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We discuss the properties of p-adic analogues of the logistic
and Smale horseshoe maps, and adapt them to form possible
practical pseudo-random number generators. The properties of
these practical modifications are studied in detail in the case
p=2.

Many people have considered chaotic maps to be
a source of randomness; however, from a compu-
tational viewpoint the classical chaotic maps are
not particularly suited for machine computation.
Computers live in the discrete world whilst classi-
cal chaotic maps are usually defined on real mani-
folds. In this paper we present a possible remedy
to this problem, namely a theory of chaos over the
p-adic numbers.

Consider the thought experiment of performing
an infinite sequence of independent throws of an
unbiased die with p faces, (p a prime, most no-
tably p = 2). The space of all possible outcomes,
C, clearly identifies with the direct product of a
countable number of copies of a discrete set with p
elements. The set C' carries with it a natural topol-
ogy, under which it is a Cantor set. In addition C
has an invariant probability measure, p, under the
shift operator T : C — C where (T'(z)); = Tiy1-
More precisely, u(7*(E)) = p(E) for all measur-
able subsets E of C (see [Taylor 1973, Chapter 7,
p. 187]; note that 7" is not one-one).

Thus if we wish to construct an “idealised” ran-
dom number generator with seed-space K, we must
define an isomorphism

©:K—C,
which parametrises the outcomes of the experi-

ment. Clearly © induces a mapping
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V. K-> K

corresponding to 1" : C' — C. Therefore we must
construct an appropriate discrete dynamical sys-
tem (K, V') equivalent to (C,T'), and the dynami-
cal system (K,V') must exhibit chaotic behaviour
in that it should be sensitive to initial conditions.
Clearly for ease of implementation, analysis etc. it
would be helpful if V' were given by a simple for-
mula and this would be facilitated if K had some
arithmetic structure and V' was say a polynomial
function.

The set K, like C', will be a Cantor set and so in
particular it will be totally disconnected. There-
fore we cannot base the arithmetic structure on R
or C. However, we can take K to be Z,, the ring of
p-adic integers, or even Z, X Z, etc. Now in prac-
tice only a small selection of seeds from K, those
having short descriptions in some sense, could be
used. Clearly, with the above choices for K, the
natural approach would be to select seeds from N,
or N x N. Thus we must also ensure that such
choices provide us with seeds in K that are generic
with respect to V' or pseudo random in some strong
sense. In particular the seeds should not have even-
tually periodic orbits under V. If the resulting se-
quence of bits was to be used in a stream cipher
we would require the additional property that it
should be hard to recover the seed from knowledge
of a large portion of the sequence, (at least not
without the use of a considerable amount of com-
puting power).

1. p-ADIC CHAOS

It is well known that quite simple polynomial map-
pings f : R™ — R" in one or several real variables
can give rise, via iteration, to discrete dynamical
systems that exhibit chaotic behaviour in the sense
that they have sensitive dependence on initial con-
ditions and admit an invariant Cantor set, C. The
action of f on C' is sometimes “topologically equiv-
alent” to the more transparent action of the usual
shift operator on a space of sequences of symbols

taken from a finite alphabet. This is called “sym-
bolic dynamics”; see [Newhouse 1980], for example.

Entirely analogous behaviour can also be ob-
served for certain p-adic polynomial mappings (for
a prime p); see [Thiran et al. 1989], for example.
However, there is now the unifying feature that the
ring of p-adic integers, Z,, is both a p-adic analytic
manifold and a Cantor set (unlike in the real case).
This allows for a smoother transition from the an-
alytic to the symbolic in the p-adic case.

In this paper we first introduce p-adic analogues
of two of the best known “real” examples: the lo-
gistic map

x — dx(l —x)

and (a polynomial realisation of) the Smale horse-
shoe map

(z,y) = (y, ax + by’ +¢)

for suitable a,b and c¢. The associated symbolic
dynamics in each case is respectively a one-sided
shift and a full shift on two symbols. This is also
the case for the p-adic analogues below, except now
there are p symbols rather than two.

The analogous chaotic p-adic logistic and Smale
horseshoe maps will then be considered as “ide-
alised” random number generators and “practical”
modifications of them will then be analysed in some
detail when p = 2. These practical implementa-
tions appear to display certain statistical strength
and possess some interesting properties.

If p denotes a prime number, we define the p-adic
logistic map to be

L:Z, - Z,
x = (2P —x)/p.

Note that (z¥ —z)/p € Z, by Fermat’s Small The-
orem and when p = 2 we obtain a map reminis-
cent of the “standard” logistic map x — cz(1l —z),
where c is some constant.

Firstly we note that L is sensitive to initial condi-
tions in the sense that if 2,y € Z, with v,(z —y) =
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n > 1 then v,(L(z) — L(y)) = n — 1. To see this
note that

x? — yP

r—y

=2’ 2" Pyt ay” Yt €9,

as vp(z —y) > 1. Now

L(x) — L{y) = *=Y (Ip‘yp—l),

p r—y

and hence v,(L(z) — L(y)) =n — 1.

We next determine the symbolic dynamics of the
discrete dynamical system (Z,, L). Denote the re-
duction modulo p of x € Z, by z € IF,,, and set

X = H(Fp)i

i>0

by which we mean the direct product of a count-
able sequence of copies of IF,, each with the discrete
topology. On X we define the continuous shift op-
erator, T : X — X, by (T'(z)); = x;4, for all
x = (z;) € X. This is the crucial result:

Theorem 1. There is a homeomorphism ® : Z, — X
such that T o ® = ®o L.

Proof. We define ® by (®(z)); = Li(z) forall z € Z,
so that clearly ® is continuous and T'o ® = ® o L.
Since Z,, and X are both compact Hausdorft spaces
it now only remains to show that @ is injective and
has a dense image.

Let N > 1 and suppose that z,y € Z,. Then
(®(z)); = (®(y)); for 0 < i < N — 1 if and only if
vy(L*(z) — L'(y)) > 1 for 0 <i < N — 1. But this
last statement holds if and only if v,(z —y) > N
as L is sensitive to initial conditions in the sense
described above. Therefore @ is injective and nat-
urally induces an injective mapping

N—-1
Oy : Zy/p"Zy — [ (F):-
=0

This mapping is surjective for each N > 1 as both
sides have order p and so ® has a dense image
in X. O

A more constructive proof of the surjectivity of &
can be obtained using Hensel’s Lemma; however,
we will not make use of this construction.

From the above theorem we see that the dy-
namical systems (Z,, L) and (X,T) are topologi-
cally conjugate, which means that many properties
of (Z,,L) can be read off directly from the more
transparent (but equivalent) symbolic representa-
tion (X,7). In particular:

(i) The periodic (or eventually periodic) points un-
der L form a countable dense set in Z,,. For each
N > 1 there are precisely p" points of period
dividing N. These periodic points are repulsive
and comprise a complete set of coset represen-
tatives for pVZ, in Z,.

(ii) The non-periodic (or not eventually periodic)
points form an uncountable dense subset of Z,
and indeed there exists a dense orbit.

(iii) For each N > 1 and = € Z,, the set {L~"(z)}
consists of a complete set of coset representa-
tives for p"Z, in Z,.

(iv) The map L preserves the Haar measure on Z,
(in the sense that m(L (E)) = m(E) for all
measurable subsets E of Z,; note that from the
proof of Theorem 1 above ® induces the bijec-
tion ® 5 and so carries the Haar measure m on
Z, into the standard shift invariant probability
measure 4 on X.)

(v) Each z € N”? is not eventually periodic.

As the map L is then a chaotic map from Z, to Z,
we could use it as a theoretical way of generating
“random” elements of F,,. We start with an initial
random seed 2, € N”°, compute z; = L'(z,) and
then the “random” elements of IF, can be chosen
to be T;. This seems to be an idea worth investi-
gating due to the repulsive nature of the periodic
points and the fact that elements of N”* give rise
to sequences that are not eventually periodic.

We now define the p-adic Smale horseshoe map
to be

S:Z; — Z
(@,y) = (yz+Ly));
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see [Newhouse 1980, pp. 17-18] for the analogous
construction over the real numbers. Analogues of
the Smale horseshoe map in the p-adic numbers
have been considered before in [Arrowsmith and
Vivaldi 1993]; however, the above is a more suitable
analogue in this context.

We first observe that S is a homeomorphism
with inverse S™!(x,y) = (y — L(z),z). Note that
what we have here is a “kneading map” [Lagarias
1990]. That the Smale horseshoe map is a knead-
ing map could lead one to consider its use possibly
in Feistel type ciphers given the dual nature of S
and S—'. We shall not pursue this line of enquiry
further in this paper.

If (z,y) € Z, X Z, and m € Z then we put

(xmuym) = Sm(I,y).

The map S is hyperbolic in the sense that the al-
most constant Jacobian matrix of S at each point
has eigenvalues, A, Ay € Q,, with A\;A; = —1 and
vp(A1) = —1, v,(A2) = 1. More concretely, suppose
that (z,y), (¢*,y%) € Z, X Z, with v,(z — z*) =
m > 1 and v,(y —y*) =n > 1, (we allow for the
possibility that m or n is infinity). Then, using
that L is sensitive to initial conditions, we easily
obtain that S, S~ ! are sensitive to initial condi-
tions:

(i) vy(x1 —2x)) =nand v,(y; —y;) > min(m,n—1)
with equality if m > n.

(i) vy (y—1—y*,) =mand v,(z_; —x*,) > min(m—
1,n) with equality if m < n.

Thus by recursion it follows that if m > n then
vp(yn, — yi) = 0 while if m < n then v,(x_,, —
xz*, ) =0 and so in any case (x,y), (z*,y*) can be
separated modulo p on applying a suitable S” (for
some integer 7).

We next determine the symbolic dynamics of the
discrete dynamical system (Z, x Z,, S). Put

Y = H(Fp)i
i€z
and define the shift operator 7' : Y — Y by putting
(T'(z)); = ziy, for all z = (x;) € Y. With this def-

inition we note that 7" is a homeomorphism. Then
we will show below (in Theorem 2) that (Z,%xZ,, S)
is topologically conjugate to (Y,T'), in other words
there is a homeomorphism ¥ : Z, x Z, — Y such
that VoS =T o W.

As in the case of the p-adic logistic map we will
thus be able to read off the main properties about
(Z, x Z,, S) directly from its symbolic representa-
tion, (Y,T'), which is now a full p-shift rather than
a one-sided p-shift.

(i) Just as in the case of the logistic map, the pe-
riodic points of S form a countable dense set
of points in Z, x Z,. For each N > 1 there
are precisely p" points of period dividing N. In
this case the periodic points are not repulsive
but exhibit expansive and contracting features
in different directions.

(i) The non-periodic points form an uncountable
dense subset of Z, x Z,. In addition there exists
a dense orbit.

(iii) The map S preserves the Haar measure on the
space Z, x Z,. (Note that from the proof of
Theorem 2 below W induces the bijection WU,
and so carries the Haar measure m(x) x m(y) on
Z, X Z, to the standard shift invariant measure
pon Y. Alternatively this can be seen directly
from the definition of S since the Haar measure
m(x) x m(y) is invariant under interchange of
variables z,y and the Haar measure m(z) on
the first factor Z, is translation invariant.)

(iv) Every element (z,y) € N”° x N”%\ {(1,1)} is
non-periodic.

Now all that remains is to prove that (Z, x Z,, S)
and (Y, T) are topologically conjugate.

Theorem 2. There is a homeomorphism V¥ : Z, x
L, —Y such that ¥ o S =T oW,

Proof. We set

(V(2,y))e = 2

for all (z,y) € Z, x Z, so that clearly ¥ is contin-
uous and W o § =T o W. Just as in the previous
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case of the logistic map all that is left is to show
that W is injective and has a dense image.

Let N > 1 and suppose that (z,y),(z*,y*) €
Ly, %X Z,. Then as S, S~ are sensitive to the initial
conditions we deduce that

(W(z,y))i = (¥(z",y))s

if and only if

for —-N+1<i<N

vp(x —2") >N and wv,(y—y") > N.

Therefore W is injective and naturally induces an
injective mapping

N
Uy Zy /P Ty X Ty D" Ty —  [] (Fp)s-
i=—N+1

The domain and codomain of this map both have
order p*" and so Uy is surjective. This then im-
plies that ¥ has a dense image in Y as required. [

2. A FINITE APPROXIMATION

Clearly if we wish to compute the chaotic sequences

x; = L(z;_1) or (x;,y;) = S(@i—1,Yi—1)

in a computer then the initial starting points, x, or
(%0, yo), would have to be chosen in Z,NZ = Z, as a
computer cannot represent a general p-adic integer
to arbitrary accuracy. This should not present a
problem for our sequence of elements of I, b; = ;.
If the initial starting point is truly a random ele-
ment of Z, (resp. Z*), then the resulting sequence
of elements of I, should behave chaotically and
would then look “random” to an observer.

However, the size of the integers involved in-
creases with every step we take along our sequence.
In general it will take p-times as long to compute
the next element of IF, as it did the current one.
One way to overcome this is to work to some fixed
level of p-adic precision, rather like one does in the
real case, for example

¢ =L(&,_,) (modp")and b, =,

or respectively

(13;-, y;) = S(I;—luyg—l) (mOd pe) and b; = JI_;

Unfortunately the resulting sequence will no longer
be chaotic, indeed it is ultimately periodic. How-
ever, the first e elements of the sequence, (b}), will
be the same as the first e elements of the sequence
(b;) and so if e is large enough this may be sufficient
for our application.

For the rest of this section we shall concentrate
on the logistic map in the case p = 2 and e > 3
(we would expect to obtain similar results to the
ones below for the Smale horseshoe map). In this
case we prove that the resulting logistic map has a
remarkable structure, and is likely to possess a very
large orbit. The first choice we have to make is for
a set of coset representatives for Z/2°Z. We shall
choose as our set of coset representatives X, =
{1,2,3,...,2°} and then our logistic map becomes
the map

L.:X, = X,
z +— (x(x—1)/2) (mod 2°).

Our first result is the following:

Lemma 3. With the choice of coset representatives
X, above, the map L, is a permutation of X..

Proof. We clearly need only show that L. is an in-
jective map so suppose that x,y € X, and L.(z) =
L.(y). Then we must have (z —y)(x +y—1) =0
(mod 2¢t1). If 2 and y have the same parity then
z—y =0 (mod 2°"!) and so x = y. If, however,
x and y have opposite parity then z +y — 1 = 0
(mod 2¢*1), which is clearly impossible if we choose
z,y € Xe. O

We can also prove the following:

Theorem 4. As a permutation of X, the map L. is
even.

Proof. Let ( denote a primitive 2°-th root of unity
in C, and let x* denote the involution on X, given
by

x>zt =241—z.
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For all z € X, we have (L@ = ¢ele=1/2 (2" —
¢'=* and ¢%*") = —¢P<(*) The sign of L, as a
permutation is then given by

gL
=

1<i<j<2¢

CL (7)

Using the above involution and some rather messy
algebra one can then show that ¢ = 1. Due to
space constraints we leave the details to the reader.

O

It turns out that as e increases we obtain longer
and longer cycles, as the next theorem demon-
strates, in a very weak way.

Theorem 5. Given r € N and € > 0 there exists an
Ny € N such that for all e > Ny the fraction of x
m X, lying in a cycle of length greater than r s
greater than 1 — €.

Proof. Let 1 < r < e—1 and let z € X, with
LI (x) = x. Suppose that y € X, with y # x and
2"|x —y. Then there is an s such that 2° exactly
divides x — y with r < s < e — 1. Hence 257!
divides L.(z) — L.(y) and by recursion 2°~" divides
L7(2) — Li(y) = o L] (y). Thus L](y) # y. Hence
‘{a: €eX.:Ll(z) = a:}‘ < 27, and so

[{reX.:L(z)=x for some m with 1<m<r}|
<) oam<2rt
m=1
Therefore

‘{a: € X, : z lies in a cycle of length > r}‘
| Xel

> (26 _ 2T+1)/2e
— 1 _ 2r+175.

The result follows on choosing Ny = r+1—log,(e).
i

We computed for various values of e the maximum
period and the expected period for the map L.. For
values of e < 19 these were computed accurately;
however, for e > 20 the values were determined

using a Monte-Carlo simulation method of com-
puting the cycle lengths generated from a random
seed pulled out of X,. The values of the expected
and maximum cycle lengths were then normalized
by dividing the result by 2°. Our results are sum-
marized in Table 1.

e  exp. max. e exp. max.
3 0.8203 0.8750 15 0.3918 0.5579
4 03303 0.3750 16 0.5337 0.7044
5 0.4016 0.5312 17 0.3453 0.4723
6 0.4806 0.6406 18 0.6372 0.7875
7 0.3943 0.4531 19 0.7874  0.8857
8 0.4933 0.5664 20 0.58 0.7379
9 0.3320 0.5351 21 033 0.4380

10 0.2269 0.2754 22 0.36 0.4216
11  0.4103 0.5839 23 047 0.6395
12 0.3523  0.4497 24 0.53 0.7258
13 0.4604 0.6399 25 094 0.9712
14 0.5622 0.7268 26 0.59 0.7380
TABLE 1. Normalized cycle lengths for the finite

logistic map (exp. = expected, max. = maximum).

As the table demonstrates, we have a good chance
of obtaining a large cycle for a randomly chosen
seed. Thus our theorem above appears to be far
too pessimistic and it would be nice to obtain a
more accurate result. In the next section we detail
a heuristic reason why we believe one to exist.

It is interesting to note that Golomb [1964] em-
pirically discovered that the normalised expected
maximum cycle length of a random permutation
on n-symbols tended to 0.62432... as n tended to
infinity, a result proved by Shepp and Lloyd [1966].
Hence our normalized expected cycle lengths ap-
pear to be quite good when compared to what one
would expect from a random permutation on X,.

3. PERIODIC POINTS FOR L.

For each x € Z, we let red.(x) denote the unique
element of X, such that z = red.(z) (mod 2°). In
what follows a periodic point of X, will mean a
point periodic with respect to the map L., whilst
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a periodic point of Z, will mean a point periodic
with respect to the map L.

Condition (},)
An element = € Z, is said to satisfy condition (f,)
if
red.y; (z) = red,(x).
Thus the set

Z = {x € Zy : x satisfies condition (f,.)}

has Haar measure % and is the union of 2¢ of the
2¢*! cosets of 2¢11Z, in Z,. The set Z is also “well
distributed” in the sense that one coset of 2¢11Z,
in Z is contained in each of the cosets of 2¢Z4 in Z,.
Our main result of this section links the periodic
points of L, to the periodic points of the map L :

Ly — L.

Theorem 6. There is a one to one correspondence
between the points y € X, of exact period k, for
1 <k <2° and the periodic points © € Z» of exact
period k such that if 0 <i <k —1 then

1. L'(z) satisfies condition (f,) and
2. if L'(z) =z (mod 2°) then i = 0.

Proof. Suppose that y € X, has exact period k
so that L¥(y) = y and Li(y) # y for 1 <1 <
k — 1. Then by the symbolic dynamics for L there
is a unique z € Z, with L™(x) = L"(y) (mod 2)
for all m > 0. Now since L is sensitive to initial
conditions we obtain successively

L'(L (y)) = Le(L (y)
for 0 < r < e. Therefore
L'(L™(z)) = L™ (z) = L™ (y)
= L (L (y)) = L'(L (y)) (mod 2)

for 0 <r < e and so

(mod 2°77+1)

L™(z)=L"(y) (mod 2°t)

for all m > 0. Hence z is clearly a periodic point
of exact period k satisfying the conditions of the
theorem and red,(z) = y.

Conversely, suppose that x € Z, is a periodic
point of exact period k satisfying the conditions of
the theorem. Put y = red,.(z) € X,. Then L*(z) =
x, LY(z) # z (mod 2°¢) for 1 < [ < k — 1 and
red.;; (L™ (x)) = red.(L™(x)) € X, for all m > 0.
Hence

Le(rede (L™ (1)) = Le(redess (L™ (2)))
= L(red.;,(L™(2))
= L(L"(z)) = L™ ()
= red, (L™ (z)) (mod 29).

Therefore L,(red.(L™(z)) = red,(L™"*(x)) and so
L™(y) = red.(L™(x)) for all m > 0. Hence y =
red.(z) € X, is a periodic point of exact period k.
Further L™(z) = red.(L™(z)) = L"(y) (mod 2)
for all mm > 0 and so the required one to one corre-
spondence follows. O

Now let G, denote the number of cycles in the cycle
decomposition of L,. Then clearly for each R > 1
the proportion of elements of X, lying in cycles of
length greater than R is at least 1 — Rf3,/2°. In
particular if 3, is O(e") for some h > 1 then for
each ¢ € (0,1) the proportion of elements of X,
lying in cycles of length greater than 2(!=°)¢ tends
to one as e — oo. If we can prove that 8, = O(e")
then we would have greatly strengthened Theorem
5. Our numerical evidence above seems to support
this assumption, as does the following heuristic ar-
gument:

Conjecture. (3, = O(e).

Heuristic Reasoning. We first make the plausible as-
sumption that the periodic points of Z, of exact
period k, with 1 < k < 2¢ (which are in general so-
lutions of polynomial equations of high degree), are
“well distributed” with respect to condition (t,).
Therefore we expect that the statement

“x satisfies the conditions of Theorem 6”

should hold with “probability” at most 27%, in
some very ill defined sense. For each k > 1 there
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are precisely

A = Zﬂ(d)Zk/d

dlk

periodic points of L of exact period k, so that A, <
2%, Thus the “expected” number of cycles of length
k in X, should be at most A;,27%/k < 1/k and the
expected total number 3, of cycles for L, will then
be at most

9¢

Z 1/k <log(2°) +1 = O(e).

k=1

A random permutation also exhibits the property
that the expected number of cycles is of the or-
der of the logarithm of the length of the permu-
tation; see [Goncharov 1944]. In addition our nu-
merical investigation seemed to support the claim
that 5. = O(e).

Note for the “chaotic” map L on Z, there are
many periodic orbits but they have total measure
zero in Z,. The permutation L, of the finite set
X, may be thought of as an approximation to L
in some sense, even though now of course every
orbit is periodic. The mechanism described above
would ensure that there are “few” cycles in the
cycle decomposition of L, and so a low proportion
of elements of X, would lie in short cycles.

Lemma 7. The only value of e for which the cycle
decomposition of X, can contain a transposition s
e =1.

Proof. There are two periodic points of L in Z,
of exact period 2, namely the roots of z? + z +
2 = 0. Suppose that e > 1 and z,z, are the two
periodic points of exact order 2 and assume they
both satisfy condition (},). Let y;,y. € X, be such
that x; = y; (mod 2¢*1), then

Y1y, =2 -1
and so y; = 2¢ and y, = 2° — 1, while also y,y, = 2

(mod 2¢t1) and so 2¢ = 2 (mod 2°t'). The only
way this can happen is when e = 1. O

4. KICKING AWAY THE SMALL ORBITS

Returning to our application to a random num-
ber generator we see that even with these large
cycles existing there is the chance that the cycle
obtained, from any given seed, will have a small
length. It is this problem that we try to overcome
in this section. One way we can overcome the small
cycle problem is to periodically reseed the genera-
tor using some other map. We call this reseeding
“kicking” and we shall describe the details below
in the context of the Smale horseshoe map. A sim-
ilar discussion could be given for the logistic map
as well.

We assume we are working to a fixed modulus
2¢ so our resulting stream of bits “shadows” the
true chaotic stream of bits for only 2e of the bits.
More explicitly if we know b;, . ,,... b, then we
can recover (w),y,). But the value of b, will
be dependent on the noise accumulated by work-
ing modulo 2° and may not be the output had we
worked to infinite 2-adic precision.

However, one could hope that even the result-
ing stream, (), will be random enough. After
all we could consider that after every e bits the
“noise” accumulated from our rounding operation
produces a “random” new initial state and so on.

Alas this is not the case. As the map S is now
from X? to X2, the sequence (z) cannot help be-
ing eventually periodic. One way to describe what
is happening is that the sequence (z}) “shadows”
the 2-adically chaotic sequence (z;), but with less
and less accuracy due to the build up of noise. The
sequence (x;) will, with probability zero, be peri-
odic as the periodic points of S have measure zero
in Z, x Z,; however, the sequence (z}) cannot help
being periodic.

We need to occasionally perturb our map slightly
5o it does not fall into a small period. We do this
by taking

Se: Xex X, =& X xX,
(z,y) = (y, 2+ Le(y) + Le(2)),
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where z is some random input; the point of passing
z through L. is to hide any linearity in the gener-
ator that produces z. For most of the time we set
L.(z) = 0, and then at random points in time we
take z to come from a uniform distribution on X,.

As we have mentioned before if the resulting
stream is to be used for cryptography we not only
need that the stream behaves as a random sequence
but that knowledge of a long portion of the se-
quence does not provide knowledge of the rest of
the sequence (at least without expending a huge
computing effort). For our original theoretical p-
adic random number generator this was no problem
but for the practical version above this is a prob-
lem. Without the kicking mechanism the complete
sequence could be obtained with only the knowl-
edge of 2e consecutive bits of output. Hence the
kicking mechanism not only reduces the chances
of our bit stream falling into a period but it also
makes the recovery of the seed a much harder prob-
lem.

However, an attack could perhaps use the prob-
ability of whether a kick occurs at a certain bit
to deduce information about the seed. We there-
fore need to determine a mechanism that describes
when the kicks occur and that gives negligible prob-
abilistic information to an attacker.

After some thought we decided on the following
scheme. A linear feedback shift register (LFSR)
of maximal period is used to output bits that are
added onto a counter. Once the counter has reached
a certain threshold, 7', a kick is applied and the
counter reset to zero. If one is not so worried about
someone recovering the seed and one only wants to
avoid the problem of falling into a small period
then the threshold level can be chosen to be quite
high as our numerical experiments on the logistic
map suggest.

If we assume the LFSR outputs bits with a uni-
form distribution, then the probability of a kick
occurring at the n®* bit is given by

p() = gl + 3 pli)aln — )

where

o=5((7) (")

The expected length of time between kicks then
comes out at around 27" and the chance of going
47T bits without a kick occurring is negligible.

If you graph the function p(n) for some choice
of T" then you notice that it oscillates around =
1/(2T) with a period of 27" bits. However, the
amplitudes decrease over time so after a while the
function appears to behave as a constant function.
Hence if the output from the bit stream is used
from this point onwards it appears as if no statisti-
cal properties of when the kick occurs can be used
in any cryptanalysis.

In practice we decided to take e = 32, then all
arithmetic can be done in 64 bits, which just hap-
pened to be the length of the data-type unsigned
long long for our C++ compiler. We used the
standard C command rand() to produce the ran-
dom kicks z; however, any non-constant function
seemed to be able to be used here, with no degra-
dation of statistical properties.

This meant the key-size (or size of data needed to
start the bit stream) was (23?)* = 228, This con-
sisted of two 32-bit integers for (zy,yo), one 32-bit
integer for the seed for the random number gener-
ator and one to initialise the 32-bit LFSR. In our
experiments we decided to take T' = 16 = e/2.

The resulting code produced around 150,000 bits
per second on a Silicon Graphics R5000 worksta-
tion. The resulting stream of bits was tested for
statistical randomness using the Frequency, Auto-
correlation, Serial, Runs and Linear Complexity
tests. In addition we tested the resulting streams
against Maurer’s Test [Maurer 1992]. Sequences
of various lengths and various subsequences were
tested. For every sequence and test applied the
tests accepted the null hypothesis, that the se-
quences were indeed random, at a confidence level
of ninety five percent.
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