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Let H3 be three-dimensional hyperbolic space and I" a group
of isometries of Hlg that acts discontinuously on Hz and that
has a fundamental domain of finite hyperbolic volume. The
Laplace operator —A of Hj gives rise to a positive, essentially
selfadjoint operator on L%(I'\Hj3). The nature of its discrete
spectrum dspecI is still not well understood if I" is not co-
compact.

This paper contains a report on a numerical study of dspecT’
for various noncocompact groups I'. Particularly interesting
are the results for some nonarithmetic groups I".

1. INTRODUCTION

For an integer n > 2, let H,, be n-dimensional
hyperbolic space, that is, the connected and sim-
ply connected Riemannian n-manifold of constant
curvature —1. Denote by ds the line element of
H,,, by dv its volume form, and by A its Lapla-
cian. Let IsoH, be the group of isometries of
H,, and Iso*H, the subgroup of orientation-pre-
serving isometries. If I' C Iso H,, is a subgroup, let
I't :=TNIsotH,.

Throughout this article we will assume that I" is
a group that acts discontinuously on H,,, and that
the quotient space I't\H,, has finite hyperbolic vol-
ume. Such a group is called cofinite. A cofinite
group I' admits a fundamental domain Fr C H,
that is a hyperbolic polyhedron, bounded if and
only if I'"\H], is compact.

Since I' normalizes I't, it acts by translation on
L*(T*\H,,dv). Let L?*(T) = L*(T'*\H,,dv)" be
the closed subspace of I'-invariant functions.

It is known that the Laplace operator —A de-
fined on a suitable domain in L?(T") has a unique
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positive selfadjoint extension to an operator, also
called —A, on L?(T"). The spectrum specI’ of —A
on L?(T") decomposes into discrete and continuous
parts:

specI’ = dspec' U cspecI.

The continuous spectrum cspecI' is empty if I'\ H,
is compact (such groups are called cocompact) and
otherwise the union of finitely many intervals
[l(n —1)%, oo)

4

The discrete spectrum contains 0 and is moreover
a discrete subset of the nonnegative real numbers.
It is an important question how the sets dspecI' C
[0,00) might look in general. When I' is cocom-
pact, it is known that dspecI is infinite and satis-
fies Weyl’s asymptotic law. To formulate this dis-
tribution law we define

(47)~™/2 vol(T'T\H, )
T(En+ 004

cl) =

where vol is the hyperbolic volume and I'(-) rep-
resents the usual I'-function. For a real number T'
we put

Np(T) := |[{\ € dspecT : A < T?}|,

counting eigenvalues with their multiplicities. We
say that I' satisfies Weyl’s law if
. Ne(T)
fm —p = ).

It is also known that cofinite (not cocompact)
arithmetic congruence groups I' satisfy Weyl’s law
[Selberg 1956; Venkov 1977a; 1979; 1981], and that
dspecI' is an infinite set if I" is not equal to its
normalizer in IsoH, or if, more generally, T" is
not equal to its commensurator in Iso H, [Venkov
1977b; 1978]. Note that if T is arithmetic then it
is of infinite index in its commensurator.

This being what is known in general, there is
the following fascinating story for the case n = 2.
Here H, is the hyperbolic plane and the groups I'
are the classical cofinite Fuchsian groups. After
an older conjecture of Roelcke and Selberg that

any such group should satisfy Weyl’s asymptotic
law, a better understanding due to Phillips and
Sarnak [1985a; 1985b] led to the conjecture that
for generic cofinite but not cocompact groups I'
the discrete spectrum dspecI' should only consist
of finitely many elements. The new conjecture
derives its credibility from Fermi’s golden rule, a
principle well known in physics: A cofinite group
I' with infinite dspecI’ might be deformable in a
suitable Teichmiiller space. A small deformation
should then lead to a new group, for which all
eigenvalues embedded in the continuous spectrum
should have disappeared. The term “generic” is at
the moment still somewhat unclear; one hopes it
might mean something like an element in general
position in a Teichmiiller space. The new conjec-
ture has subsequently been heuristically checked.
There where also important steps toward a proof:
see [Hejhal and Rackner 1992; Sarnak 1986; Sarnak
1990; Wolpert 1994] for the state of the art.

There is the effort of P. Sarnak [1986; 1990] to
get a conjectural understanding of the situation for
more general symmetric spaces. For the spaces H,,
with n > 3 the situation remains difficult to judge.
On the one hand there are many nonarithmetic
or arithmetic noncongruence cofinite groups. On
the other hand a heuristic reasoning using Fermi’s
golden rule is not possible since, due to Mostow’s
rigidity theorem, there are no genuine deforma-
tions of the groups [Elstrodt et al. > 1996].

This paper reports on a numerical study of the
discrete spectrum dspecI' for some cofinite non-
cocompact groups I' < Iso™H; that admit a fun-
damental domain of a simple nature. We mainly
consider fundamental domains that are tetrahedra
with exactly one point at infinity or that are sim-
ple combinations of such. There are exactly nine
tetrahedra with one point at infinity that tesselate
Hjz. These tetrahedra and their reflection groups
are described in Section 3.1.

Some of the groups so obtained are arithmetic.
To describe them we identify Iso™ Hj with PSL,(C).
If O is the ring of integers in an imaginary quad-
ratic number field then PSL,(0) is an arithmetic,
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cofinite, noncocompact subgroup of PSLy(C). In
fact a cofinite, noncocompact subgroup I' < Iso Hjs
is arithmetic if and only if it is Iso Hs-conjugate
to a group I' commensurable to one of the groups
PSL,(0). It is a congruence group if I' can be cho-
sen to contain a full congruence group of PSLy(0).

For example, we were able to treat the groups of
imaginary quadratic integers PSLy(Z[a]) for a = 1,
a=+/=2,and a = (-1 +v/=3), as well as some
groups commensurable to these. Section 8.1 con-
tains tables of the small eigenvalues. Here is a
sample of the results.

The group E5 from Section 3.6 is noncocompact,
nonarithmetic, and equal to its commensurator.
We have found the following approximate eigen-
values below 220:

45.1, 95, 112, 118, 145,
163, 173, 189, 196, 199, 2167

(The question mark indicates we were not certain
from the numerical results that the eigenfunction
we obtained for this eigenvalue satisfied the L>-
condition.)

We also find

C(Es) =~ 0.002926,

and

Ng, (15)

—=— ~0.003259.

153

Considering similar computations in the arithmetic
cases this seems to be a reasonable case for Weyl’s
asymptotic law, which reads in dimension three as
follows:

Np(T
lim r(T)

T—o0 T3

B ~ vol(I'"\H,)
=00 = Grrr

We also mention the reflection group I'y of a
tesselating tetrahedron with two points at infinity,
given in the notation of Section 3.1 by

T = [60°, 30°, 90°; 60°, 60°, 90°].

This group, too, is noncocompact, nonarithmetic,
and equal to its commensurator. We have found
the following table of eigenvalues below 187:

32.8, 68, 707, 76, 92, 94, 1167, 124,
148, 150, 1607, 163, 1827, 186

Since I'y has two points at infinity, the method of
computation is more involved and will be described
in a later paper [Grunewald and Huntebrinker]|.

Our computations of eigenvalues use finite ele-
ment methods. In Sections 4 and 5 we report on
the procedure that we have used; more details are
given in [Huntebrinker 1995]. Right now we com-
ment only on questions of accuracy and appropri-
ateness of our method. First of all, our results
have gone through many compatibility checks, de-
scribed in [Huntebrinker 1995]. Secondly, in two
dimensions, an earlier version of the program re-
ported on here produced very good agreement with
results produced by other methods [Huntebrinker
1991].

In three dimensions comparative data are more
scarce. There is one published table of eigenvalues
[Smotrov and Golovchansky 1991] that was found
by a different method. It contains the twelve small-
est eigenvalues for I' = PSL,(Z[i]). Because of an
error in one of their corollaries, the authors were
only able to catch eigenfunctions that are also in-
variant by the bigger group PGL2(Z[i]), considered
as a subgroup of PSL,(C) via the embedding

Y
— .
g Vdet g

These eigenfunctions are those of our symmetry
types C and D. Taking this into account we get
perfect agreement between that table and our re-
sults.

Recently we became aware of a list, computed
by G. Steil and F. Steiner at the Institute of Theo-
retical Physics at the University of Hamburg, con-
taining eigenvalues under 900 for I' = PSL,(Z[4]),
with six-digit accuracy. It was computed by a dif-
ferent method, relying on Fourier expansions of
the eigenfunctions. Agreement with our results is
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again good. For the smallest eigenvalues we ob-
tain the same accuracy; for larger eigenvalues our
results are worse.

There have been reports of significant progress
on the high-precision computation of eigenvalues
for triangle groups in Iso H, by the Fourier expan-
sion method [Bogomolny et al. 1992; Bolte et al.
1992; Hejhal 1992; Hejhal and Rackner 1992; Steil
1994]. Although our method does not give the
same precision, it has the merit of flexibility. It
doesn’t use the existence of Hecke operators and
is also applicable if I' has more than one cusp. It
allowed us to perform an experiment that appar-
ently could not be done by the Fourier expansion
methods, as follows.

As mentioned above, Mostow’s theorem prevents
us from deforming discrete groups of three-dimen-
sional hyperbolic isometries. So we studied what
happens if their fundamental tetrahedra were de-
formed. This can be done by continuously varying
angles or edge lengths. We have done computa-
tions for an interesting continuous family of such
tetrahedra (Section 3.7) that includes fundamen-
tal domains. We have fixed boundary conditions
(Dirichlet or Neumann) on the bounding planes
and looked for exponentially decaying (approach-
ing the infinite vertex) solutions. These results are
described in Section 8.2. In the case of full Neu-
mann conditions on the boundary the tables give
an interesting picture.

The programs were designed by the second au-
thor, and information on them can be found in
[Huntebrinker 1995], together with tables of eigen-
values for subgroups of finite index in the groups
treated here. Our actual numerical computations
were done on IBM RS/6000 machines.

2. THE EIGENVALUE PROBLEM

We start by describing the upper half-space model
of three-dimensional hyperbolic space. Then we
summarize the L2?-spectral theory of the Laplace
operator for certain quotients of hyperbolic space.
We also fix some notation to be used in the sequel.

2.1. The Laplace Operator for Hyperbolic Space
Let H; be the upper half-space in R?, that is,

Hs = {(z,y,r) € R® : 7 > 0} .

The hyperbolic metric on Hj is given by the line
element

dz? + dy?* + dr?
= 7.2 .

ds?

This line element induces the volume form
dz dyd
dv = S dvdr
r

The corresponding Laplace operator is given by

0? 0? 0? 0
A=y? <_+_+_) 2

x T or

[Elstrodt et al. 1987].

We write IsoHz and IsotHs for the group of
isometries of Hz and its subgroup consisting of
orientation-preserving maps. Iso™Hs can be iden-
tified with the group PSL,(C): Thinking of upper
half-space as C x R*, with (z,y,r) corresponding
to (z + yi, r), the action of

(Z Z) € PSL,(C)

takes (z,7) € C x RT to

(az + b)(¢Z + d) + acr? r
lez +d|2+ |c]2r2 ez +d|? + |c]?r?

The group Iso H is then the extension of PSLy(C)
by the complex reflection

T:HS_’H& T:(m,y,r)H(m,—y,T).

We consider here subgroups I' C IsoH; that
act discontinuously on Hjz. We suppose further
that I admits a (measurable) fundamental domain
Q C Hj; of finite hyperbolic volume but that the
quotient space I'\Hj is not compact.

Such a I is known to have a fundamental domain
Q = Jr C H; that is an unbounded hyperbolic
polyhedron. One can choose 2 to have a bound-
ary consisting of finitely many polygonal pieces of
hyperbolic planes.
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For I' C Iso™H; we write L?(I'\Hs, dv) for the
set of classes of Borel measurable functions f :
H; — R that are I'-invariant (that is, satisfy foy =
f for all v € T') and square-integrable:

/ |f|? dv < co.
Ir

Let D be the subspace of L*(I'\Hjs,dv) N C?(H;)
consisting of functions f whose Laplacian Af is
also square-integrable. It is known that —A, re-
garded as an operator from D to L*(T'\Hj), is es-
sentially selfadjoint and positive [Elstrodt et al.
1987]. We denote the selfadjoint extension of this
operator by —A as well.

For a general I' C Iso Hs we put I't := 'NIso* Hj
and write L*(T") := L?(I'"\Hs, dv)" for the closed
subspace consisting of classes of I'-invariant func-
tions. Restriction gives a positive selfadjoint oper-
ator —A on L*(T).

By an application of Stokes’ Theorem we know
that for f € L*(T") the following two statements
are equivalent [Elstrodt et al. 1987; > 1996]:

1. f lies in the domain of —A and satisfies

—Af =\f for some A. (2.1

2. For all g € L*(T") we have

/ r*(fo9z + fygy + frgr) dv = A/ fgdv,
Q Q

with dv = w . (2.2)
r
We shall use this equivalence to symmetrize the
operator —A, which is asymmetric in the original
coordinates. This also shows that for our eigen-
value problem we could have also considered the
Hilbert space of complex L2-functions.

2.2. The Spectrum of the Laplace Operator

The spectrum specT' of —A on L*(T") splits into its
discrete and continuous parts:

specI' = dspecI' U cspecT'.

The continuous spectrum cspecI' consists of a
certain number of repeated intervals:

hr

cspecl' = U[l, 00),

i=1

where hr is the number of cusps of T' [Elstrodt et
al. 1985; Hejhal 1983; Maafl 1949a; Maafl 1949b;
Venkov 1981].

The discrete spectrum dspecI is a discrete sub-
set of [0,00) containing 0 with multiplicity 1. We
shall use the notation

dspecT = {0 < AL < A: < -+ },

writing eigenvalues with their multiplicity.

2.3. Asymptotics of Eigenfunctions

We consider here eigenvalues A € dspecI’, with
A > 1. An eigenfunction f € L?*(T) corresponding
to A will be C* on Hj by elliptic regularity.

We suppose now, by possibly replacing I' with
one of its conjugates, that oo is a cusp of I'. This
means that there is a lattice A C C with

= rn{(5t) e = {(3) men).

For v, w € C we put (v,w) =
denote the lattice dual to A by

3 (ow + wv) and

A :={weC: (uw)eZforal peA}.

From (2.1) and the fact that A > 1, we get a Fourier
expansion for f [Elstrodt et al. > 1996]. Namely,
for (w,r) € Hs, we have

flw,r) = Z a, Ko (2| p|r)e? vl (2.3)
neAO\{0}

where a, € R, s? = 1— ), and K is a Bessel func-
tion that has for » — oo the asymptotic behavior

VK (27| u|r) ~ ce” 2Tk

(see [Abramowitz and Stegun 1965, §§4.2.27, 9.2.3,
9.2.4, 9.6.4; Maa$ 1949a; 1949b)).
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Since the series for the Fourier expansion (2.3) of
f converges uniformly to f, we find an exponential
decay of f as r — oo.

We shall consider in our examples only groups I'
where AL > 1 is already known.

For eigenvalues A < 1 we get a Fourier expansion
of the eigenfunctions similar to (2.3) with some ad-
ditional terms that decay polynomially as r — oo.

3. SOME DISCONTINUOUS GROUPS AND THEIR
FUNDAMENTAL DOMAINS

This section will describe some discontinuous sub-
groups I' C IsoHj; together with a fundamental
domain that will always be of the form

Q={(z,y,r):(z,y) €P, r>+/1-22—y2} (3.1)

where P is a closed triangle or quadrangle con-
tained in the unit disc.

In 3.1 we treat the case when § is (combinato-
rially) a tetrahedron. Later we shall discuss exam-
ples of arithmetic groups (Sections 3.2-3.5) and a
nonarithmetic group (Section 3.6).

To fix the notation, let d be a positive integer
and K = Z(v/—d) the corresponding imaginary
quadratic number field with ring of integers 0. We
use our identification of PSLy(C) with the group of
orientation-preserving isometries of H; to embed
PSL,(0) into IsoH;. Then PSLy(0O) acts discon-
tinuously on H; with a quotient space that is of
finite volume but not compact. It turns out that
PSL,(0) has a unique maximal discontinuous ex-
tension in IsoHs [Elstrodt et al. > 1996]. This
group is called the extended Bianchi group EB(O).

3.1. Tesselating Tetrahedra

We consider here geodesic tetrahedra © C Hj that
have one vertex at oo and three finite vertices. We
further suppose that © tesselates Hly, that is, Hs
can be covered without interior overlap by congru-
ent copies of ©. Up to isometry such a tetrahedron
is determined by the angles between its boundary

planes. Looking down from the vertex at infinity
we have this situation:

We can then represent the isometry types T by
the symbol T = [«, 3,7;7,(, p]. An application of
the Poincaré combination theorem shows that, up
to isometry, there are only nine tetrahedra with
the tesselating property [Elstrodt et al. > 1996]:

T, = [45° 90°, 45° 90°, 60°, 90°]
T, = [90°, 45° 45°% 90°, 60°, 90°]
T3 =[30° 90° 60°% 90°, 60°, 90°]
T, = [60°, 60° 60°% 90°, 60°, 90°]
Ts = [30° 90° 60°% 90°, 45°, 90°]
T = [60°, 60°, 60°% 90°, 45°, 90°]
T, = [30° 90°, 60° 90°, 36°, 90°]
Tg = [60°, 60°, 60°% 90°, 36°, 90°]

To = [45°, 45° 90°% 60°, 60°, 90°]
Given a tetrahedron © from one of these classes,
we may form the tesselation group G(0) of ©, that
is, the subgroup of Iso Hj generated by the reflec-
tions in the boundary planes of ©. It is known
that G(©) acts discontinuously on Hj; and has ©
as fundamental domain. Since © also has finite
hyperbolic volume, G(0) is one of the groups dis-
cussed in the Introduction.

Take © € T;. By doubling © through a suitable
boundary plane we obtain a tetrahedron ©' € T,.
It is then easy to see that G(©) is of index two over
G(©'). The same situation also holds for the pairs
((-T37 74), (r*T57 76), (r*T77 (‘TS)

The groups for the tetrahedra from Ty, T3, Ts, T
will appear below. The group corresponding to a
tetrahedron from Ty is conjugate to a group com-

mensurable with PSL,(Z[i]) and will not be dis-
cussed further.
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3.2. PSL,(Z]i])

A fundamental domain for PSLy(Z]i]), first given
in [Picard 1884], is described as follows:

T, = {(ac,y,r) :
—l<z<lo<y<ir>y1-22—y?}

[Elstrodt et al. 1987; Stramm 1994; Swan 1971].
T, is a hyperbolic pyramid with top point at oo
and all other points finite.

The boundary identifications of T'; by PSLy(Z[i])
are given by S = (_(1) (1)), a 180° hyperbolic rotation

around the line with endpoints (z,7) = (&£3, 0);
T = ((1) i), a parabolic transformation mapping

(z,7) to (z+1,r); T; = ((1);), a parabolic trans-
formation mapping (z,7) to (2 + 4, r); and U, =
(3 73), a 180° rotation around the r-axis.

From the identification S we get for a I-invariant

Laplace eigenfunction f the condition

f(ﬂ?,y,’/‘) = f(—ac,y,?")

on the bottom boundary of Y; (a piece of the hy-
perbolic plane defined by z? + y*> + r* = 1). From
the identifications Ty, T, ', Uy, and T;U, among
other pieces of the boundary of T; we get the ad-
ditional conditions

f(@,5:m) = f(=2,5:7),
f(3ur) = f(=597)
f(x,O,r): ( x, )

(

The extended Bianchi group EB(Z[i]), which is
of index four over PSLy(Z]7]), has

@1:{(ac,y,r):
0§w§%,0<y<x,r2 l—arz—y2}

as fundamental domain [Bianchi 1892].

The tetrahedron ©; is in the class J; and has
volume approximately 0.0763. EB(Z[i]) is the tes-
selation group of ©;. Concerning the eigenvalues
of the Laplace operator we know [Elstrodt et al.
1987; Stramm 1994] that

1 2.2
APSLz(Z[i]) Z gﬂ' ~ 658

3.3. PSL,(Z[v/—2])

Put £ := v/—2. Then Z[¢] is the ring of integers in
the number field Z(v/—2). A fundamental domain
of PSL,(Z[¢]) is

TZZ{(x7y7T):
el L2 <cy< 2 > 122 y2 ).

The boundary identifications come from S, 17, the

parabolic T; = ((l)f), 77" and T{l. A Laplace

eigenfunction f satisfies

f(IE,y,’I‘) = f(_mayar)

on the bottom boundary of Ts,.
boundary pieces we get

f(xa %ﬂ") = f(ma _§7T)7
f(§7ya ) = f(%,—yﬂ”)-
A fundamental domain of the extended Bianchi

group EB(Z[¢]), which is again of index four over
PSL,(Z[¢]), is

On the vertical

The volume of O, is approximately 0.2509. It is
known that

Abstaziey 2 37 A 247
[Elstrodt et al. 1987; Stramm 1994].

3.4. PSLy(Z[5(—1 ++/-3)])
Let w be the cube root of unity (-1 + v/— 3)
Then Z[w] is the ring of integers in Z(1/—3).
fundamental domain of PSLy(Z[w]) is
Ts={(z,y,r):0<z <1
z<y< 1 (1—x)

> VTR

f
[Stramm 1994; Swan 1971]. The boundary iden-
tifications are given by T, = (é“l’), a parabolic

transformation taking (z,t) to (z + w, t);

—im/3 0
e
U27r/3 — ( 0 eiﬂ—/3> I
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a 120° rotation around the r-axis; and S, 11, Uz./3,
Usrss Uy, UsysThs UsmysTi T,

The extended Bianchi group EB(Z[w]) is of index
four over PSLy(Z[w]) and has

05 = {(ac,y,r) :
0<2<3,0<y< o, r>/1-a2—y?}

as fundamental domain [Bianchi 1892]. ©; is in

the class T3 and has volume approximately 0.0422.

EB(Z|w]) is the group of the tesselation with ©s3.
It is known that

1 32_2
Abspyzp)) = 2n® & 11.70

[Elstrodt et al. 1987; Stramm 1994].

3.5.E,and T,

Here we start off with the tetrahedron

01 = {(z,y.7):
0<e< 55, 0<y< Joyr 2 V1-a? — g2},

which is in the class T5. We define E; to be the
group of the tesselation given by 0,. By looking
at the angles of ©4 one can see that F, contains a
subgroup I'y; C PSL,(C) of index four, which has
the pyramid

as fundamental domain. The group I'y is com-
mensurable with PSLy(Z]w]), with commensurabil-
ity index g The volume of O, is approximately
0.1056. It can be proved, using the method de-
scribed in [Elstrodt et al. 1987; Stramm 1994], that

A, > L.
3.6. E; and I';
Here we start off with the tetrahedron

s = {(z,y,7): 0 <z < %(1—}—\/5),

0<y< fa,r>y/1—a2—y?},

which is in the class T;. We define E5 to be the
group of the tesselation given by Os. By looking
at the angles of Oy it can be seen that Es contains
a subgroup

I's € PSL,(C)
of index four, which has the pyramid

Ty = {(ac,y,r):O <z< %(l—i—\/g),

as fundamental domain.

By the arithmeticity criterion of Vinberg, Fj is
not arithmetic. A look at its fundamental domain
shows that Es is maximal discontinuous. By an
arithmeticity criterion of Margulis Fs is also equal
to its commensurator; see [Elstrodt et al. > 1996]
for more details.

The volume of ©j is approximately 0.1732. By
the method of [Elstrodt et al. 1987; Stramm 1994]
we can prove that

Ar, > 1.

The boundary identifications for T, and Y5 are
analogous to those of Y3, and induce similar sym-
metries.

3.7. A Family of Tetrahedra

For later use we introduce a continuous family of
tetrahedra. If zy and yg are positive reals with
Tq < 1and y <1— 13, we set

G(mQ7yQ) = {(.’E,y,T‘) 0z < zQ,

0<y<wmyg/zg, V1—22—y2<r}.

For suitable values of the parameters, O(zq,yq)
coincides with the tesselating tetrahedra discussed
before.

One edge of ©(zq, yq) always passes through the
north pole of the unit sphere. The angle between
the vertical boundary planes meeting there is called
northern angle.
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4. DISCRETIZATION

We describe here the general principles we use to
find appropriate solutions of the differential equa-
tion

“Af = \f. 4.1)

4.1. Cut-off

Consider the equation (4.1) on polyhedra 2 C Hj
of type (3.1) with boundary 02. We want to find
solutions that satisfy certain compatibility condi-
tions on Jf) and that have a rapid decay for r — oo.
So it seems reasonable to replace the unbounded
polyhedron

Q={(z,y,r): (z,y) €P, >0}
by the bounded region
Qr = {(il?,y,’l") €:r< R}a

where R is supposed to be reasonably big. The
new regions {1y have an additional upper bound-
ary, which we call 0€.

We now search for solutions of our differential
equation (4.1) on the regions Qx. To recognize
amongst the solutions obtained the desired eigen-
functions, we consider the following two additional
boundary conditions:

1. the Dirichlet condition u = 0 on 02y, and
2. the Neumann condition Ou/On = 0 on 0€).

We look for solutions of (4.1) on Qg separately
under the Dirichlet boundary condition and under
the Neumann boundary condition. If two such so-
lutions coincide, taking into account the quality of
the approximation, both come from a rapidly de-
caying solution on €.

In each case, we usually start by applying our
procedure with R = 15, and then again with R =
19, in order to compare the results. If the differ-
ences in the eigenvalue approximations were con-
siderably smaller than the error predicted by the
choice of the actual finite elements [Axelsson and

Barker 1984; Zienkiewicz and Morgan 1983] we ac-
cepted the chosen cut-off height; otherwise we in-
creased it.

4.2. Division of Polyhedra

Suppose our polyhedron 2 admits a symmetry by a
hyperbolic reflection ¢ in some vertical plane that
cuts  into to congruent pieces 2 and Q". We
write 9, for the common boundary of ' and Q".

Since the space of solutions for given A decom-
poses into an even and an odd part [Huntebrinker
1995; Smotrov and Golovchansky 1991], it is some-
times convenient to consider our problem only on
one half, say €', of 2. Since the plane of symmetry
is vertical we may then use the cut-off regions Q.

To get the even eigenfunctions we look for solu-
tions on Q% of (4.1) subject to the boundary con-
ditions

ou

u=0 on 00, — =0 on 09y, (4.2)
on

and then for solutions subject to the boundary con-
ditions
ou
an
The desired eigenfunctions of rapid decay are those
that are solutions for both sets of boundary condi-
tions.
To get the odd eigenfunctions we impose the
boundary condition

=0 on 9 U0IN;.

0Q U 0€Y4. (4.3)

=0 on

The numerical computations indicate that all solu-
tions of (4.1) under this boundary condition have
the required rapid decay.

4.3. Weak Formulation

We want to apply the finite element method to our
eigenvalue problem. To do this we need a weak
formulation of the problem [Babuska and Osborn
1991; Chatellin 1983; Hackbusch 1986].

We use the equivalence of the differential equa-
tion (2.1) and the integral equation (2.2) and get
the following weak formulation:
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Determine uw € V' such that, for allv eV,

1
/// —(ugvy + uyvy + upv,) de dy dr =
Qr T
1
)\/// —3uvdmdydr, 4.4)
Qr T

where V is the Sobolev space Hy(Qg) if there is a
Dirichlet boundary condition, or the Sobolev space
H'(QR) if all boundary conditions are Neumann.

Note that the weak formulation gives a symmet-
ric eigenvalue problem with real eigenvalues and
eigenfunctions.

5. NUMERICAL METHODS

In this section we discuss the actual algorithms
used, and comment on our methods of triangula-
tion.

The reader unfamiliar with finite element meth-
ods can turn to the books [Axelsson and Barker
1984; Hughes 1987; Schwarz 1991; Zienkiewicz and
Morgan 1983] for general information.

5.1. The Problem

We consider our cut-off region Qr C R? x R, as
described in the previous section. Let €2 be the
boundary of Q2 and 09y the top boundary. We
suppose, as indicated in the last section, that the
remaining boundary is decomposed into parts 0€);,
1 = 1,...,5. We wish to numerically solve the
eigenvalue problem (4.4), subject to j + 1 bound-
ary conditions of the form (4.2) or (4.3), and the
additional condition

1
/// ﬁudxdydr:[). (5.1)
Qr

If the 7+ 1 boundary conditions are all of Dirich-
let type on 0Qg, the side condition (5.1) is op-
tional. Otherwise it is necessary in order to make
the eigenvalue problem uniquely solvable [Hack-
busch 1986].

To sum up, a choice of a triangulation will lead
to a matrix equation of the following type:

w oA 1) (1) =2 (). 62

5.2. Decomposition into Standard Regions

As described in the previous section, the total re-
gion p is decomposed using additional symme-
tries into a certain number of congruent standard
regions. The standard regions we encounter are
truncated hyperbolic pyramids, given for suitable
z¢g and yg by the equations

(p(xQ’yQ)R = {(m,y,r) :0<z < TQ,
—zyo < yzo < 1Yq, V1—12—y? <r < R},

U(zq,y0)r = {(z,y,7) : 0 <z < mg,

0<y<yq V1-a22—y? <r < R}

We refer to these regions as triangular or rectan-
gular prisms, respectively, because of their appear-
ance in upper half-space (Figure 1). These prisms
are bounded below by the unit sphere.

Figure 1 also shows our notation for the edges.
Edge N always passes through the north pole of
the unit sphere. The angle between planes NP
and NQ is called the northern angle. The prism
®(zq,yg)r is a cut-off version of double the tetra-
hedron O(zq,ye) introduced in Section 3.

The stiffness matrix A and the mass matrix B
in (5.2) are only computed for one standard re-
gion. The total matrices are not stored; they only
appear implicitly when boundary conditions are
introduced [Huntebrinker 1995]. This procedure
leads to a considerable amount of saving of stor-
age space, and makes the computation feasible on
smaller machines. A disadvantage is the bad vec-
torizability of matrix multiplication, but on the
IBM RS/6000 used by us this played no role.

The Dirichlet boundary conditions are enforced
by the elimination of all nodes from our eigenvalue
problem [Schwarz 1991; Huntebrinker 1995]. In
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Edge P
‘ Edge Q

—

Truncation of O(zg,yg)

Edge T

]

Y
Part D
NN /\ Part E

®(zq,YQ)r

Edge P
Edge Q Edge S | Edge Q
Edge N ————
Part A Part A
Part B Part B
Part C

¥(zq,YQ)r

FIGURE 1. Decomposition of the standard regions, showing also the labeling of vertical edges. Parts A-E
correspond to different methods of subdivision into elements (Section 5.5).

this way the size of the system of linear equations
is reduced by the number of Dirichlet boundary
points.

5.3. Choice of Elements

Since the desired eigenfunctions are sufficiently reg-
ular, it is possible to use higher-degree elements
[Hackbusch 1986; Babuska and Guo 1988; Babuska
et al. 1989; Babuska and Osborn 1991]. Quad-
ratic or cubic elements are particularly suited to
eigenvalue problems because they reduce the size
of the final system of linear equations. The biggest
gain occurs by using elements from the serendip-
ity family without inner nodes [Ergatoudis et al.
1968; Hughes 1987; Schwarz 1991; Zienkiewicz and
Morgan 1983]; see also [Huntebrinker 1991; Hunte-
brinker 1995].

For the approximation of the sphere caps at the
bottom we have to use isoparametric elements. The
quality of the approximation here depends on the
choice of the nodes on the curved boundary [Ax-
elsson and Barker 1984; Banerjee 1992; Banerjee
and Osborn 1990; Ciarlet 1978; Ciarlet and Raviart
1972; Schwarz 1991; Zienkiewicz and Morgan 1983].

It is especially important to avoid obtuse inner
angles in the elements. Acute angles give signif-
icantly better approximations [Babuska and Aziz
1976; Jamet 1976; Krizek 1992]. In order for only
acute angles to occur we use tetrahedral elements
near the points where the vertical planes meet the
sphere.

In the areas of big r we use parallelepiped ele-
ments, which offer the possibility of a finer adjust-
ment of the triangulation.
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5.4. Adaptive Refinements

By adaptive refinement we mean the refinement
of a triangulation with the aim of minimizing the
global error in the computation of an iterated func-
tion, by minimizing local errors. See [Babuska
1986; 1988; Babuska and Guo 1992; Ewing 1990;
Strouboulis and Haque 1992; Zienkiewicz and Zhu
1991] for a discussion of standard methods.

To get good indicators for the local errors of the
iterated functions we use a method that we will
describe below. Our choice of refinement leads to
restricted adaptivity [Huntebrinker 1995].

Taking the strong decay in r-direction of our
desired solutions into consideration we use in the
lower parts of the standard region a global strat-
egy of refinement. In the upper parts we use an
adaptive refinement with the size of the iterated
function as error indicator. If the cut-off height
is chosen big enough this leads to reasonable re-
sults. For our actual choice of cut-off heights, see
the explanation in Section 4.1.

For the computation of the error indicators it is
important to have no eigenfunctions without strong
decay present, because such eigenfunctions force an
excessive refinement in the upper areas. We there-
fore choose the functions for the computation of
the indicator after some analysis of their growth.

5.5. Triangulation of the Standard Regions

We now describe how our standard regions (prisms)
are triangulated. Rectangular prisms are cut into
five areas (see Figure 1, right):

1. In area A, which is above some horizontal plane,
we use parallelepiped elements. The refinement
is controlled by the error indicator described
above.

2. Just below area A we have area B, which is
bounded above by a horizontal plane and be-
low by a surface that models the surface of the
sphere. Here we use parallelepipeds that get
shorter when approaching the r-axis.

3. Between the curved surface and the sphere cap
at the bottom we get area C, where we make

the parallelepiped elements shorter as we move
in the direction of the zr- and yr-planes. This
cuts off two wedges along the lower left-hand
edge and along the rear edge.

4. Between the wedges, the surface of the sphere
and the boundary planes area D, which is a
pyramid, appears. This area is decomposed us-
ing tetrahedral elements.

5. The union of the two wedges, area E, is de-
composed into prism elements with triangles as
cross-sections.

Triangular prisms have a simpler triangulation, as
shown in Figure 1, middle: in area A with a refine-
ment controlled by an error indicator, and in area
B with a global refinement strategy, using a vari-
ation of methods of Bank and Sherman for com-
puting the subsequent triangulations [Bank 1983;
Bank and Sherman 1979; 1981; Bank et al. 1983].

5.6. Iteration Methods and Analysis of Eigenfunctions

We use simultaneous vector iteration together with
the method of conjugate gradients. For these pro-
cedures see [Concus et al. 1976; Hackbusch 1993;
Hestenes and Stiefel 1952; Schwarz 1991; Babuska
and Osborn 1987; 1989; 1991]. The eigenvalues
are determined here by computation of a Rayleigh
quotient. See [Sartoletto et al. 1989; Gambolati
and Putti 1994; Watkins 1993] for an overview of
methods for the computation of eigenvalues of big
matrices. For the details of our procedure we refer
to [Huntebrinker 1995]. For the iteration method
used it is important not to have too much need of
storage space.

To judge the decay of the appearing functions
we compute maximal and minimal values in the
upper areas of our region. These data also offer the
possibility of seeing symmetries of the function.

6. SYMMETRIES OF EIGENFUNCTIONS
There are two distinct situations:

1. If ©; is a tetrahedron, so its truncation is a rect-
angular prism, we consider the union of ©; with
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FIGURE 2. Symmetries of eigenfunctions for a triangular prism with a northern angle of 45°.

its reflection in the plane NQ. The newly arising
vertical edge is called T. The eigenspace with re-
spect to a given \ decomposes into subspaces of
functions that are either even or odd with re-
spect to each of the boundary planes (the bot-
tom, NT, NQ, and QT).

2. If ©; is a pyramid, so its truncation is a rect-
angular prism, the eigenspace with respect to a
given A decomposes into subspaces of functions
that are either even or odd with respect to the
boundary planes (the bottom, NP, PQ, QS, and
NS).

Of course, not all combinations of symmetries are
possible. We now describe and name the cases that
do arise.

6.1. Symmetries for a Triangular Prism

For T, T3, T4, and Y5, six types of symmetries
can arise, as listed below. The edge P is the same
as in the explanation above. See also Figures 2
and 3.

Type B: even with respect to the bottom, NQ, and
PQ; odd with respect to NP.

Type C: even with respect to the bottom, NP, and
PQ; odd with respect to NQ.

Type D: even with respect to all boundary planes.

Type G: odd with respect to all boundary planes.

Type H: odd with respect to the bottom, NP, and
PQ; even with respect to NQ.

Type J: odd with respect to the bottom, NQ, and
PQ; even with respect to NP.

On 7T, the fundamental region of PSLq(Z[i]), we
have eigenfunctions of types C, D, G and H (see
Figure 2). On T3, T, and Y5, we have the types
B, D, G and J (see Figure 3).

On the fundamental regions ©;, 03, O, and Os
we only have eigenfunctions of type D.

6.2. Symmetries for a Rectangular Prism

In the computations on T, we get eigenfunctions
of four types of symmetry. For the polyhedron in
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FIGURE 3. Symmetries of eigenfunctions for a triangular prism with a northern angle of 30°.

Type D Type P
+ + + + + - + -
+ + + + + — + —
+ + + + + — + —
+ + + + + — + —
Type H Type T
_ + - + _ - - -
+ - + - + + + +
_ + _ + _ _ _ _
+ — + — + + + +

FIGURE 4. Symmetries of eigenfunctions for a rectangular prism.
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Figure 1, with edges N, P, Q and S, they are as
follows:

Type D: even with respect to all boundary planes.

Type H: odd with respect to all boundary planes.

Type P: even with respect to the bottom, NP, and
QS; odd with respect to PQ and NS.

Type T: odd with respect to the bottom, NP, and
QS; even with respect to PQ and NS.

See Figure 4. On ©, we only have eigenfunctions
of type D.

7. NUMERICAL COMPUTATIONS

7.1. Computation for the Fundamental Regions

For T; we get the best approximations using cubic
elements. We end up with systems of linear equa-
tions of degree roughly 30000 for type C, 7000 for
type D, 9800 for type G, and 5700 for type H. Com-
putations using quadratic elements are less precise
but have confirmed our results.

For T, we also used cubic elements. We got
systems of linear equations of size 6000 for type D,
3700 for type H, 9400 for type P, and 7800 for
type T.

For T3 we used quadratic elements and got sys-
tems of equations of sizes between 10000 and 12000.

For T, and Y5 we had to use finer meshes; the
orders of our systems of equations were 30000 to
35000.

7.2. Computation for the Deformed Fundamental
Regions

This reports on our computations for the family of
tetrahedra ©(zg, yq) introduced in Section 3. We
have studied the variation of eigenvalues for types
B, C and D. For the corresponding eigenfunctions
f this means that, apart from exponential decay,
the following conditions must be satisfied:

Type B: the Neumann condition on the bottom and
on the planes NQ and PQ, and the Dirichlet
condition on NP.

Type C: the Neumann condition on the bottom and
on the planes NP and PQ, and the Dirichlet
condition on NQ.

Type D: the Neumann condition on all the boundary.

We have carried out three series of computations:

1. Under a fixed northern angle of 30°, we move
the plane PQ by letting z¢ vary between 0.45
and 0.85. The polyhedra Y3, T4, and Tj5 are
obtained as particular cases.

2. With fixed z¢ = 0.50, we vary the northern
angle by letting yo range between 0.25 and 0.70.
We recover the cases of T; and Y.

3. Under a fixed northern angle of 45°, we move
the plane PQ by varying zo between 0.35 and
0.65. We recover the case of T;.

Complementarily we move the edge Q in steps of
0.05 in the z- and y-direction.

All these computations were done using rela-
tively coarse meshes, to keep the size of the system
of linear equations below 6000. In each case we
determined fifty eigenvalues.

8. TABULATION OF RESULTS

8.1. Eigenvalues for Fundamental Domains of Groups

Tables 1-5 display the eigenvalues we have found
for the fundamental domains Y; to T5 of Section 3.
The last digit given is always somewhat uncertain.
Having divided the set of eigenfunctions accord-
ing to the symmetry types of the functions, we find
that within each symmetry type the eigenfunctions
are all simple. But it seems that the eigenfunctions
belonging to specific symmetry types are included
amongst the eigenvalues of another type. For ex-
ample, in Table 1, type G eigenvalues occur also
under type D. This has to do with the existence of
certain overgroups of the groups considered here.

8.2. Eigenvalues for the Family of Tetrahedra

Figures 57 display our results for the series of
computations described in Section 7.2. In each
case, we join the points corresponding to the ¢-th
smallest eigenvalue as the parameter varies.
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44.85247 C | 224577 C | 3171 D | 401.5 D | 460.9 C | 553.2 C | 598 H | 665.9 C

74.1927 D | 22458 H | 320.12 C | 413.14 C | 4778 C | 553.5 H | 599 D | 666 D
104.649 C | 236.60 D | 320.12 H | 413.3 H | 4778 H | 556 D | 609 D | 667 H
124.403 D | 253,59 D | 333.85 C | 425.67 C | 491.7 D | 556 D | 613 D | 673.2 G
147.781 C | 263.69 C | 355.70 C | 429.9 G | 511.2 C | 569.7 C | 627.8 C | 6794 C
147.782 H | 28084 C | 3648 D | 4306 D | 511.6 H | 571.8 G | 628 H | 680 D
166.640 D | 280.87 H | 370.9 D | 4346 D | 5152 D | 5723 C | 648.0 C | 683.8 C
166.880 C | 30160 D | 3781 D | 4582 C | 5235 C | 5724 H | 651 D | 684 H
199.25 D | 305.57 G | 37858 C | 4583 H | 5285 G | 576 D | 665 D | 697.7 C
201.179 C | 305.7 D | 3786 H | 4605 D | 530 D | 5975 C | 663.2 G | 703 D
TABLE 1. Eigenvalues up to 703 for Y;, the fundamental domain of PSLy(Z[i]), and symmetry type of their

eigenfunctions. The entries of type D are also the eigenvalues for ©;, corresponding to the extended Bianchi
Types C and D together constitute the eigenvalues for PGL2(Z[4]).
tables, the last digit of each entry may be untrustworthy.

group EB(Z[7]).

In this and subsequent

25.4420 P | 107.71 D | 165.9 H | 201.5 P | 250.2 P | 2826 P | 314 H | 341 P | 3714 H
28471 D | 111.23 H | 166.5 D | 211.5 P | 255.4 T | 283.8 D | 316 D | 347 D | 376 T
45.097 D | 111.36 D | 1685 P | 2125 D | 2573 P | 285.2 T | 317 D | 350 D | 377 D
55.066 P | 120.01 D | 1742 D | 2135 T | 257.8 D | 286.0 P | 317 D | 350 H | 377 T
63.150 D | 13266 T | 1829 D | 213.6 P | 258.2 H | 2927 P | 320 T | 352 D | 378 P
70.205 P | 132.75 P | 189.2 T | 2149 D | 259.5 D | 295 P | 322 P | 362 D | 380 P
7740 T | 13413 P | 1894 P | 226.7 P | 260.2 H | 301 T | 327 D | 362 T | 383 D
7745 P | 136.18 D | 189.9 T | 2286 D | 261.1 D | 302 P | 329 T | 363 P | 384 T
79.25 D | 143.36 D | 190.3 P | 229.7 H | 264.8 T | 303 D | 332 T | 364 P | 386 D
95.78 D | 150.26 T | 192.3 D | 231.0 D | 265.0 P | 309 H | 333 P | 367 D | 388 P

104.25 T | 150.33 P | 1952 H | 239.9 T | 266.1 D | 310 D | 334 P | 367 H | 392 D

104.31 P | 156.0 D | 1953 D | 240.1 P | 2794 D | 312 H | 334 T | 371 P

10745 P | 160.9 P | 201.0 T | 2453 D | 281.5 T | 314 D | 335 P | 373 D

TABLE 2. Eigenvalues up to 392 for Y3, the fundamental domain of PSLs(Z[v/—2]). The entries of type D are

also the eigenvalues for ©,, corresponding to the group EB(Z[v/ —2]).

51.014 B | 222.0 B | 2935 D | 365.1 D | 441 B | 484 B | 515 G | 568 D | 605 B
12219 B | 2264 D | 3041 B | 375.7 J | 446 D | 498 B | 544 B | 596 D | 642 B
15729 D | 2615 J | 331.2 B | 376.0 B | 450 D | 514 D | 544 J | 597 D | 665 B
17778 B | 261.6 B | 355.9 D | 408.7 B | 483 J | 515 D | 553 B | 602 J | 669 D
TABLE3. Eigenvalues up to 675 for T3, the fundamental domain of PSLy(Z[w]). The entries of type D are also

the eigenvalues for ©3, corresponding to the group EB(Z[w]).
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16.490 B 91.11 D | 135.88 J | 160.0 B | 205.15 J | 232.7 B | 256.8 B | 293.5 D | 301.9 D
45.856 D | 100.77 D | 135.91 B | 177.78 B | 205.2 B | 238.1 D | 261.5 J | 2949 B | 304.1 B
51.014 B | 107.14 B | 139.77 D | 185.2 D | 222.0 B | 248.3 G | 261.6 B | 299.2 J
78.41 B | 122.19 B | 157.29 D | 198.7 D | 226.4 D | 2484 D | 270.2 D | 299.8 B
TABLE 4. Eigenvalues up to 305 for Y4, the fundamental domain of the group I'y of Section 3.5. The entries

of type D are also the eigenvalues for 4, corresponding to the group Ej.

7.322 B 63.7 B 95 D 118 D 1514 B 170 B 189 D 199.7 J
2443 B 74.6 B 103.3 J 128 B 156.7 J 173 D 192 B 212 B
43.5 B 87.0 B 112 D 145 D 163 D 179.6 G 196 D 2167 D
45.1 D 93.6 B 116 B 145.5 B 166.3 B 1859 B 199 D 220 B
TABLE 5. Eigenvalues up to 220 for Y5, the fundamental domain of the group I's of Section 3.6. The entries

of type D are also the eigenvalues for Oz, corresponding to the group F5. The question mark indicates we
were not certain from the numerical results that the eigenfunction we obtained for this eigenvalue satisfied the
L?-condition.

4 Series 1, Type B 4 Series 1, Type D
600 | 600 |
500 | 500 |
400 | 400 |
300 | 300 |
200 + 1 200+
100+ | 100 |
\
zq| 45 50 55 .60 .65 .70 .75 .80 .85 zql 45 50 55 .60 .65 .70 .75 .80 .85

FIGURE 5. Eigenvalues from series 1, types B and D.
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A A
600 + Series 2, Type B T 600 + Series 2, Type D
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_ — \
100 | ] 100 |
ye 35 30 .35 .40 .45 .50 .55 .60 .65 .70 Ya 25 30 .35 .40 .45 .50 .55 .60 .65 .70

FIGURE 6. Eigenvalues from series 2, types B and D.

A
700+
A A
6001 Series 3, Type B | 600l Series 3, Type C 1 600l Series 3, Type D
500 + 1 500+ 1 500+
400 + 1400+ 1400+ -
: \
300+ 1 300+ 1 300+ \\
200+ 1200+ 1200+ \ ’ -
100 | | 100/ L 100} S
\ \
zQl 35 .40 .45 .50 .55 .60 .65 zd 35 .40 .45 50 .55 .60 zQl 35 .40 .45 50 .55 .60 .65

FIGURE 7. Eigenvalues from series 3, types B, C, and D.
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Eigenvalue count (Type D, good)

YQ
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0.4 0.5

0.6 0.7 08 ZqQ

FIGURE 8. Number of eigenvalues of type D found for different tetrahedra ©(zg,ye). In this figure we only
count the eigenvalues for which the quality of the approximation for the iterated eigenfunction was very good.

Compare Figure 9.

Eigenvalues of types B and C vary continuously
with the parameters. This is expected from the
minimax principle, since the spectrum is purely
discrete because of the Dirichlet boundary condi-
tions. The curves descend as the parameter grows,
since the volume of the tetrahedron grows.

For eigenvalues of Type D—those subject to full

Neumann boundary conditions—the case is altered.

As the figures show, the behavior here is erratic:
eigenvalues seem to come and go. Of course an
eigenvalue existing on one tetrahedron may affect
heavily the computation on neighboring tetrahe-

dra, so the little pieces of curves may only be points.

For certain values of the parameter, namely, for
zg = 0.5 and zg ~ 0.707 in series 1, for yo ~ 0.289
and yo = 0.5 in series 2, and for zg = 0.5 in se-
ries 3, we pass over the fundamental domain of
an arithmetic congruence group, and we expect-
edly find many pieces of curves near these param-
eter values. We also find many pieces of curves for
z¢g ~ 0.809 in series 1; this corresponds to the fun-
damental domain of the nonarithmetic group Es.

Another way to look at the data for eigenvalues
of type D is shown in Figures 8 and 9. Recall that
the tetrahedron ©(zq,yq) has its lower vertices
above the points (0,0), (zg,0), and (zq,yq). For
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Eigenvalue count (Type D, good and dubious)
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FIGURE 9. Number of eigenvalues of type D found for different tetrahedra ©(zg,yq), as in Figure 8, but
including dubious eigenvalues (those for which the eigenfunction approximation was not very good). The area
of each disk is proportional to the total number of eigenvalues, and the darkness increases with the proportion

of good eigenvalues. For calibration, the disk @ at (

different values of (zg,yq), we have placed at the
point (zg,yo) the number of eigenvalues of type
D for O(zg, yq)- In both figures the local maxima
are found where a fundamental domain is passed.
This may indicate that only tesselating tetrahedra
can carry eigenfunctions of type D for the Laplace
operator.
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