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We describe algorithms to compute self-similar measures as-
sociated to iterated function systems (i.f.s.) on an interval, and
more general self-replicating measures that include Hausdorff
measure on the attractor of a nonlinear i.f.s. We discuss a va-
riety of error measurements for these algorithms. We then use
the algorithms to study density properties of these measures
experimentally. By density we mean the behavior of the ratio
w(Br(z))/(2r)* as r — 0, were « is an appropriate dimen-
sion. It is well-known that a limit usually does not exist. We
have found an intriguing structure associated to these ratios that
we call density diagrams. We also use density computations
to approximate the exact Hausdorff measure of the attractor of
an i.f.s.

1. INTRODUCTION

We study a large class of measures associated to
an iterated function system (i.f.s.), which is just
a finite set of one-to-one continuous maps S;
[0,1] — [0,1], where j = 1,...,m. (Many of the
ideas presented here can be extended to compact
subsets of R™, but there are many places where we
take advantage of the simplifications that are spe-
cial to one dimension.) It is common to impose
a contractivity hypotheses on the maps, such as
|S;z — S;y| < ple — y| for p < 1, but this is un-
necessarily restrictive. For the most part we will
assume that the maps are nonoverlapping, meaning
that the images S;I have disjoint interiors.

A measure p on [0,1] is said to be self-similar
with respect to the i.f.s. if it satisfies an identity

,u,:ijuoS]TI (1.1)
j=1

for some positive weights p; that satisfy the proba-
bility condition ) p; = 1 [Hutchinson 1981]. More
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generally, we will consider self-replicating measures,
those that satisfy an identity

p=> (pjm)oS;t (1.2)
j=1

where the weights p; are now allowed to be positive
functions. More precisely, (1.2) means that

w(A) = / pjdp
(A) ; s1a”

for any Borel set A, or, more generally,

/fdu=i‘/(fosj>pjdu

for any integrable function f.
Such measures are investigated in [Barnsley et
al. 1989] under the probability hypothesis

dopi(z) =1,

but we do not wish to make this assumption. One
important example where this hypothesis does not
hold is the Hausdorff measure on the attractor K
of the i.f.s. (the unique closed set such that K =
U S;K). If the maps S; are assumed to be C* but
not necessarily linear, the a-dimensional Hausdorff
measure on K satisfies (1.2) with p;(x) = |S}(z)|%,
where « is the Hausdorff dimension of K.

It is perhaps useful to think of a self-replicating
identity (1.2) as something analogous to a differ-
ential equation. Just as there are different types of
differential equations, so there are different types
of self-replicating identities. Our restriction to a
one-dimensional domain is analogous to consider-
ing o.d.e.’s. The analog of a linear o.d.e. would be
to restrict to a linear i.f.s. The more restrictive
form (1.1) is analogous to autonomous o.d.e.’s (or
constant-coefficient o.d.e.’s in the linear case).

The first problem we consider is to develop effec-
tive algorithms for numerical approximation of so-
lutions to a self-replicating identity. The algorithm
we propose may be thought of as the analog of Eu-
ler’s method for numerical solution of o.d.e.’s. It is

a straightforward implementation of what the self-
replicating identity says, and it seems to work well
enough for our purposes, especially in the special
case (1.1) that we take up first in Section 2. In this
section we set the framework for the general prob-
lem: “How do we compute an approximation to a
measure, and how do we estimate the error?” The
answer we seek involves a finite set of statements
“u(J) equals (or approximately equals) certain val-
ues”, where J ranges over a nonoverlapping set of
intervals J that cover the support of y. The main
idea in our approach is that we do not attempt
to specify the collection J in advance, but rather
compute it adaptively for the particular measure,
along with the computations of p(J). We provide
a careful and perhaps overly pedantic exposition of
these ideas in Section 2.

In Section 3 we consider the more general form
(1.2). The question of existence and uniqueness
(up to a normalization constant) is not completely
settled. It is convenient to work with a projec-
tivized version Ay = Y (gju) o ;' in which the
eigenvalue A is unknown, as well as the measure.
We are able to prove that a solution exists and
the eigenvalue is unique under suitable hypotheses,
but uniqueness of the measure seems more difficult.
We are able to adapt the algorithms to this set-up,
but we no longer have an effective way to estimate
the error (indeed, if the solution is not unique it
is not even clear what the error is). Nevertheless,
we have done some computations using our algo-
rithm that seem reasonably reliable, and form the
basis of some of our subsequent experiments. An-
other approach to the material in this section (and
some of the computations in Section 5) would be
to use the thermodynamic formalism of Bowen (see
[Bowen 1975] and [Ruelle 1983]). This would cer-
tainly lead to different algorithms, and it is not
clear how well this approach would work.

The remainder of the paper is devoted to the in-
vestigation of densities of our measures. Let B, (z)
denote the ball of radius r about x—in our case the
interval [x — 7, © + r|. The general density prob-
lem is the behavior of the ratio u(B,(x))/(2r)* as
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r — 0. Since it is known [Falconer 1985] that the
limit does not usually exist, we seek various sub-
stitutes. Bedford and Fisher [1992] consider an
average in r, which they call a second-order den-
sity, and this approach has been widely investi-
gated [Falconer 1992; Patzschke and Zahle 1993].
From our point of view, this average is too crude.
In the linear case, a more recent approach [Bandt
1992; Graf 1993] suggests that a much richer struc-
ture exists. In Section 4 we propose such a struc-
ture, which we call a density diagram, defined to
be essentially the superposition of all graphs of all
functions u(B,.(z))/(2r)* (on a logarithmic scale)
as x varies over the attractor. For simple exam-
ples, such as the usual Cantor measure, the den-
sity diagram reveals a striking self-similar struc-
ture, which we are able to fully explain. For more
complicated examples the density diagram appears
more chaotic, but we are able to “decipher” it in
some cases as a superposition of self-similar sets.

In Section 5 we discuss the problem of the cor-
rect normalization of Hausdorff measure. Since our
self-replicating identities are homogeneous, the so-
lutions can only be determined up to a constant
multiple. We usually normalize our measures to
be probability measures. However, the definition
of Hausdorff measure is exact, so the construction
of Hausdorff measure on the attractor K by solving
the self-replicating identity is incomplete without
the determination of p(K). Fortunately, there is
a well-known theorem that comes to the rescue: if
0 < u(K) < oo, the upper convex density

: (1)
lim sup TC

as |[I| — 0 and = € I tends to one for p-almost
every z [Falconer 1985]. The algorithm we use in-
volves computing this limsup for the incorrectly
normalized Hausdorff measure, and using the re-
sult to correct the normalization. We illustrate
this method by computing the Hausdorff measure
of the attractor K of an i.f.s. for some families of
examples. We also compute the Hausdorff mea-
sure for the family of Julia sets of the mapping

2% — ¢, for ¢ > 2 real. Although the accuracy of
the method cannot be quantified, the results seem
to indicate that the relative measure (Hausdorff
measure divided by diameter to the Hausdorff di-
mension power) has a discontinuity at ¢ = 2.

In Section 6 we discuss two other densities and
dimensions that we obtain by averaging pointwise
quantities. The entropy dimension is

lim [ log u(B,(x)) dp(x)

r—0 log T

and the L? dimension is

lim log [ (B, (x)) du(z)

Y
r—0 log r

in each case there are corresponding densities. (It
may seem strange to call this latter an L? dimen-
sion, but in fact it is quadratic in p. For a full
justification, see [Strichartz 1993b].) Both these
densities are easy to compute using our algorithms,
and we present evidence for more regular behavior
than has been proved so far.

The algorithms described in this article are pre-
sented in schematic form. Of course, they were
actually coded in computer programs: see the sec-
tion on Electronic Availability at the end. The
programs were written in C and Pascal and run on
a Sun Sparcstation using Unix during the summer
of 1993.

This article contains some conventional mathe-
matical theorems, proofs and definitions, as well
as experimental results, conjectures and problems
suggested by the experiments. But the conven-
tional mathematical content was all developed in
conjunction with the experiments, either to justify
the algorithms or to explain the results. In par-
ticular, the material in Sections 4 and 5 is almost
entirely serendipitous discovery in response to the
experimental results.

The reader is encouraged to consult [Barnsley
1988] and [Falconer 1990] for the general theory
of iterated function systems and self-similar mea-
sures.
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2. NUMERICAL APPROXIMATION ALGORITHMS

Let P denote the space of probability measures on
the Borel subsets of [0, 1]. For each such measure
©, let g(xz) = u([0,z]) denote its distribution func-
tion (or integral). Then g is monotone increasing,
right-continuous, and ¢(1) = 1. For nonatomic
measures, which include all the measures we will
work with, ¢ is continuous and ¢g(0) = 0. We
will call such functions ramp functions. It is well-
known that the correspondence between p and g is
one-to-one and onto. Thus to know a measure it
suffices to know its ramp function.

We will adopt the point of viewthat an algo-
rithm for computing a measure is equivalent to an
algorithm for computing its ramp function. (For
example, the ramp function gives us an immedi-
ate algorithm for choosing a point at random with
respect to u: simply choose a point at random
from [0, 1] with respect to Lebesgue measure and
take the inverse image under the ramp function.)
This point of view leads naturally to a family of
metrics on P of the form d(uy, ) = d(g1,92),
where d is a metric on ramp functions. We will
use two such metrics, called the maximum error
metric

Amax (111, pi2) = sup |g1 () — g2()]
and the average error metric
dave ,u’17 ,u’2 / |gl )| dz.

These are special cases (p = oo and p = 1) of the

LP error metric
1/p
drs(p1, p2) = (/ |91 (z )|pd$> .

It is easy to see that all these metrics for 1 < p < oo
are topologically equivalent, although they are not
equivalent metrics, and that P is complete in all
such metrics.

The average error metric is equal to the Hutchin-
son metric [Hutchinson 1981; Dudley 1966], de-

fined by
1 1
/ fdp — / fdps
0 0

where f runs over Lipschitz functions with Lips-
chitz constant 1. This is a well-known result in
probability theory (see [Rachev 1991, p. 28], for
example), but we include the short proof for the
convenience of the reader.

dp(p1, po) = sup

b

Lemma 2.1. Let p; and us be nonatomic measures
in P. Then daye(p1, p2) = du(p1, ta)-

Proof. It is well-known that f is Lipschitz with
Lipschitz constant 1 if and only if f' € L*™ with
| f'llcc < 1 (the derivative exists Lebesgue almost
everywhere and in the distribution sense). Then,
by integration by parts for Stieltjes integrals, we

have
/}de=ﬂU-i/}T@w@mm

(since ¢;(0) = 0 and g¢;(1) = 1), hence

/fwl/fwz

and the result follows by the L'-L* duality. O

)(92(2) — g1 () de|,

Because the Hutchinson metric comes into many
existence and uniqueness theorems for self-similar
measures, we will pay attention to the average er-
ror metric estimates in our computations. (Later,
we will present some existence and uniqueness the-
orems using the maximum error metric.) Still, we
will be more concerned with maximum error esti-
mates, since they give stronger control of errors in
the density computations we will be doing. Also,
for many of the measures we will be dealing with,
there will be a countable union of subintervals of
measure zero, called lakes, whose total lengths sum
to one, and such that we can compute the ramp
function exactly on a large subset of lakes. Thus
the error in the ramp function will be entirely con-
fined to a set of small Lebesgue measure, and so the
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average error will automatically be small, even if
the ramp function does not do a particularly good
job of approximation on the remainder of the inter-
val (which is where most of the interesting behavior
is to be found). Thus average errors will tend to
be considerably smaller than maximum errors.

To describe our algorithms we introduce the no-
tion of a set of interval partition data. This is just
a finite collection J of nonoverlapping subintervals
J of [0,1] and a function v(J) in J that satisfies
the probability conditions 0 < v(J) <1 and

> v(J)=1.

Jeg

By nonoverlapping we mean that the interiors are
disjoint; since our measures are nonatomic we do
not have to distinguish between open and closed
intervals. We say that a measure y in P matches
the interval partition data ezactly if p(J) = v(J)
for all J, or approzimately with error ¢ if

S 1)~ v < e

JEJ

All our algorithms compute interval partition data
for a measure p either exactly or approximately,
and we take for our approximation to p any mea-
sure that matches exactly the computed interval
partition data. The simplest way to do this is us-
ing linear interpolation: the ramp function is taken
to be piecewise linear on each of the intervals J and
piecewise constant on the intervals that form the
complement of |J,., /. The approximating mea-
sure is thus just a multiple of Lebesgue measure
on each interval J and zero elsewhere. We can eas-
ily write a formula for the ramp function of the
measure. First, order the intervals J in increasing
order, say Ji, Ja, ..., Jy; all storage of J in files will
use this ordering, of course. Write J; = [a;, b;], and
set ‘
j
g(b;) = > _v(Jk)
k=1

and g(z) = g(b;) for b; < x < a;41 (also g(z) =0
for 0 < z < a,). Finally, for any x in J;, set

T —a; b, —x
o) = 22U g0,) 4

bj —a; i~ 4

g(a;). (2.1)

This linear interpolation algorithm is easy to im-
plement, but it does require a search for the inter-
val containing x.

Given a complete state of ignorance about the
measure, except for the interval partition data, the
linear interpolation algorithm can be justified on
philosophical grounds as the choice that introduces
the least extraneous information (assuming that a
uniform distribution on an interval corresponds to
the measure with least information). It would be
interesting to investigate whether or not there is
any quantitative justification for this choice. In
any case, we are usually not in a state of complete
ignorance concerning the measure, so we can some-
times make better choices. We will discuss some
improved accuracy interpolation algorithms later.

Now consider an i.f.s. S1,Ss,...,S,, on [0, 1] with
no overlap (the images of [0, 1] under S; have dis-
joint interior). We say that an interval partition
d is adapted to the i.fss. if for every J € J and S;
there exists J' € J such that S;J C J'. Given an
adapted interval partition J, we define a new in-
terval partition J’, called the refinement of J, by
taking J' to be the collection of intervals S;J as J
varies over J and j = 1,...,m. It is easy to see
that J’ is an interval partition and that it is also
adapted to the i.f.s.

Now suppose p is a probability measure satisfy-
ing a self-similar identity

o= ijuosj_l (2.2)
j=1

for constant probabilities p;. To avoid triviality
we assume m > 2 and all p; positive. In par-
ticular, this implies that p is nonatomic. To see
this, consider the atom of largest measure, say
zo. Then p({ze}) = 37", pju({S; zo}) implies
p({S; we}) = p({wo}) for all j, hence we must
have m = 2 and x¢ must be the common endpoint
of the images 510, 1] and S»[0, 1]. But, by applying
the same reasoning to SJ-_lacO, we find S;z¢ = z for
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FIGURE 1. Left: a histogram representation of the self-similar measure for the i.f.s. Siz = i:c, Sox = %w + %

with p; = ps = % The errors dmax = 7.6 x 107 and d,ye = 3.1 x 1071° were computed between the next-to-last
and last iteration of the algorithm. Right: The ramp function for the same measure.

j = 1,2, and this contradicts the assumption that
the S; are one-to-one.

Note that the nonoverlapping assumption means
that A C [0, 1] implies

1(S;A) = pip(A).

This observation leads to a simple algorithm for
passing from a set of interval partition data (d,v)
that matches u exactly, with J adapted to the i.f.s.,
to one for the refinement J'.

Algorithm 2.2. Suppose J is adapted to the i.f.s. and
that J' is its refinement. Given data (J,v) that
matches p exactly, define data (J',v') by

V'(S;J) = pv(J).

Then (J',v') also matches p exactly. Define induc-
tively (do,v0) by Jo = {[0,1]} and 1,([0,1]) = 1,
and let (Jx,vx) be obtained from (Jy_ 1,74 1) by
the above algorithm.

We call intervals in {; islands of the k-th gener-
ation, and connected components of the comple-
ment of UJeak J lakes of the k-th generation. It is
clear that the lakes have measure zero and hence
the ramp function is constant on each lake, for any
measure that matches the data for the given gen-
eration. It is easy to implement the algorithm to
generate the data (Ji,vx) so it terminates when
the size of the data (3m*) approaches the maxi-
mum available memory space.

In Figure 1 we display the output of the algo-
rithm for a simple example. We display both a
histogram of the measure and the graph of its ramp
function. The histogram graphs the probability of
each interval in a uniform partition of [0, 1] into
4,000 intervals. It is useful for giving a rough pic-
ture of the measure, but some of the features are
artifacts due to the choice of partition.

We can give a priori estimates for the accuracy
of the algorithm based on the following elementary
lemma.

Lemma 2.3. (a) Let uy and py be measures in P that
match the data (J,v) exactly. Set

6, =supv(J) and 62:(512|J|,
Jed Jed

where |J| is the length of the interval. Then

dmax(,“’la ,Ll/2) S 61

(b) Suppose 1 and ps match the data (J,v) approz-
imately with errors €1 and 5. Then

and dave(ula NZ) S 62-

imax (1, f12) < 61+ €1+ €2 (2.3)

and
dave (1, f2) < 63 + €1 + €2.

Proof. (a) On the complement of | J, ., J, we have
g1 = ¢g» exactly, so there is no contribution to
dave (1, ph2). If x € J = [a, b], then

91(2) = g2(x) = p([a, z]) — p2([a, 2])
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and [a,z] C J, so |gi(z) — g2(z)| < v(J). Thus
dmax(ﬂhﬂ@) S SUPJeg V(J) - 61 and dave(,“’lv/JIZ) S
> geq [ v(J) < 6s.

(b) In this case we only have the estimate

l91(z) — ga(z)| < €1+ €2

on the complement of | J,., J, and if z € J we have
|g1(z) — g2(x)| < v(J) +e1 + €2, so we obtain (2.3)
and

dave (11, 12) < €1+ €2+ Z |J|v(J) < 62+ €1+ €.
Jeg
O

Sometimes ), |J|v(J) is smaller than 63, but it
is usually not worth the effort to compute it.

Corollary 2.4. Let p satisfy (2.2) and let py, be any
approzimations that exactly match the data (Jx, Vi)
generated by Algorithm 2.2. Then

dmax(,ua ,u’k) S pxknax

and
dave(lu’a Nk) S (6pmax)k7

where Pmax = max; p; and 6 = 3. 15;([0,1])].

Proof. By our assumptions, pg.x < 1. From the al-
gorithm it is clear that §; = p¥__and 65 = (6pmax)”
for (Jx,vx), and both p and p; match (Jy, vx) ex-
actly. O

Notice that we are not claiming that the sizes of
the intervals in the partitions J; are going to zero.
Of course, if I is an interval such that S;I O I,
the equality (2.2) easily implies p(I) = 0, so this is
perhaps an uninteresting generalization. However,
we do not require any further contractivity of the
i.f.s. beyond the nonoverlapping hypothesis. We
can easily turn the estimates in the corollary into
an existence and uniqueness proof for solutions of
(2.2), but perhaps it is more interesting to obtain
existence and uniqueness out of general contractiv-
ity estimates for the transformation on P given by

T = zpj,u o S;l.
j=1

Theorem 2.5. Assume the i.f.s. is nonoverlapping,
m > 2, and all p; > 0. Then T is contractive in the
mazimum error metric with contractivity constant
Pmax- I particular, T has a unique fived point u,
which can be obtained aslim,, ., T, starting with
any py € P, and if dpox (i, TR) < € for any i € P,
then d(ﬂ? :U’) < 5/(1 - pmaX)'

Proof. Order the mappings S; so that S;[0,1] =
la;,b;] are in increasing order. If z € [a;,b;] and
1 = Ty, we have

j-1
gi(@) = Tpa((0,2]) = D o + i (S; ' [ag, 2]),
k=1
and S; 'la;,x] is either [0,5; "z] or [S; 'z, 1], de-
pending on whether S; is increasing or decreas-
ing. Thus p1(S; *[a;,z]) equals either g;(S; z) or

1 —g1(S; ). In either case we have

91(2) = G2(2)| = pj l91(S; @) — 92(S; '),

hence duax (T 1, T12) < Pmax@max (f1, p2). If  is in
the complement of the intervals [a;, b;], the above
reasoning shows that g;(z) = g2(z) exactly. O

We consider next some modifications to Algorithm
2.2. If there is a large spread of values for the prob-
abilities p;, there will be an even greater spread
among the values of 14(J) over different intervals.
It can then happen that a shortage of memory
space will terminate the algorithms before p*
gets sufficiently small. In that case, too much mem-
ory is dedicated to very fine information about the
measure, while a certain amount of too coarse in-
formation keeps the error large. To deal with this
problem one could adopt various consolidation al-
gorithms. The idea is to set a threshold e, and
whenever v(J) drops below €, to combine J with
several other intervals in the partition. We will not
describe the procedure in detail since it is fairly
straightforward.

One way to improve accuracy at very little cost is
to replace the linear interpolation algorithm, which
in effect chooses the measure p;, to match the data
(Jx,vr), with one that exploits the self-similarity
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of the measure. This is only feasible in the special
case when all the transformations S; are linear. In
that case, we know that the exact ramp function
g for the measure pu, restricted to any island J in
Jk, is equal to a scaled version of the entire ramp
function g on [0,1]. If J = [a;,b;], the horizontal
scaling factor is just b; —a;, while the vertical scal-
ing must be adjusted so that g assumes the correct
values at a and b. Note that Algorithm 2.2 com-
putes the exact values for g(a;) and g(b;) (except
for round-off error, which can be made extremely
small). Thus the self-similarity translates into

T — aj

9(@) = g(a;) + (9(b) ~ 9(0)) 9 (;—) 20

bj — Qj;
for z in [a;,b;]. Since the unknown function g ap-
pears on both sides of the identity, we cannot use
(2.4) in place of (2.1) directly. However, we can use
a two-step procedure, computing first g; by (2.1)
and then g, using (2.4) with g; on the right side.
Since the error in g; is multiplied by g(b;) — g(a;),
which is bounded by 6, = sup,., v(J), we obtain
an error estimate of 67 for g».

We conclude this section with a brief discussion
of how we modified the algorithm to handle i.f.s.’s
with overlap. The overlaps create problems that we
have dealt with in an ad hoc fashion. The result-
ing computations seem reasonably accurate, but
we have no rigorous method to estimate the error.
We want to obtain a sequence of interval partition
data (J1,11), (J2,v2), ..., where each one is deter-
mined from the previous one by a procedure we
will describe. The partitions will not necessarily
be adapted to the i.f.s., and J; will not necessar-
ily be the refinement of J; ;. Also, the measure p
will not match the data exactly, and there does not
seem to be a realistic way to estimate the error (we
can give worst case estimates that are undoubtedly
too large). The procedure described can be modi-
fied by interspersing consolidation routines.

To simplify the notation, suppose (d,v) is a set
of partition data, and that we want to pass to the
next set (J',v'). We let §’ be the set of all intervals
obtained from the collection S;J, for J € J and

1 < j < m, by the following splitting procedure: if
two intervals [a,b] and [c, d] overlap, say a < ¢ <
b < d, replace them by the three intervals [a, ],
[c,b] and [b,d]. To pass from v on J to v on §’
we first assign weight p;v(J) to S;J and split the
weight proportionate to length if S;J is split. That
is,

V((a,b) =3 fg—jww,

where the sum is taken over all S;J that contain
[a,b]. (By the construction, if [a,b] in J' has non-
trivial intersection with S;J it must be contained
in S;J.) The splitting in proportion to length in-
troduces an error. On the other hand it represents
a least biased approach, in the absence of any in-
formation, and it has the advantage of being inde-
pendent of the order of splitting for intervals that
are split more than once.

We applied this algorithm to the famous exam-
ple of Bernoulli measures for the i.f.s. S1z = px,
Sex = pr + 1 — p with % < p < 1, and weights
P1 = P2 = % Figure 2 shows histograms of the
computed measure for two values of p. The value
p = 1(v/5 — 1) used on the left is far from typ-
ical, since p~! is the golden ratio, the simplest
P.V. number. (Recall that a Pisot—Vijayaraghavan
number, or P.V. number for short, is an algebraic
integer of absolute value greater than 1 with all its
conjugates having absolute value less than 1.) See
[Lau 1992; 1993] for some interesting properties of
this measure and related examples. The histogram
reveals striking details. In this case there is an
alternate procedure for generating interval parti-
tion data that p matches exactly. We define three
transformations:

Tox = SoSox = p*z,
T1$ = 5150503; = S()SlSl.Z' = p3$ + p2,
Tox = 51512 = p*x + 1 — p,
which satisfy the nonoverlapping condition (note

that p? = 1— p), with attractor equal to the whole
unit interval. The defining identity for u yields,
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FIGURE 2.
p1 = P2 = %

0 0.2 0.4 0.6 0.8 1

Histograms of the Bernoulli measure for the i.f.s. with overlaps Siz = px, Sexz = pzr + 1 — p, with
On the left we take p = %(\/5 — 1) (with dpax = 3.2 x 107° and daye = 4.6 x 1079); the

identities (2.5) can be clearly visualized in this case. On the right we take p = .705 (With dpax = 6.8 X 1075 and

dave = 1.1 x 107°). Note that .705 is close to 1/ V2, for which value of p the measure is absolutely continuous
and the histogram is the piecewise linear function this one resembles.

after iteration, the following nine identities (for ar-
bitrary Borel sets A in [0, 1]):

wW(ToToA) i#(ToA)

w(ToThA) = iM(TlA)

w(hT>A) = 3u(Th A)

w(TToA) = su(ToA) + ;u(T1A)
p(TiT1A) = $u(T1A) (2.5)
p(NTrA) = su(TrA) + u(TL A)
wW(TTHA) %#(TlA)

M(TleA) iM(TlA)

w12 A) = iM(TzA)-

It follows from this that p assigns equal probability
to the three intervals [0, p?], [p?, p] and [p, 1] that
make up J;. We then choose J; inductively to be
the refinement (for Ty, T1,T5) of Jx_1, and the nine
equations above give an algorithm for computing
v, on J; to match p exactly.

There is a sense in which the identities (2.5) are
analogous to differential equations of second order.
An extensive computer search conducted by Alan
Ho during the summer of 1994 (after the first draft
of this paper was completed) turned up one other
P.V. number, namely the root of p*> — p* +2p =1,
or approximately 0.56984, with an analogous set of
second order identities (in this case 81 equations

involving 9 transformations). The search failed to
find such identities for any of the other P.V. num-
bers defined by low-order polynomials. Therefore,
such identities are either rare or extremely large.

3. VARIABLE WEIGHTS AND HAUSDORFF MEASURE

In this section we want to consider the more general
self-replicating identity

p=> (pjm)oS;t (3.1)
j=1

where the weights p;(x) are variable functions. We
cannot expect there to exist solutions without im-
posing some consistency condition on the weights,
analogous to the probability condition for constant
weights. In [Barnsley et al. 1989] the condition

> pi(z) =1 (3.2)
j=1

was imposed, but this is too restrictive for our pur-
poses. Instead, we reformulate the problem as an
eigenvalue problem and projectivize the weights:
given projective weights g;(x), we look for solutions
of

m

A = Z(‘b‘“) 0§t (3.3)

i=1



110 Experimental Mathematics, Vol. 4 (1995), No. 2

for pin P and A > 0. Any solution of (3.3) yields
a solution of (3.1) for p; = A™'¢;, and it turns out
that we don’t have to put any consistency condi-
tions on g¢; to solve (3.3). We will, however, impose
the following assumptions:

Hypotheses 3.1. (a) The i.f.s. is nonoverlapping.

(b) The maximum length of intervals in J; tends to
zero as k — oo.

(c) The projective weights ¢; are continuous.

(d) m > 2 and all the g; are positive.

Note that (c) and (d) imply the existence of posi-
tive numbers ¢unin and ¢u.. such that

0 < Qmin S q](33) S Qmax < 00

for all z and j. Since all solutions to (3.3) must
be supported on the attractor K of the i.f.s., it
suffices to have g; defined on K. Of course, by a
standard extension theorem, we can assume with-
out loss of generality that the g; are defined on the
whole interval [0, 1], since continuity and the exis-
tence of bounds @i, and gmax can be preserved in
the extension.

The following counterexamples to uniqueness jus-
tify the assumptions of continuity and positivity.
In both cases (3.2) is satisfied, by the way. We
take the simple i.f.s. consisting of

Siz = %m and S,z = %a: + %

Then Lebesgue measure p; solves the constant-
weight self-similar identity with p; = p, = %, but
any other choice of probabilities p; # po yields
a measure u, singular with respect to p;. That
means there exists a disjoint decomposition [0, 1] =
A1 U Ay with p1(Az) = pe(A;1) = 0. We then may
define

. ey . e 2 ?

It is obvious from the construction that both u;
and u» (and any convex combination of them) sat-
isfy (3.1). Of course, in this example the weight
functions are everywhere discontinuous.

For the second example we use the same i.f.s.,
and we take

p(z)=1—z, p(z)==z.

It is easy to verify that the delta measures at © =
0 and z = 1 both satisfy (3.1). The vanishing
of the weights in this case provides hiding places
for extraneous solutions (presumably there exists a
nonatomic solution as well, but we have not been
able to find it). It is no coincidence here that the
zeroes of the weights lie at the fixed points of the
mappings.

We also give a counterexample to uniqueness
where the problem is with the i.f.s., not the weights.
Let

x if
Six = { .
! i + %(a: - i) if
and let Spx = 2z + 1. Since the interval [0, 3] is
invariant under S, if we choose p; = 1 any measure
supported on [0, 1] will satisfy (3.1).
Theorem 3.2. Under Hypotheses 3.1, there exists a
nonatomic solution of (3.3) and X is unique.

Proof. For each k and each J € J, define
4;x(J) =supg;(z), g5, (J) = inf g;(z),
zeJ zeJ
so that
4;,(J) < g;(z) < g (J) (3.4)

for x € J. By the integral mean value theorem,
any solution of (3.3) must satisfy

()= > (T

for g;x(J') also satisfying the analogue of (3.4). We
begin by trying to find approximations to u(J) by
solving

XNevp () = ) gr(J)viE() (3.5)
S;J'CJ

for J € Ji. Since this is a finite-dimensional matrix
eigenvalue problem, the Perron—Frobenius theorem
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implies there is a unique positive solution, normal-
ized by > ;4. v (J) = 1. Because the dependence
of the eigenvalues on the matrix is monotone, we
have

A <A<

A S A1 S A S A

But we claim even more, namely, that A} —\; goes
to zero as k — oo. The reason for this is that by
hypotheses (b) and (c) the differences ¢}, —q;; go to
zero uniformly as k — oo. This alone is not enough
to conclude what we want, because the size of the
matrix (m* x mF) also increases as k — co. The
key observation is that each of the equations (3.5)
involves only m nonzero terms, and this is indepen-
dent of k. Thus the variational characterization of
the eigenvalue shows that it depends continuously
on the coefficients, uniformly in k. This shows that
limg_, o )\f = )\, hence X is unique.

Once we have the solution of (3.5), we can solve
a related self-similar identity for a measure u; that
is required to satisfy ui(J) = v (J) and

N = Y (afmic) o S;7t, (3.6)

with the obvious notation q;.‘k for the function that
assumes the constant value qﬁ(J ) on J. The func-
tions qﬁc may not be continuous, but this does not
matter because the correct way to think of (3.6) is
as a matrix version of (2.2) for the family of mea-
sures i restricted to J (as J varies over J). See
[Mauldin and William 1988], [Edgar and Mauldin
1992] or [Strichartz 1993b] for a proof of existence
(in these references the i.f.s. is assumed contrac-
tive, but the proof of Theorem 2.5 can be adapted
to the general case).

Next we pick a subsequence of u; that converges
weakly to a measure p in P. We claim that u satis-
fies (3.3). To see this, choose any continuous func-
tion f. Then

‘ o8 - w)dim < claf — g

for ¢ independent of &, so the limit along the subse-
quence of [ foS;qf, dug exists and equals the limit

of [ foS;q;dpk, which equals [ foS;q; du by weak

convergence. But since

)‘I;L/fdﬂk:Z/fo jq]'+kdﬂk
j=1

by (3.6), we can take the limit along the subse-
quence to obtain

A/fduzi/fo 345 dp

which is (3.3). O

Problem 3.3. Under what conditions does unique-
ness hold for probability measure solutions of (3.3)?

A reasonable conjecture is that uniqueness holds if
the functions g;(x) are Lipschitz continuous. This
would be analogous to the theory of o.d.e.’s, where
the Peano existence theorem requires only continu-
ity, while the Picard existence and uniqueness the-
orem requires Lipschitz continuity. It is not hard
to modify the proof of existence and uniqueness
in [Hutchinson 1981], under the hypothesis that
S; are strictly contractive, to prove existence and
uniqueness under the perturbative hypothesis that
the Lipschitz constants are very small.

The proof of Theorem 3.2 suggests an algorithm
for computing A and p approximately, and testing
the likelihood of uniqueness. We solve (3.5) for
A and vif on J; by iteration, for fixed J; (chosen
based on memory limitations). This gives us ap-
proximate interval partition data for perhaps two
solutions. We know that A\ must eventually be
close to the unique value of A, and their differ-
ence gives a plausible measure of whether we are
reasonably close to matching the interval partition
data (we have no rigorous estimate for the error).
Then we compare v*; if they are close, this gives
plausible evidence that the solution is unique. In
practice we do not go through the trouble of com-
puting qjik(J) to be the max and min of g¢;;, on
J, but simply evaluate g;;, at the endpoints of J.
This gives the same result if the functions ¢;(z) are
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FIGURE 3. Left: The ramp function for the self-replicating measure associated with the i.f.s. Siz = %:c,

Sox = %m + % with projective weights ¢y = 1.1 —  and ¢ = .1 + z. Right: The difference between the ramp
functions for approximations to the same measure, using left and right endpoint evaluation of the weights. (We
have restricted the vertical range to show the detail; the graph drops abruptly to zero at both endpoints.)

all increasing (decreasing). Figure 3 shows the re-
sulting ramp function for a typical example where
we expect uniqueness, and the difference between
ramp functions using v* for the same example. On
the other hand, we ran several tests where we used
input that was very close to the second counterex-
ample to uniqueness, and the differences between
vt and v~ were enormous.

This algorithm also gives a method for approxi-
mately computing the Hausdorff measure (up to a
constant multiple) for the attractor of a nonover-
lapping i.f.s. We need to assume that the mappings
S; are C* with derivatives satisfying 0 < |S}| < 1
on the attractor. Then it is known [Falconer 1985]
that the Hausdorff measure satisfies

p=">(1S}*p) 0 S, (3.7)

where « is the dimension of the attractor. Since
|S}|? is decreasing in 3 under the hypothesis 0 <
|S;| < 1, we conclude that the unique eigenvalue
A(B) associated with the equation

A(B)n = Y(IS)1Pw) 0 57 3.8)

is decreasing in (. Also limg_,., A(3) = 0 since
1S5 — 0, and A(0) = m (evaluate (3.8) on the
entire attractor). Thus « is characterized as the
unique solution of A(3) = 1. Since our algorithm
yields an accurate estimate of A\(3), we merely com-
pute values of A\(3) until we obtain A\(3;) < 1 <

A(B2), then divide the interval between (; and [
(to obtain a speed-up we used linear interpolation
to get a value of A(f3) close to 1) and iterate.

We applied this method to compute the Haus-
dorff dimension and a multiple of Hausdorff mea-
sure (normalized to be a probability measure) for
the Julia sets of the mappings 22 —a for a real and
a > 2. In this range the Julia set lies in the real
axis and is the attractor for the i.f.s. given by the
two transformations ++/x + a. This attractor lies
in the interval [—b, b], where b is the larger root of
b¥» = a+b, namely b = Va+ 3+ 3 Asa — 2,
the i.f.s. becomes badly behaved; in fact it fails to
satisfy 0 < |S] < 1 for 2 < a < (5 + 2vV/5), but
at a = 2 the attractor is just the interval [—2,2].
Nevertheless, it is known [Blanchard 1984] that the
condition 0 < [S}| < 1 can be restored by taking
an equivalent i.f.s. obtained by iteration, and it
follows from [Sullivan 1983] that (up to a constant
multiple) Hausdorff measure is the unique solution
of (3.7) (Sullivan calls such measures a-conformal).
See also [Aaronson et al. 1993] and [Hofbauer 1992]
for related uniqueness results.

Figure 4 shows the histogram of the measure for
two typical values of a. The results of these com-
putations are used later in this paper to explore
properties of these Julia sets.

We will take up the question of the correct nor-
malization of Hausdorff measures in Section 5.
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Histograms of Hausdorff measure on the Julia set for the mapping 22 — a, where a = 3.36 (left) and

a = 6 (right). (We have composed with an affine transformation to map the interval of interest, with endpoints
£(Va+ I+ 1), to the unit interval.) The Hausdorff dimensions are .584332 (left) and .451837 (right). The
parameters for the computation are dpmax = 4.1 X 1075, dave = 4.7 x 10710 (left) and dpyax = 4.2 x 1075,

dave = 9.4 x 10716 (right).
4. DENSITY DIAGRAMS

For p a measure on the unit interval and « a given
dimension, we define the full, left and right density
functions by

dg(p,z,7) = p(l — r,2]) /7%,
dg(p, ,7) = p([z, @ + r]) /r*,

where B,.(x) = [x—r, z+r|. Since we are interested
in the behavior as r — 0, and this will almost never
be an ordinary limit, it is convenient to introduce a
logarithmic scale for r, so we consider the function

h(z,s) = do(p,x,c*%) 4.1

for a convenient choice of the constant ¢ > 1. In
Figure 5 we show the graph of h(z, s) as a function
of s for a point z chosen at random in the Can-
tor set, for u equal to the usual Cantor measure,
and a = log2/log3. Here it was convenient to
choose ¢ = 3. The graph was generated using Al-
gorithm 2.2 with 17 iterations and then using the
double-precision modification (2.4) once to com-
pute the distribution function g of w. It is evident
that computation error becomes significant around
s = 19, and by s = 21 the graph is totally mislead-
ing. However, in the region 0 < s < 15, we have

a reasonably accurate and rapid method for com-
puting h(z, s).

Figure 6 shows an overlap of all the graphs of
h(z,s) for a random selection of 500 points z in
the Cantor set, for 0 < s < 2. (The procedure we
used was to choose one point at random between
2(k—1)107* and 2k1073 for 1 < k < 500, and then
take the inverse image under the ramp function of
these points.) The result is so striking it calls for
a definition.

Definition 4.1. For p supported on a compact set K,
the associated density diagram is the subset of the
first quadrant of the plane consisting of all pairs
(s,h(x,s)) as x varies over K, and s > 0. For each

0.8
0.6
0.4
0.2
0 5 10 15 20
FIGURE 5. The graph of the function h(z,s) of

(4.1) versus s, for a randomly chosen z. The mea-
sure is the usual Cantor measure (that is, Sz = %:L‘,
Sex = %a:—i—%,pl =py = %), with ¢ = 3.
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fixed s, the density section measure v, is defined on
the line by v,(A) = p{z : h(z,s) € A} (the image
of the measure y under the mapping = — h(s, )),
and the density diagram measure v on the plane is
Vv = v ds.

Our main goal in this section is to explain the pe-
riodicity and self-similarity apparent in Figure 6
and to explore what happens when we use more
complicated measures p. The periodicity is easy
to explain: it arises from the fact that the contrac-
tion ratios are the same for the two transformations
defining the Cantor set, and the nonzero separation
of the two islands of the first generation.

Theorem 4.2. Let Sq,...,S,, be an i.f.s. of the spe-
cial form S;x = px+0b;, and let . be the self-similar
measure satisfying

m 1 B
szguosjl. (4.2)
j=1

Assume that the islands S;[0,1] of the first gener-
ation have a minimum separation € > 0. Choose

logm
o=—-
log p~!

and ¢ = p~*. Then the density diagram (with K
equal to the attractor of the i.f.s.) is periodic of
period 1 in the variable s, for s > (loge/log p) — 1,
and so are the measures v, and v.

0.8
0.7
0.6

0.5

0.0 0.5 1.0 1.5 2.0
FIGURE 6. An overlay of 500 graphs of the type
shown in Figure 5. This is the density diagram

of the Cantor measure. The horizontal axis is re-
stricted to 0 < s < 2.

Proof. Each x in K must belong to one of the islands
S;0,1], say « = S;y with y in K. If r < € then
B, (z) cannot intersect any of the other islands (ex-
cept at an endpoint, which has p measure zero), so
W(B.(2)) = Lu(Byyp(y) by (4.2), since B, ,(y) =
S (B,(x)). This says do(p,z,7) = da(p,y,7/p)
because of our choice of «. Thus

h(z,s) = h(y,s — 1) (4.3)

if r = p®. The condition r < € is the same as s >
log ¢/ log p, in which case every point (s, h(z,s)) of
the density diagram corresponds to a point (s — 1,
h(y, s — 1)) one unit to the left. Conversely, ev-
ery point (s — 1, h(y, s — 1)) arises in this fash-
ion (just take x = S,y for any j), which proves
the periodicity of the density diagram. The same
argument shows that h(z,s) € A if and only if
h(y, s—1) € A, so vy = vs_; is just the invariance
of p, p(B) = 3_7, u(S;B). O

If the measure p satisfies all the hypotheses except
the minimum separation, so that some islands may
touch (but are still assumed not to overlap), the
density diagram will only have an asymptotic pe-
riodicity. We will not attempt to state this in a
precise form.

For the Cantor measure, the periodicity begins
at s = 0. To explain the apparent self-similarity in
Figure 6 we restrict to 0 < s < 1 and simplify, by
what amounts to a horizontal and vertical rescal-
ing, by returning to the parameter r and consid-
ering only the measure u(B,(z)) rather than the
density. Thus we are looking at the set

D={(r, p(B,(x))) : 3 <r<1, z in the Cantor set}.

This is shown in Figure 7. The mapping (r,u) —
(logs 71, u/(2r)*) is a homeomorphism of D onto
the portion of the density diagram over 0 < s < 1,
so we can translate the properties of D back to
properties of the density diagram.

The structure of D, which is contained in the
rectangle R = [3,1] x [3, 1], is given by four affine
transformations 13,7%,713,T,; of R to itself. We
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write (r,u) for the coordinates of D and (r',u') =
T;(r,u). Then

=3
Tl r 1
u =3

1

I __ 1
u ——’UJ+§,

2 r_ 1 4
9 T r=3r+y,
2 u’—lu_i_l

-2 47

r 1 2
T T—§T+§,
v =3iu+1t
-2 2°

We claim that 7;D C D. To see this, observe first
that we can restrict 0 < z < % in computing D,
because the contribution from the island % <zx<l1
is the same. Then, since z — r < 0, we can replace
1(B,(z)) by u([0, z 4 r]). Also, since  +r > 3,
we have

N([Oa z +T]) = % + N([%v T —1-7‘]),

so if o +r < 2 then p([0,z + r]) =
z+r > 2 then ([0, z +7]) = 3 + ([0,
(note that = +r < 3).

To each transformation 7; we associate a map-
ping = — ' of [0, 3] to itself, namely 2’ = 3z for
T, and Ty and ' = iz + 2 for Ty and T3. Now
for Ty and Ty we compute z' + 7' = (z +r) + 2,
which can be written 2’ +r' — 2 = 3(z +r — 2),
so that p([0, o' + 7' — 2]) = 2u([0, z + 7 — 2]) if
&+ r > 2. Thus, if (r,u) is a point of D aris-
ing from z in 0 < z < % with ¢z +r > %, the
point z' gives rise to the point (r',u') in D with
W= (0,2 + ) = L+ p(0, o+ — 2]) =
T+ 3G +u([0, z+7r—2])) = tu+ ;. On the other
hand, if x + 7 < % then u = % and z’' + 7' < % also,

% while if
z+r—2])

1 1 1 . . .
so u' = 5 and v’ = Ju + ; trivially. This shows
04 05 06 07 08 09 10
FIGURE 7. The transform D of the density dia-

gram of Figure 6.
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T;D C D for j =1,2. For j = 3,4, the argument
is similar, except now z' +r' — 2 = (2 +r) and so
w =1+p(0, 2+ —2]) =2+ u([0, z +7]) =
%u + %, and we always have ©’ + ' > %

Thus Uj.zl T;D C D, but this is not the whole
story. There are two line segments L; = [%, 3% 3
and L, = [I, 8] x 1 that are contained in D but are

not in Jj_, 7;D. In fact,

4
D=JT;DUL UL,

i=1

and this decomposition is essentially disjoint. Thus
D is a relatively self-affine set, relative to L; and
L, (relatively self-similar measures were discussed
in [Strichartz 1993b)).

If we generate a self-similar measure from the
same i.f.s. using different probabilities, the density
diagram becomes more complicated. For a linear
i.f.s. with contraction ratios r; we take the dimen-
sion

o = 2 Pilogp;

= . (4.4)
> . pjlogr;

Figure 8 (top) shows the result for p; = 0.4 and
ps = 0.6.

Nevertheless, we can restore self-similarity for
small values of s by the simple device of separating
the contributions to the density diagram from each
of the first generation islands. This is illustrated in
the second and third panels of Figure 8, where in
place of D we graph D; and D, defined in the same
way except z is restricted to the portion of the Can-
tor set in [0, 3] and [2,1], respectively. (In gener-
ating these graphs we chose the points x randomly
according to the measure p.) Now D = D; U D,
and each D; is relatively self-affine. For simplicity
we deal with D; only. The four affine transforma-
tions are now defined as follows:

r—1 2 r—1 4
Tl{r =3r+3; Tz{r =3r+y

u = .4u + .24, u = .4u + .24,

r'=1ir+3 r=1r42
T 3 9 T 3 3
3{u’=.6u+.4, 4{u’:.6u+.4.
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0.9 10

FIGURE8. Top: The density diagram for the mea-
sure associated with the Cantor i.f.s. with weights
p1 = 4, po = .6. Middle: The transform D; of the
portion of the top diagram generated by points in
the first island, [0, 3]. Bottom: The transform D,
of the portion of the top diagram generated by
points in the second island, [2,1].

Notice that 7' is defined as before, and we take z' as
before. In this case we have 1(0,a) = 2u(2,a+ 2)
for 0 < a < %, so that u([0,z + r]) equals

ifm—f—rﬁ%,

4
{.4+1.5u([0,:r+7‘—§]) ifo+r>2.

To show that T;D, C D, for j = 1,2, we have
z +r — % = %(33—1—7“ - %) as before, so
u([0, 2’ +7']) = .4 + 1.5u([0, 2’ + 7' — 2])
=44+ .6u([0,z+7r— %])
= .24 + .4u([0, z + 7]),

which gives v’ = .4u + .24 as claimed. For j = 3,4

we have 2’/ + 7' — 2 = 1(z +r), so

3
([0, ' +7']) = 4+ L.5u([0, 3(z +7)])
=.4+.6p([0, z + 1)),
which gives u' = .6u + .4, as claimed. Finally, the

two additional line segments are now L; = [5, 3] X
0.4 and Ly = [Z, 8] x 1.

Returning to the top diagram in Figure 8, we
have now given an explanation of the left half (that
is, 0 < s < 1) as the superposition of two trans-
forms of relatively self-affine sets. But the right
half (1 < s < 2) is just a superposition of two
affine images of the left half. In the notation of
Theorem 4.2, we have

[ .4-3%(y, s—1)
Iz, 5) = {.6-3%(3, s—1)

and the numbers 0.4 - 3* and 0.6 - 3% are distinct
distortion factors in the vertical direction (in fact
one is a contraction and one is an enlargement).
Thus the image is “smudged” by this superposi-
tion, and as s increases the smudging gets pro-
gressively worse, until all detail is lost. Also, the
density diagram is not bounded (or bounded away
from zero) as s — oco. In Section 6 we will de-

if z = Sly,
if z = Szy,

scribe some averaging processes that will restore
boundedness.

We consider next a more complicated example,
the i.f.s. Sz = i:r, Sy = %a: + % with p, = p, = %
(this is the measure represented in Figure 1). The
two affine maps have different contraction ratios,
and this affects the density diagram, shown in Fig-
ure 9, and the graphs of D; and D, defined as
above (using the islands [0, ] and [2,1]). At first
glance it appears that D; and D, are similar to
the analogous sets for the previous example, but
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FIGURE9. Top: The density diagram for the mea-
sure in Figure 1 on the scale r = 37°. Middle and
bottom: D; and D, for the same density diagram.

this is not completely correct. Now there are only
two transformations, the analogs of the previous
T, and T3, that map D; to a subset of D;. They
are

! 1
r=3ir4+ 2 .
Ty { , 4 % with o' =iz,
u _ = =
2 1
R VR
T3 ,_ % % with 2'=3z+43%
U =3 2

The images T5D; and 13D, are the lower and upper
halves of the central part of D;, and correspond to
values of u(B,(z)) as follows: T : x lies in the
island 5151[0,1] and B,(z) extends to the island
5251[0,1], and T3 : z lies in the island S;55[0, 1]
and B,(x) extends to the island 52550, 1].

The upper right and lower left portions of D,
are visibly not affine images of the whole (note
that the placement of the central “tower” is differ-
ent). However, for each of these pieces we can find
two affine mappings analogous to T and T3 above
that map it into itself (the images again being the
lower and upper halves of the central portions).
For example, the upper right portion of D; is gen-
erated by the values of u(B,(x)) where z lies in
the island S;5:[0,1] and B,(z) extends to the is-
land S>55[0,1]. Two affine images of this portion
can be generated to cover the smaller portion gen-
erated by (a) z in S15151[0,1] and B,(x) extending
t0 525251[0, 1], and (b) z in 51,5520, 1] and B, (z)
extending to S2525,[0,1].

To give a complete description of D; as a relative
self-affine set would require an infinite number of
affine transformations, and a vector version of self-
similarity as in [Mauldin and Williams 1988].

There is a further complication in this example
when we try to explain the behavior of the density
diagram as s increases. Note that we have chosen
a scale of r = 37°, while the two contraction ratios
are i and %, so the base 3 is not in synch with the
first ratio. This results in a horizontal “smudg-
ing” effect in addition to the vertical one noted
in the previous example (the vertical smudging is
present here as well because we did not choose the
weights to produce the Hausdorff measure on the
attractor). In the notation of Theorem 4.2, h(z, s)
equals

log4
lgap _

2 (y, s log 3
loa

33%h(y, s — 1)

) ifx = Sly,
ifc = Szy,

so that we are superimposing dilated versions of
the density diagram translated by periods 1 and
log 4/ log 3.
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These are by no means the most complicated
density diagrams that can arise in the linear i.f.s.
case. For example, the lakes were chosen to be
relatively large, so that only one endpoint of each
interval B,(z) can lie in an island. Examples with
smaller lakes or more than two islands present fur-
ther difficulties that we are unable to analyze ex-
plicitly. Still, the density diagrams for small s, even
for nonlinear i.f.s.’s and variable weights, present
a qualitative picture that is analogous to what we
have seen in the previous examples. In Figure 10
we show an example for the Hausdorff measure on
the Julia set of the mapping 2% — 3.36 (compare
Figure 4, left), where a = .584332 is the Hausdorff
dimension.

0.9 |
0.8 |
0.7 |
0.6
0.5 |

04

FIGURE 10. The density diagram for Hausdorff
measure on the Julia set of the mapping 22 — 3.36,
on the scale r = 37°.

We conclude this section with a discussion of an-
other approach to organizing the information in the
density functions h(z,s): rearrangements. Recall
that if f(x) is a nonnegative measurable function
on a probability measure space, the nonincreasing
rearrangement f*(t) defined on [0, 1] is the unique
nondecreasing right-continuous function equimea-
surable with f (this means the measure of the set
where f satisfies f(z) > s is the same as for f*)
[Stein and Weiss 1971]. From an algorithmic point
of view it is easy to compute f*: just choose ran-
dom sample points and sort the values of f(z) in
decreasing order. The idea is that f* contains all
the “size information” about f, and presents it in

a consistent fashion on the standard measure space
[0, 1].

In our case we want to take the function h(z, s)
for z in K and 0 < s < N with the probability
measure dy X ds/N and write hj(t) for the re-
arrangement, and let h*(¢) be the limit as N —
oo. Using the methods of [Graf 1993] it is easy
to show that this limit exists for Hausdorff mea-
sure on the attractor of a linear i.f.s., and (using
an ergodic theorem) that, for y-amost every z, we
get the same function h* by rearranging h(z, s) on
0 < s < N with respect to the probability measure
ds/N, keeping z fixed. For the Cantor measure, or
more generally the measures described in Theorem
4.1, the periodicity condition (4.3) means that we
can obtain h* simply by rearranging h(z,s) for z
in K and sy < s < s 4+ 1 for sufficiently large so.
For other linear i.f.s.’s, it follows from [Graf 1993]
that h* is equal to the rearrangement of h(z,s)
over the set {(z,s) : s1(z) < s < s»(x)} where
¢ %@ = r;(z) is defined to be the largest value of
r such that B,(z) lies entirely in the j-th genera-
tion island containing . (The measure du x ds on
this set has to be normalized to be a probability
measure; also 7;(x) may be zero on a set of measure
zero). We have not implemented this construction
because of its complexity.
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FIGURE 11. The rearranged density function h*
for the Cantor measure, computed by choosing
1000 random points z and sampling h(z, s) at 1000
regularly spaced values in 0 < s < 1.

In Figure 11 we show h* for the Cantor measure,
obtained by computing hi. In Figure 12 we show
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FIGURE 12. The approximation hf to h* for two measures. Left: the measure in Figure 1, using o given by
(4.4) and ¢ = 3. Right: the Hausdorff measure on the Julia set of the mapping 22 — 3.36, with a = .584332
and ¢ = 3. In both cases the figure was computed by choosing 1000 random points £ and sampling s at 1000

regularly spaced values in 0 < s < 5.

hi as an approximation to h* for two measures.
On the left we use the measure of Figure 1. Since
this is not the Hausdorff measure for the attrac-
tor, the previous discussion does not apply, and in
fact we know that the limit h*, if it exists, must
be unbounded. On the right we do the same for
the Hausdorff measure on the Julia set of the map-
ping 2% — 3.36. In this case we expect h* to be
bounded, but the existence of the limit has not yet
been established.

Problem 4.3. Under what conditions does the limit
h* exist? When can we assert that, for p almost
every z, the rearrangments of h(z,s) on0 < s < N
converge to h*?

We would also like to raise the inverse question:

Problem 4.4. Can you recover the measure p from
the rearranged density function A*? If not, how
much information concerning p is contained in the
function h*?

5. COMPUTATION OF HAUSDORFF MEASURE

If E is any set of finite nonzero Hausdorff measure
H,, in dimension «, the upper density

Ho(ENT

1|0 | 1]

for x contained in I, is one for almost every z in E
(with respect to H,) [Falconer 1985]. We want to

turn this observation around in order to compute
H,, restricted to E exactly, in situations where we
know how to compute H, up to a constant multi-
ple.

Consider first the case of a linear i.f.s. with no
overlaps. If S;z = p;z + b; are the mappings, the
choice of natural weights p; = pf (with o chosen so
that ZTZI p; = 1) leads to a self-similar probability
measure u that must be a multiple of HH, restricted
to the attractor K:

cp = Hal - (5.1)

Because of the self-similarity, it is easy to see that
the upper density can be given by a simple supre-
mum, namely
Ho(INK)
Sl}p |I|a -

where the supremum is taken over all intervals I
in [0, 1]. In fact it is also easy to see that the inter-
vals must have both endpoints in K, for if not we
could contract the length of the interval without
changing the measure. Thus we find the constant
cin (5.1) via

I)
cl=su ,u( .
e

(5.2)

It is not difficult to design efficient algorithms to
search through enough plausible choices for I to
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compute this supremum, and to produce a con-
jectural interval that attains the supremum. The
point is that if I is such an interval, then so is
S]-f for any mapping in the i.f.s., or, more gen-
erally, S;I, J = (J15---5Jn), for any composition
of mappings. (Here S; = S;,5;, -+ S5;,.) We can
also expand the interval I by applying Sy Lif T is
contained in the first generation island S;[0, 1], and
still maintain the supremum in (5.2). In displaying
the interval I , we always repeat this expansion un-
til I is not contained in any first generation islands.
This gives us a “largest” example.

Lemma5.1. Suppose that the islands of the first gen-
eration are all separated. Then there exists an in-
terval I that achieves the supremum in (5.2).

Proof. Let {I;} be a sequence of intervals such that

qen)
| 7]

(5.3)

approaches the supremum as j — oo. By repeated
use of the expansion argument we may replace I;
with another interval that is not contained in any
island of the first generation, without changing the
ratio (5.3). Having done this, we have a positive
lower bound for the length of all I; by the small-
est length of the first generation lakes. Then by
a compactness argument we can pass to a subse-
quence that converges to a nondegenerate interval
I. Since we know the measure has no atoms we
obtain

ph _ ()

T~ e Ll
so the supremum is attained. O

Lemma 5.2. Let I be an interval. Then given any
e > 0 there ezists a set E. with u(E.) < ¢ and a
finite disjoint covering of K \ E. by images of I
under iterated similarities S;.

Proof. Let Fy denote the field of sets generated
by the islands and lakes of the N-th generation.
Suppose first that I belongs to Fy for some N.
We will construct inductively a disjoint sequence

Ssl, Sp1, ... whose union fills up K, except for
a set of measure zero. The sequence begins with
S11,821,...,5,,1, which are disjoint and satisfy

W(SiTU -+ U ) = Au(K)

for some positive A, so
p(K\ U S0,1) = (1= M(K).
j=1

Now U;"Zl Sy, 1 belongs to Fy 1, so its complement

can be written Ufil Sy K for some collection of
multi-indices J; of length N + 1. We continue our
sequence with S;S5;/T letting j vary over [1,m] and
i vary over [1, M]. The sequence remains disjoint,
but now the complement has measure (1—\)?u(K)
and belongs to Fan 2. We can continue this pro-
cess indefinitely, each time obtaining a disjoint se-
quence of images of I whose complement has mea-
sure (1 — \)"u(K).

Finally, if I does not belong to any ¥y, we can
enlarge I slightly to I' O I, so that I' belongs to
some Fy and p(I' \ I) < eu(I). Then we apply
the above construction to I' and shrink back to I.
The shrinking preserves disjointness, and we can
make the measure of the complement as small as
we want by taking € small enough. U

If we can find an interval I that achieves the supre-
mum in (5.2), Lemma 5.2 effectively tells us how to
cover K so as to calculate the Hausdorff measure
exactly.

We examined in detail the case r{y = r, = r3 = .2
with first and third islands anchored at the ends
of the unit interval, and the middle island float-
ing in between, so Siz = .2z, S.x = .2z + b,
and Ssx = .2z + .8, with .2 < by < .4 (the range
4 < by, < .6 yields equivalent attractors under re-
flection). For by = .4 the islands are symmetrically
arranged and it is known that the supremum in
(5.2) is one, attained by I = [0,1]. See [Falconer
1985] for a proof, which will also work if b, is suf-
ficiently close to .4. We experimentally estimated
the supremum for values of b, incrementing by .02
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from .2 to .4. We used an ad hoc procedure to
sift through a reasonable selection of intervals from
F10. After finding an interval that achieved the
maximum, we expanded it until we obtained an in-
terval not contained in any first generation islands.
Altogether we found only four different island con-
figurations, the most complicated belonging to Fs.
These configurations are illustrated in Figure 13
(left) for typical values of b. To confirm these esti-
mates and to locate the transition points from one
configuration to the next, we present in Figure 13
(right) the graph of the exact value of p(I)/|I|* for
each of the four configurations as a function of bs.
In addition we have graphed two other configura-
tions, one from F,; and one that does not belong to
any Fy, that seemed like plausible candidates for
achieving the supremum; both fail decisively to be
in contention.

In the summer of 1994 (after the first version
of this paper was completed), the first author and

Elizabeth Ayer applied the experimental method
just described in a more systematic fashion. The
results obtained [Ayer and Strichartz 1995] show
that it is not always true that the supremum is
achieved by an interval in Fy for some N, and
that the exact Hausdorff measure is a discontinu-
ous function of the parameters of the linear i.f.s.
Also, after this work was completed, we became
aware of earlier work [Marion 1986; 1987] that deals
with the same problem using a similar approach,
and contains results equivalent to Lemmas 5.1 and
5.2.

Next we consider the attractor of a nonoverlap-
ping i.f.s. with nonlinear mappings. In Section 3 we
described an algorithm for computing an approx-
imation to a multiple of Hausdorff measure, nor-
malized to be a probability measure. We can ap-
ply essentially the same procedure as in the linear
case to compute approximately the correct normal-
ization. In this case we cannot replace the lim sup
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FIGURE 13.
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Left: Configurations of intervals of maximum density for four typical “floating island” examples.

Vertical ticks above each baseline mark the endpoints of islands in F;, F3 and F3 (largest lines for Fy, shortest
for F3). A bracket below the baseline indicates the interval of maximum density. Example 1 (bottom) has
be = .4, so the floating island is in the middle and the entire interval is the interval of maximum density.
Example 4 (top) has by = .2, so there is no lake between the first two islands in F;. Right: Plots of p(I)/|I]*
as a function of by for six configurations, the first four being the ones shown on the left. Curve a corresponds
to [0,1], curve b to S1[0,1] through S2[0,1], curve ¢ to S1[0, 1] through S; o S3[0,1], curve d to Sy o S3[0,1]
through Sz 0 S2 0 S2[0,1], curve e to Sp[0,1] through Sz o Sz 0 Sy 0 S2[0,1], and curve f to Sy[0,1] through
lim Sy 0---0.55[0,1]. Note that e and f are always below ¢, but sometimes above a, b and d.
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with a sup. However, it is plausible to approximate
the lim sup with the supremum in (5.2) where the
size of the intervals |I| is restricted to be small,
but is allowed to vary considerably. A graph of the
function

o(r) =sup{% || :r}

for some examples (Figure 14) shows a similar pat-
tern for both linear and nonlinear examples: lo-
cal maximum peaks occur regularly, and the local
maxima appear to converge rapidly to what is pre-
sumably the lim sup.

The procedure we used was based on interval
partition data (J,v) generated without any consol-
idation, so the intervals of J are exactly the islands
of the last generation. We chose 1000 of these is-
lands at random and maximized p(I)/|I]|* over all
intervals starting at the left at one of the chosen

1.0
0.9 #
0.8

0.7

1.0

0.9

0.8

0.7

2 4 6 8 10

islands and extending to the right between 100 and
900 islands. The choice of a minimum length of 100
islands for the intervals was made to overcome the
inevitable lack of accuracy in the computation of
the measure on the smallest scale. By allowing a
range of 100 to 900 islands we are sure to include
several local maximum peaks of ¢(r).

We present the results of this procedure on the
Julia sets for 2?2 — a in the range 2 < a < b in
Table 1. Note that 2b is the diameter of the Ju-
lia set. Since we performed the procedure on the
scaled version (affinely transformed to have diam-
eter one), the reciprocal of the maximum density
gives the relative Hausdorff measure u(K)/|K|*.
It is intriguing that this function appears to show
a discontinuity at a = 2. This possibility deserves
further investigation, but this will require a more
accurate procedure. Note that the region around
a = 2 involves large derivatives of the functions
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FIGURE 14. Graphs of sup{u(I)/|I|* : |I| = 7} on a logarithmic scale. Top left: Cantor measure. The
periodicity and the value 1 for the maximum are expected. Top right: “floating island” example with by = .2.
The asymptotic periodicity is expected. The graph beyond s = 8 is degraded by computational error. Bottom

left: measure in Figure 1. Because the contraction ratios

% and % are distinct, no periodicity is expected.

Bottom right: Hausdorff measure on the Julia set in Figure 4.
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++v/z + a (the derivative becomes unbounded at
a = 2), so it may be very difficult to obtain the de-
sired accuracy. The computations we did for a = 2
are somewhat reassuring. The error in the dimen-
sion was 2 x 1079, and the error in the relative
Hausdorff measure was 10™*, which is small com-
pared to the apparent size of the jump discontinu-
ity (3 x 1072) of the relative Hausdorff measure.

a b o max dens p(K)/|K|* w(K)

2.00 2.0 0.999998 1.000104 0.999896 3.999570
231 2.1 0.766235 1.037192 0.964142 2.895318
2.64 2.2 0.681853 1.030990 0.969942 2.663703
299 2.3 0.625882 1.025456 0.975176 2.534492
3.36 2.4 0.584332 1.021211 0.979230 2.448814
3.75 2.5 0.551618 1.018020 0.982299 2.386757
4.16 2.6 0.524880 1.015831 0.984415 2.338806
4.59 2.7 0.502441 1.013995 0.986198 2.301171
5.04 2.8 0.483233 1.012437 0.987716 2.270812
5.51 2.9 0.466536 1.011124 0.988998 2.245754
6.00 3.0 0.451837 1.009989 0.990110 2.224749

TABLE 1. Computed values of Hausdorff dimen-
sion a, maximum density, relative Hausdorff mea-
sure, and Hausdorff measure, for the Julia set of
22 — a on the interval [—b,b]. The relative Haus-
dorff measure is the reciprocal of the maximum
density, and the Hausdorff measure is the relative

Hausdorff measure multiplied by (2b)*.

6. AVERAGE DIMENSIONS AND DENSITIES

The entropy dimension of a measure p, if it exists,
is the limit
i 4 108 #(Br (@) du(z)

r—0 log T

It is shown in [Young 1992] that if the measure
satisfies

log (B
lim og p(B,(x)

=a for py-a.e. z, (6.1)
r—0 logr

the entropy dimension exists and equals «. The
associated density question is the behavior of

o(r) = /log @ du(z) (6.2)

as 7 — 0. If the limit of ¢(r) exists, we call its ex-
ponential the entropy density, but usually we need
to consider upper and lower entropy densities de-
fined by the limsup and liminf. Because (6.2) in-
volves averaging, we can expect to see better be-
havior than for the pointwise ratio u(B,(z))/(2r)*.

For the measures we are considering it is usually
easy to compute « and study the behavior of (6.2)
experimentally. (To approximate the integral by a
Cauchy sum we partition the interval [0, 1] by tak-
ing the inverse image under the ramp function of a
uniform partition, and evaluate the integrand at a
random point in each subinterval.) For a nonover-
lapping linear i.f.s. with constant weights p;, the
value of a in (6.1) is just

_ ij 10gpj
a=="12"7
> pjlogr;

For the general (nonoverlapping) case the presumed
value of « is

(6.3)

_ > [pjlogp;du
> [ pjlog S}l du

For a proof in the case of constant weights (and
contractivity) see [Strichartz 1993b]. For p equal
to a multiple of Hausdorff measure on K, the en-
tropy dimension equals the Hausdorff dimension in
essentially all the cases we are considering.

In Figure 15 we show the graphs of ¢(r) as a
function of logr for some typical cases. The first
three examples can be easily explained.

(6.4)

Theorem 6.1. Assume the i.f.s. is linear and sepa-
rated (there is a positive distance between islands
S;10,1]) and the weights p; are constant. Then for
@ given by (6.2) and a given by (6.3), we have

lim(p(r) — $(r) = 0,

where
@) @(r) is a continuous, positive multiplicatively
periodic function (that is, ¢(Ar) = @(r)) if the
contraction ratios satisfy r; = A\ for positive

integers k; and some X, and
(b) @(r) is a positive constant otherwise.
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FIGURE 15. Graphs of ¢(37°) versus s. Top left: Cantor measure; computational error begins to degrade the

results around s = 8. Top right: measure of Figure 1; convergence to a constant is slow. Middle: measure
associated to the Cantor i.f.s. Sz = %x, Sex = %:c + % with weights p; = .4, p2 = .6; computational error
becomes noticeable around s = 6. Bottom left: Hausdorff measure on the Julia set of 2% — 3.36. Bottom right:

Hausdorff measure on the Julia set of 22 — 6.

In both cases the upper entropy density is finite and
the lower entropy density is positive, and in case
(b) the entropy density exists.

Proof. We will show that ¢ satisfes

p(r) = ZP%P(T%)

for all sufficiently small 7. The conclusion then
follows from the renewal theorem (see [Lau 1992]
for a similar application of this method).

We will prove (6.5) for all r less than the min-
imum separation between first generation islands,
so that B,.(z) N K lies entirely inside S; K, for each
z in S; K. Thus
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(B (x)) = p;(Byr, (S ))

and
/; log (B (e) di(z)

= p;logp; +p; / log u(By/r; (y)) du(y)
K
after a change of variable. Summing on j we get

o(r) + alog 2r
2
= Yopitogns + 3 m(e() +alos )

which yields (6.5) upon simplification. O

It seems likely that the result remains valid if we
drop the separation hypothesis, and assume only
that the i.f.s. is nonoverlapping, since the applica-
tion of the renewal theorem allows an error term
in (6.5). The behavior seen in the last two panels
of Figure 15 for Hausdorff measure on Julia sets
suggests that conclusion (b) of the theorem may
well hold for many nonlinear i.f.s.’s and variable
weights.

Problem 6.2. Under what conditions does (6.4) give
the correct value for the entropy dimension? When
does conclusion (b) of Theorem 6.1 hold?

A related notion is the L? dimension, defined by

i 108 J #(Br(2)) du(z)
r—0 logr

if the limit exists. See [Strichartz 1993b] for several
equivalent definitions. The existence of the limit is
proved in [Lau 1992] for linear i.f.s.’s and constant
weights, with the value given by the unique solu-
tion G of the equation

Zp?rj_ﬂ =1. (6.6)

The existence of the limit for nonlinear i.f.s.”s and
constant weights is proved in [Strichartz 1993b],
but there is no effectively computable formula anal-
ogous to (6.6) for the value of the limit. The L?
dimension is related to the asymptotic behavior
of the Fourier transform of the measure (for these

ideas see the above papers and also [Lau and Wang
1993; Strichartz 1990a; b; 1991; 1993a; 1994; Ja-
nardhan et al. 1992].

Once the L? dimension 3 is determined, we can
form the function

(r) = / u(B,(2))/(2r)dpu(z)

and define the upper and lower L? densities as
the limsup and liminf of ¢ as » — 0. Actually,
slightly different definitions are used in [Lau 1992]
and [Strichartz 1993b], which yield equivalent but
not identical density values. It is easy to modify
the proof of Theorem 6.1 to obtain the analogous
result for 1(r); in place of (6.5) we have

b(r) = pir; P (r/r;)

for small . The analogous result for the related
definition of L? density is proved in [Lau 1992]
under weaker hypotheses (nonoverlapping rather
than separated i.f.s.).

In Figure 16 we show the graphs of ¢ on a log-log
scale for the same examples as before. For the lin-
ear i.f.s. cases we used (6.6) to determine 3, while
for the Hausdorff measure on Julia sets we used
the Hausdorff dimension.

The density results for the Julia sets suggest that
something more is going on. In Figure 17 we give
the plot of the maximum and minimum values of

p(B,(x))/(2r)"

as x varies over K as a function of logr for two
of these Julia sets. This suggests that there are
uniform upper and lower bounds,

0<c <u(B(2))/(2r)* <cy < o0 (6.7)

for all z in K and r < 1. Such estimates would
immediately imply the equality of all dimensions
and the boundedness (and boundedness away from
zero) of all densities.

Problem 6.3. Under what conditions does the Haus-

dorff measure on an attractor K of an i.f.s. satisfy
(6.7)?
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FIGURE 16. Graphs of log1(3~*) for the same measures as in Figure 15.
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FIGURE 17. Graphs of the maximum and minimum values of p(B,(z))/(2r)* (as a function of s for r = 37%)
as x varies, for the same Julia set measures illustrated in the bottom row of Figures 15 and 16.
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