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Recall the well-known 3x + 1 conjecture: if T(n) = (3n + 1)/2

for n odd and T(n) = n/2 for n even, repeated application of T

to any positive integer eventually leads to the cyclef1 ! 2 ! 1g.

We study a natural generalization of the function T, where in-

stead of 3n + 1 one takes 3n + d, for d equal to �1 or to an

odd positive integer not divisible by 3. With this generalization

new cyclic phenomena appear, side by side with the general

convergent dynamics typical of the 3x + 1 case. Nonetheless,

experiments suggest the following conjecture: For any odd

d � �1 not divisible by 3 there exists a finite set of positive

integers such that iteration of the 3x + d function eventually

lands in this set.

Along with a new boundedness result, we present here an im-

proved formalism, more clear-cut and better suited for future

experimental research.

1. INTRODUCTIONThe well-known 3x+1 problem deals with the iter-ative behavior of the function T : N � ! N � (whereN � is the set of positive integers) de�ned as follows:T (n) = �n=2 if n is even,(3n+ 1)=2 if n is odd.All known numerical checks, as well as a few in-teresting heuristic arguments [Lagarias 1985], indi-cate that a typical trajectory (sequence of iterates)of T degenerates into repetitions of the �nite cyclef1 ! 2 ! 1g. The 3x + 1 conjecture asserts thatthis is true for any positive integer n.Since the problem became known about sixtyyears ago, many interesting and deep facts con-cerning the iteration of T have been discovered;most are reported in [Lagarias 1985], where one can�nd 70 relevant references. See also [Lagarias 1990;
c
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146 Experimental Mathematics, Vol. 7 (1998), No. 2Lagarias and Weiss 1992; Applegate and Lagarias1995]. Still, the 3x + 1 conjecture remains open.One can only marvel at how such a straightforwardand primitive in extremis rule can produce such animmensely rich and balanced dynamical pattern!
Remark 1.1. Generally speaking, a trajectory of amap Z : N � ! N � can be either divergent (that is,lim supZk(n) =1) or ultimately t-periodic (aftera �nite number of initial iterations, the transfor-mation enters into a cycle of length t). In the 1-periodic case we say the trajectory terminates at a�xed point. The 3x+1 conjecture is equivalent tothe conjunction of the two following conjectures:
(CD) T has no divergent trajectories.
(CC) The only cycle of T is f1! 2! 1g.
Remark 1.2. Statements (CD) and (CC), simple andnatural as they are, might well turn out to be algo-rithmically undecidable, as is their rather straight-forward arithmetical generalization due to John H.Conway [1972]; hence the problem:
(PAD) Is the 3x + 1 conjecture algorithmically de-cidable?Past and present research on the 3x + 1 problemhas centered around the three themes (CD), (CC),and (PAD), with their quite di�erent and almostunrelated methods and techniques. This paper at-tempts to contribute to our understanding of allthe aspects of the 3x+1 dynamics by extending itto a more general 3x+ d case. This extension wasoriginally studied in [Lagarias 1990], in a somewhatdi�erent context, for d � 1; the case d = �1 wasbrie
y mentioned in [B�ohm and Sontacchi 1978].For reasons described in the next section, it ismore convenient to express the generalization as afunction involving odd numbers only. For n 2 N ,let odd(n) be the number obtaining by factoringout the highest possible power of 2; thus odd(n) isodd and n = 2k odd(n) for some k.Now let d � �1 be an odd integer not divisibleby 3, and de�ne the 3x+ d function Sd as follows:Sd(n) = odd(3n+ d):

Notice that Sd(d) = d, and thus the fact that dis a �xed point of Sd is the 3x+ d analogue of the�xed point 1 of the 3x+1 transformation. But fdgis, generally speaking, not the only cycle, and evennot the only �xed point, of the mapping Sd. Forexample, 5, 13 and 65 are the �xed points of S65(see Proposition 3.1 and Example 3.3). Here areexamples of cycles of length 2, 3, and 7:d=�1: f5!7!5gf17!25!37!55!41!61!91!17gd=5: f19!31!49!19gf23!37!29!23gThese facts illustrate how subtle, unique and,apparently, extremely di�cult is the 3x+1 period-icity conjecture (CC). In this light conjecture (CC)may seem too optimistic; a weaker version, calledthe �nite cycles conjecture in [Lagarias 1985], mayturn out to be the right one:
(FCC) T has only a �nite number of cycles.In contrast, the plausibility of the 3x+1 divergenceconjecture (CD) is not weakened by the 3x + ddynamics. These facts suggest the following 3x+dgeneralization of the 3x + 1 conjecture (compare[Lagarias 1990]):
The 3x+d Conjecture. For any odd d � �1 not divis-ible by 3, there exists a �nite set Td 2 N such that ,for any odd positive integer n not divisible by 3, theiterates Skd (n) lie in Td, for all high enough k (de-pending on n). The set Td is called the terminationset .Similarly to the 3x+ 1 case, the 3x+ d conjectureis the conjunction of two weaker statements:
(CDd) Sd has no divergent trajectories.
(FCCd) Sd has only a �nite number of cycles.
2. REDUCTION FROM T TO SThe function T de�ned above acts surjectively onthe set N � of positive integers, but the action is nei-ther \regular" nor \simple". Any positive integer



Belaga and Mignotte: Embedding the 3x + 1 Conjecture in a 3x + d Context 147m is the image of 2m under T , and if m = 3a + 2for integer a then m is also the image of 2a + 1.Thus T�1(m) has one element if m 6� 2 mod 3, buttwo elements otherwise.The set of numbers not divisible by 3, denoted(somewhat abusively) 3N � � 1, is stable under T :T (3N � � 1) = 3N � � 1:Moreover, T sends odd numbers divisible by 3 intonumbers not divisible by 3. This implies that Tsends the subset 6N + 3 into its complement \for-ever":T k(6N + 3) \ (6N + 3) = ? for any k � 1:In particular, no 3x+ 1 cycle starts at 6N + 3.Such peculiarities obscure the iterative behaviorof T and motivate our search for normalized orirreducible versions of T . To simplify the notation,we put D = (6N + 1) [ (6N + 5):With this notation, an irreducible version of T isgiven by the transformation S : D ! D de�ned byS(n) = odd(3n+ 1) = odd�T (n)�:Thus S is the trace of T k on D . A normalized ver-sion of T , the periodically linear transformationW ,will be de�ned in Section 4.The function S has the advantage of an immedi-ate and natural generalization to the 3x+d context.We de�ne Sd : D ! D , for all d 2 D [ f�1g, bysetting Sd(n) = odd(3n+ d):Thus S1 = S.
3. FIXED POINTS, LOOPS AND CYCLES OF 3x + d

MAPPINGSClearly, S1 has only one �xed point, namely n = 1.This is no longer true in the general case; however,the number of �xed points of Sd is always �nite:
Proposition 3.1. For any d 2 6N � 1, the numberof �xed points of Sd is �nite. More precisely , n is

a �xed point of Sd if and only if n = d=(2k � 3),for some integer k > 1. In particular , n = d =d=(22 � 3) is a �xed point , and there are no othersif d has no divisors of the form 2k�3 (other than 1).
Proof. Immediate. �We say that d is the trivial �xed point of Sd.
Example 3.2. The smallest composite number in Dis d = 25 = 5 � 5; since 5 = 23 � 3, n = 5 is anontrivial �xed point of S25 (in fact, the only one).Similarly, the only nontrivial �xed points of S35and S55 are n = 7 and n = 11, respectively. Moregenerally, if d = 5p with p a prime not congruentto 5 mod 8, the only nontrivial �xed point of Sdis p.
Example 3.3. Let d = 65 = 5� 13; both divisors areof the form 2k � 3, so S65 has two nontrivial �xedpoints, 5 and 13. Similarly, the only nontrivial�xed points of S325 (325 = 5�5�13) are 25 and 65.If d = 65p with p a prime number not congruentto 5 mod 8, the only nontrivial �xed points of Sdare 5p and 13p.
Example 3.4. Form � 3, the number d=Qml=3(2l�3)has at least m� 2 �xed points. Thus, the numberof �xed points can be arbitrarily large.Now we consider cycles. As a matter of terminol-ogy, we say that fn; Sd(n); S2d(n); : : : ; Sk�1d (n)g isa k-loop if Skd (n) = n, and that it is a k-cycle if, inaddition, Sjd(n) 6= n for 0 < j < k. Obviously, ifa k-loop is not a k-cycle, its �rst k0 elements, forsome (unique) factor k0 of k, do form a k0-cycle.We gave on the preceding page examples of cyclesof length 2, 3, and 7.Next, for any positive integer k and any sequence�k = (p1; : : : ; pk) of positive integers with 0 < p1 <p2 < � � � < pk, de�ne�(�k) = (p2 � p1; p3 � p1; : : : ; pk � p1; pk)andAk(�k)=Ak(p1; : : : ; pk)= 3k�1+3k�22p1+3k�32p2+� � �+32pk�2+2pk�1 :



148 Experimental Mathematics, Vol. 7 (1998), No. 2The following simple result will be very useful inthe sequel.
Lemma 3.5. For any given positive integer k andany sequence �k = (p1; : : : ; pk) of positive integersthe following properties are satis�ed :(1) Ak(�k) 2 D .(2) Ak(�k) = Ak(�0k) if and only if pj = p0j forj < k.(3) 3Ak(�k) + 2pk � 3k = Ak��(�k)�2p1 .
Proof. Property (1) is trivial. Property (2) has beenobserved many times|for example, in [Lagarias1990] (in di�erent notation). The veri�cation of(3) is just a matter of calculation and is left to thereader. �The next two propositions, which are proved afterRemark 3.10, give necessary and su�cient condi-tions for a trajectory to be, respectively, a loop anda cycle; the �rst of these statements generalizes theresults on the 3x+1 conjecture of [B�ohm and Son-tacchi 1978] and of [Lagarias 1990, Theorem 2.1].
Proposition 3.6. Let d 2 6N�1 and let k be a positiveinteger. An integer n 2 D belongs to a k-loop underSd if and only if there exists a sequence �k as abovesuch thatn�2pk � 3k� = dAk(p1; : : : ; pk�1): (3–1)

Proposition 3.7. The k-loop that occurs in Proposi-tion 3.6 is a k-cycle if and only if all sequences �k,�(�k), . . . , �k�1(�k) are di�erent.
Example 3.8. Take �k = (p1; 2p1; 3p1; : : : ; kp1). If(3{1) is true then n is a �xed point of Sd.
Remark 3.9. Note that �k(�k) = �k for all k.
Remark 3.10. A k-loop de�ned by d, k and �k is ak0-cycle if and only if k is a multiple of k0 and k0 isthe minimal integer such that �k0(�k) = �k.

Proof of Proposition 3.6. First we prove that the con-dition is necessary. We start by a formula forSjd(n), for j � 1. By de�nition, we get successively,Sd(n) = (3n+ d)2�l1 ;S2d(n) = �3Sd(n) + d� = �3(3n+ d)2�l1 + d�2�l2= 32n 2�l1�l2 + d �3 � 2�l1 + 2�l1�l2�;and so on, withlj = lj(n) = v2�3Sj�1d (n) + d�;where v2(m) is the 2-adic valuation of the positiveinteger m (the number e 2 N such that m=2e is anodd integer).De�ne pj = pj(n) = l1 + � � �+ lj . ThenSjd(n) = �3j n+ dAj(p1; : : : ; pj�1)�2�pj :Now let n 2 D be such that Skd (n) = n; the resultfollows easily.To prove that the condition is su�cient, let d,k and �k be de�ned as above and satisfying (3{1).Then, according to Lemma 3.5,Sd(n) = Sd� d2pk � 3kAk(�k)�= d2pk � 3k �3Ak(�k) + 2pk � 3k�2�l1= d2pk � 3k Ak��(�k)� 2p1�l1 :Since the denominator is odd, as are d and Ak, wehave l1 = p1.Similarly,S2d(n) = d2pk � 3k Ak��2(�k)�:And the proof goes on by induction withSkd (n) = d2pk � 3k Ak��k(�k)� = n(see Remark 3.9). �
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Proof of Proposition 3.7. According to the above def-initions of cycles and loops, this follows from thefact that Sjd(n) = d2pk � 3k Ak��j(�k)� (3–2)for all j � 1; this equality was established duringthe proof of Proposition 3.6. �Now we prove that the above constructions can beapplied to show that, for suitable d's, there existcycles of any type.
Proposition 3.11. Let k be a positive integer and con-sider a sequence �k of k positive integers 0 < p1 <p2 < � � � < pk such that 2pk > 3k and such that the�i(�k) are all distinct , for 0 � i < k. Then thereexist d and n in D such that n belongs to a cycleof length k for Sd such that , for j = 1, . . . , k, wehave Sjd(n) = (3Sj�1d (n) + d)2�pj+pj�1(with the conventions S0d(n) = n and p0 = 0).
Proof. Proposition 3.11 immediately follows fromrelation (3{2), if we choose d = 2pk � 3k and n =Ak(p1; : : : ; pk�1). �
Example 3.12. The smallest cycle of length 4 givenby Theorem 2 is f65 ! 121 ! 205 ! 331 ! 65g,coming from d = 47, (p1; p2; p3; p4) = (1; 2; 3; 7).
Remark 3.13. The theorem is also true if we choosed = Q (2pk � 3k) and n = QAk(p1; : : : ; pk�1) forany Q 2 D .
Theorem 3.14. For a given d 2 D [f�1g and a givenpositive integer k, the number of k-periodic pointsfor Sd is �nite.
Proof. To simplify the notation, put n0 = Sd(n) =(3n+ d)=2p, n00 = S2d(n) = (3n0+ d)=2q , and so on.For any cycle fn; n0; n00; : : :g, we choose n minimal.And we want to �nd an upper bound for n. Thecondition n0 > n implies 3n + d � 2p(n + 1), so

n � d � 4 for p � 2. Thus, we assume that p = 1and thenn00 = 3�(3n+ d)=2�+ d2q = 9n+ 5d2q+1 :In the 2-periodic and 3-periodic cases, the proofis more e�ective and instructive, so we will �rstconsider these cases. When d = �1 there are nocycles of length 2 or 3 (the easy proof is left to thereader), so we assume d > 0 in the following proof.For k = 2, we have n00 = n and the above formulagives q � 3 and n � 57d. Thus, in all cases,n � maxfd� 4; 57dg:For k = 3, we have to consider two cases: n0 <n00 or n0 > n00. In the �rst case, by the remarkabove, we can assume that q = 1. Then n00 =(9n+ 5d)=4, n000 = 27n+ 19d2r+2 ;and the condition n000 = n implies r � 3 andn � 19d5 :In the case n00 < n0 we have q � 2. For q � 3, theinequality n00 > n implies n � 5d=7. Whereas, forq = 2, n000 = 27n+ 23d2r+3 ;and the condition n000 = n implies r � 2 and n �23d=5. Thus, in all casesn � 23d5 :The general periodic pattern is a little harder toanalyse. The upper bound given below uses Propo-sition 3.6 and concerns, in fact, points on k-loops.Let d and k be given. For any (k + 1)-tuplefn; p1; p2; : : : ; pkg, with 0 < n and 0 < p1 < � � � <pk, we haven = jdj Ak(p1; : : : ; pk�1)2�pkj1� 3k 2�pk j :



150 Experimental Mathematics, Vol. 7 (1998), No. 2To deduce from this an upper bound, one has tobound j1�3k 2�pk j from below andAk(p1; : : : ; pk�1)from above. Our bounds are relatively e�cient inthe �rst case and relatively rough in the secondone. Still, even in the 3x+1 case, the lower boundwe use improves on the known results of [B�ohmand Sontacchi 1978; Steiner 1978].It follows immediately from the deep result of[Baker and W�ustholz 1993] that there is an e�ec-tively computable constant C such thatj1� 3k 2�lj > k�Cfor all l and k; this is the desired lower bound.We also have to study the magnitude of Ak. Theworst case occurs when pk�j = pk�j for 0 � j < k.To simplify the notation, put p = pk. ThenAk(p1; : : : ; pk�1)2�p= 2�p�3k�1 + 3k�2 2p1 + � � �+ 3 � 2pk�2 + 2pk�1�� 2�p�3k�1 + 3k�2 2p�k+1 + � � �+ 2p�1�= 3k�1 2�p + 2�k+1�3k�1 � 2k�1�< 1 + (3=2)k�1 � 1 = (3=2)k�1;since 2p > 3k. This gives the inequalityn < dkC�32�k�1:Hence the result. �
4. A NORMALIZED VERSION OF TWe now consider a reformulation of the 3x+1 prob-lem that has certain formal advantages. When wepassed form T to S, we lost the \periodically lin-ear" character of T [Conway 1972; Lagarias 1985];yet, the previously mentioned undecidability resultof [Conway 1972] concerns just such functions. An-other formal di�culty is that S is de�ned as acomposition of the functions T0 : n 7! n=2 andT1 : n 7! (3n + 1)=2 acting outside the domainD of de�nition of S. Both considerations remainvalid for the general de�nition Sd as well.

On the other hand, as observed in Section 2, thefunction T is for many reasons not a very conve-nient formal tool; in particular, it has the unpleas-ant property of #T�1(n) being either 1 or 2. Toovercome these shortcomings of both T and S, wede�ne here a function W on the domain D , whichwould replace T in the iterative de�nition of S,retaining at the same time the periodically linearcharacter of T . SetW0(n) = � (n� 1)=4 if n � 5 mod 24,(n� 5)=16 if n � 85 mod 96,W1(n) = 8>>><>>>: (3n+ 1)=2 if n � 7; 11 mod 12,(3n+ 1)=4 if n � 1; 17 mod 24,(3n+ 1)=8 if n � 13 mod 48,(3n+ 1)=16 if n � 37 mod 96.One checks easily that Def(W0) and Def(W1), thedomains of de�nition of W0 and W1, are disjoint,and that their union is D . In fact, W0 and W1 arebijections from their respective domains onto D .Now, for n 2 D , setW (n) = �W0(n) if n 2 Def(W0),W1(n) if n 2 Def(W1);then W is a two-to-one function from D to D .The function W can replace T as a \primitive"periodically linear \skeleton" of S, in the followingsense. Recall thatS(n) = odd(3n+ 1) = T v2(T1(n))0 T1(n):Thus S(n) =W (n) =W1(n)if n 2 Def(W1), andS(n) =W k+1(n) =W1�W k0 (n)�if n 2 Def(W0), W0(n) 2 Def(W0), . . . , W k�10 2Def(W0) but W k0 2 Def(W1).We hope that the fact thatW is 2-to-1 will proveto be a signi�cant advantage over T ; the 2-to-1property is crucial if one wants to study the prob-lem within the framework of any theory related to



Belaga and Mignotte: Embedding the 3x + 1 Conjecture in a 3x + d Context 151discrete dynamics, both theoretical (in the spirit ofFurstenberg) and computational.Clearly, for any n 2 D , the set #S�1(n) is in�-nite, and it can be described explicitly asS�1(n) = �W�11 (n);W�10 (W�11 (n));W�20 (W�11 (n));W�30 (W�11 (n)); : : :	:An explicit arithmetic formula for any set S�1d (n)is given in [Belaga 1995].
Remark 4.1. The de�nition ofW can be extended tothe 3x+d context, so that functions can be de�nedon D that are periodically linear and that can beused to iteratively de�ne the corresponding func-tions Sd. This construction is left to the interestedreader as a straightforward technical exercice.
Remark 4.2. To be precise, the result of [Conway1972] concerns transformations on Z. Still, withminor technical adjustments, the transformationWcan be extended to Z preserving its periodicallylinear features.
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