by 3. This implies that T’
sends the subset 6N + 3 into its complement “for-
ever”:

T*(6N +3)N (6N +3) =@ for any k > 1.

In particular, no 3z + 1 cycle starts at 6N + 3.

Such peculiarities obscure the iterative behavior
of T and motivate our search for normalized or
irreducible versions of T'. To simplify the notation,
we put

D = (6N 4 1) U (6N +5).

With this notation, an irreducible version of T is
given by the transformation S : D — D defined by

S(n) = odd(3n + 1) = odd(T'(n)).

Thus S is the trace of T% on D. A normalized ver-
sion of T', the periodically linear transformation W,
will be defined in Section 4.

The function S has the advantage of an immedi-
ate and natural generalization to the 3z+d context.
We define Sy : D — D, for all d € D U {-1}, by
setting

Sa(n) = odd(3n + d).

Thus S]_ =S.

3. FIXED POINTS, LOOPS AND CYCLES OF 3x + d
MAPPINGS

Clearly, S; has only one fixed point, namely n = 1.
This is no longer true in the general case; however,
the number of fixed points of Sy is always finite:

Proposition 3.1. For any d € 6N £ 1, the number
of fized points of Sy is finite. More precisely, n is

a fired point of Sy if and only if n = d/(2F — 3),
for some integer k > 1. In particular, n = d =
d/(2* — 3) is a fized point, and there are no others
if d has no divisors of the form 28—3 (other than 1).

Proof. Immediate. O
We say that d is the trivial fixed point of Sj.

Example 3.2. The smallest composite number in D
isd=25=5x%x5since5=2"-3, n=5isa
nontrivial fixed point of Sy5 (in fact, the only one).
Similarly, the only nontrivial fixed points of Ss;
and Ss5 are n = 7 and n = 11, respectively. More
generally, if d = bp with p a prime not congruent
to 5 mod 8, the only nontrivial fixed point of S,
is p.

Example 3.3. Let d = 65 = 5 x 13; both divisors are
of the form 2F — 3, so Sg; has two nontrivial fixed
points, 5 and 13. Similarly, the only nontrivial
fixed points of Ssz5 (325 = 5x5x13) are 25 and 65.
If d = 65p with p a prime number not congruent
to 5 mod 8, the only nontrivial fixed points of S,
are 5p and 13p.

Example 3.4. For m > 3, the number d=[]",(2'-3)
has at least m — 2 fixed points. Thus, the number
of fixed points can be arbitrarily large.

Now we consider cycles. As a matter of terminol-
ogy, we say that {n,Sy(n),S3(n),..., Sk *(n)} is
a k-loop if S%(n) = n, and that it is a k-cycle if, in
addition, S%(n) # n for 0 < j < k. Obviously, if
a k-loop is not a k-cycle, its first k& elements, for
some (unique) factor k' of k, do form a k'-cycle.
We gave on the preceding page examples of cycles
of length 2, 3, and 7.

Next, for any positive integer k and any sequence
T = (p1,-..,pr) of positive integers with 0 < p; <
Py < -+ < pg, define

>\(7rk) = (p2 —P1y P3 — D1y ---5 Pk — P1, pk)
and

Ap(me) = Ar(pr, - .-, k)
— 319—1 +3k—22p1 +3/€—32p2 +-- +3 9Pk —2 _|_2pk—1'
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The following simple result will be very useful in
the sequel.

Lemma 3.5. For any given positive integer k and
any sequence m, = (p1,...,pr) of positive integers
the following properties are satisfied:

(1) Ag(my) € D.

(2) Ap(m) = Ag(my,) of and only if p; = p) for
j <k.

(3) BAk(my) + 27+ — 3% = A (A(my)) 27

Proof. Property (1) is trivial. Property (2) has been
observed many times—for example, in [Lagarias
1990] (in different notation). The verification of
(3) is just a matter of calculation and is left to the
reader. O

The next two propositions, which are proved after
Remark 3.10, give necessary and sufficient condi-
tions for a trajectory to be, respectively, a loop and
a cycle; the first of these statements generalizes the
results on the 3z + 1 conjecture of [B6hm and Son-
tacchi 1978] and of [Lagarias 1990, Theorem 2.1].

Proposition 3.6. Let d € 6N=x1 and let k be a positive
integer. An integer n € D belongs to a k-loop under
Sy if and only if there exists a sequence T as above
such that

n(2”k —3'“) =d Ap(P1y- -y Pr-1)- (3-1)

Proposition 3.7. The k-loop that occurs in Proposi-
tion 3.6 is a k-cycle if and only if all sequences my,
A7), - .., XY (my) are different.

Example 3.8. Take m, = (p1,2p1,3p1,...,kp1). If
(3-1) is true then n is a fixed point of S,.

Remark 3.9. Note that \*(7,) = m, for all k.

Remark 3.10. A k-loop defined by d, k and 7 is a
k'-cycle if and only if k is a multiple of £ and k' is
the minimal integer such that ¥ (m;) = .

Proof of Proposition 3.6. First we prove that the con-
dition is necessary. We start by a formula for
S%(n), for j > 1. By definition, we get successively,

Sa(n) = (3n +d)27",
Sz(n) = (3S4(n) +d) = (3Bn+d)27" +d)27"
=327 4 d (327 42707,

and so on, with
l;=1;(n) =v,(35) (n) + d),

where v,(m) is the 2-adic valuation of the positive
integer m (the number e € N such that m/2°¢ is an
odd integer).

Define p; = pj(n) =1, +--- +1;. Then

Sé(n) = (3‘] n + dA](p]_, . ,pjfl))27pj.

Now let n € D be such that S%(n) = n; the result
follows easily.

To prove that the condition is sufficient, let d,
k and m; be defined as above and satisfying (3-1).
Then, according to Lemma 3.5,

d
Sa(n) = Sq <mAk(7rk)>
d N\ o
= o (3Ak(my) + 27 —3F)27"
d -
= m Ak ()\(Wk)) 2171 ll-
Since the denominator is odd, as are d and A, we
have l]_ =Pp1-
Similarly,
$2(n) = — L 4, (V(m)
d T 9pk 3k k kJJ

And the proof goes on by induction with

St(n) = =2

= oo —gr A(V'(m)) =n

(see Remark 3.9). O
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Proof of Proposition 3.7. According to the above def-
initions of cycles and loops, this follows from the
fact that

d

Sitm) =

A (N (7)) (3-2)
for all ;7 > 1; this equality was established during
the proof of Proposition 3.6. O

Now we prove that the above constructions can be
applied to show that, for suitable d’s, there exist
cycles of any type.

Proposition 3.11. Let k be a positive integer and con-
sider a sequence m of k positive integers 0 < p; <
Py < -+- < py such that 2 > 3% and such that the
N () are all distinct, for 0 < i < k. Then there
exist d and n in D such that n belongs to a cycle
of length k for Sy such that, for j =1, ..., k, we
have

Shn) = (38,7 (n) + d) 2 77+

(with the conventions S9(n) =n and py = 0).

Proof. Proposition 3.11 immediately follows from
relation (3-2), if we choose d = 2P* — 3% and n =
Ar(Pry -y Pr1)- U

Example 3.12. The smallest cycle of length 4 given
by Theorem 2 is {65 — 121 — 205 — 331 — 65},
COIIliIlg from d = 477 (p17p27p37p4) = (17 27 37 7)

Remark 3.13. The theorem is also true if we choose
d= Q2" -3 and n = QAu(pr,...,per) for
any @ €D.

Theorem 3.14. For a given d € DU{—1} and a given
positive integer k, the number of k-periodic points
for Sq s finite.

Proof. To simplify the notation, put n’ = Sy;(n) =
(Bn+d)/2?, n" = S3(n) = (3n' +d)/2%, and so on.
For any cycle {n,n’,n",...}, we choose n minimal.
And we want to find an upper bound for n. The
condition n' > n implies 3n + d > 2°(n + 1), so

n < d—4 for p > 2. Thus, we assume that p =1
and then

, 3(Bn+d)/2) +d  9In+5d
no= 249 T 9g+1

In the 2-periodic and 3-periodic cases, the proof
is more effective and instructive, so we will first
consider these cases. When d = —1 there are no
cycles of length 2 or 3 (the easy proof is left to the
reader), so we assume d > 0 in the following proof.

For k = 2, we have n”" = n and the above formula
gives ¢ > 3 and n < %d. Thus, in all cases,

n < max{d — 4, 2d}.

For k = 3, we have to consider two cases: n' <
n” or n' > n'". In the first case, by the remark

above, we can assume that ¢ = 1. Then n” =
(9n + 5d) /4,
o 2Tn+19d
T
and the condition n'" = n implies r > 3 and
19d
n< —.

In the case n” < n' we have ¢ > 2. For ¢ > 3, the
inequality n” > n implies n < 5d/7. Whereas, for
q=2,
. 2Tn 4+ 23d
n = ————,
27‘+3

and the condition n"’ = n implies r > 2 and n <
23d/5. Thus, in all cases
23d
n< —.
-5

The general periodic pattern is a little harder to
analyse. The upper bound given below uses Propo-
sition 3.6 and concerns, in fact, points on k-loops.
Let d and k be given. For any (k + 1)-tuple

{n,p1,p2,...,pr}, with 0 <mand 0 < p; <--- <
P, we have
n = |d| Ak(pl?"' 7p]§71)2_pk
|1 — 3k 2P|
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To deduce from this an upper bound, one has to
bound |1—3* 277+ from below and A (py, ..., pr_1)
from above. Our bounds are relatively efficient in
the first case and relatively rough in the second
one. Still, even in the 3z 41 case, the lower bound
we use improves on the known results of [Béhm
and Sontacchi 1978; Steiner 1978].

It follows immediately from the deep result of
[Baker and Wiistholz 1993] that there is an effec-
tively computable constant C' such that

|1 —3F27! > k¢

for all I and k; this is the desired lower bound.

We also have to study the magnitude of A;. The
worst case occurs when py,_; = p,—j for 0 < j < k.
To simplify the notation, put p = p;. Then

Ap(pry- - 5pr1)277
—p (3k71 + 3k—29m 4o 3.PE-2 2pk_1)
—p (31» 1 31» 2 21) l»+1 217 1)
— 3k—1 92-p + 2—k+1 (Bk—l _ 2k—1)
<1+ (3/2)F 1t —1=(3/2)"

since 27 > 3. This gives the inequality

k—1

n< dkC(3)

Hence the result. O

4. A NORMALIZED VERSION OF T

We now consider a reformulation of the 3z+41 prob-
lem that has certain formal advantages. When we
passed form 1" to S, we lost the “periodically lin-
ear” character of T' [Conway 1972; Lagarias 1985];
yet, the previously mentioned undecidability result
of [Conway 1972] concerns just such functions. An-
other formal difficulty is that S is defined as a
composition of the functions Ty : n +— n/2 and
T, : n — (3n + 1)/2 acting outside the domain
D of definition of S. Both considerations remain
valid for the general definition S; as well.

On the other hand, as observed in Section 2, the
function T is for many reasons not a very conve-
nient formal tool; in particular, it has the unpleas-
ant property of #7*(n) being either 1 or 2. To
overcome these shortcomings of both 7" and S, we
define here a function W on the domain D, which
would replace T in the iterative definition of 5,
retaining at the same time the periodically linear
character of T'. Set

(n—1)/4 if n =5 mod 24,

Wo(n) = { e

(n—>5)/16 if n =85 mod 96,
(Bn+1)/2 ifn=7,11 mod 12,
Bn+1)/4 if n=1,17 mod 24,
Wl (n) = . o
(Bn+1)/8 if n =13 mod 48,
(3n+1)/16 if n = 37 mod 96.

One checks easily that Def(W,) and Def (W), the
domains of definition of W, and Wy, are disjoint,
and that their union is D. In fact, Wy and W, are
bijections from their respective domains onto D.
Now, for n € D, set

Wo(n)
Wi (n)

ifn S Def(Wo),

W(n) = { if n € Def (W1);

then W is a two-to-one function from D to D.

The function W can replace T as a “primitive”
periodically linear “skeleton” of S, in the following
sense. Recall that

S(n) = odd(3n + 1) = 72T ().

Thus
S(n) = W(n) =Wy(n)
if n € Def (W), and
S(n) = WH(n) = Wi (W§(n))

if n € Def(Wy), Wy(n) € Def(Wy),
Def(Wy) but W§ € Def(W;).

We hope that the fact that W is 2-to-1 will prove
to be a significant advantage over T'; the 2-to-1
property is crucial if one wants to study the prob-
lem within the framework of any theory related to

k—
7W01€
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discrete dynamics, both theoretical (in the spirit of
Furstenberg) and computational.

Clearly, for any n € D, the set #S57*(n) is infi-
nite, and it can be described explicitly as

S7Hn) = {Wfl(n), Wo ' (W (n)),
Wa 2 (W (n), We (W (n), .. }

An explicit arithmetic formula for any set S;'(n)
is given in [Belaga 1995].

Remark 4.1. The definition of W can be extended to
the 3z +d context, so that functions can be defined
on D that are periodically linear and that can be
used to iteratively define the corresponding func-
tions Sy. This construction is left to the interested
reader as a straightforward technical exercice.

Remark 4.2. To be precise, the result of [Conway
1972] concerns transformations on Z. Still, with
minor technical adjustments, the transformation W
can be extended to Z preserving its periodically
linear features.
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