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Let H 3 be three-dimensional hyperbolic space and � a group

of isometries of H 3 that acts discontinuously on H 3 and that

has a fundamental domain of finite hyperbolic volume. The

Laplace operator �� of H 3 gives rise to a positive, essentially

selfadjoint operator on L2(�nH 3). The nature of its discrete

spectrum dspec � is still not well understood if � is not co-

compact.

This paper contains a report on a numerical study of dspec �
for various noncocompact groups �. Particularly interesting

are the results for some nonarithmetic groups �.

1. INTRODUCTIONFor an integer n � 2, let H n be n-dimensionalhyperbolic space, that is, the connected and sim-ply connected Riemannian n-manifold of constantcurvature �1. Denote by ds the line element ofH n , by dv its volume form, and by � its Lapla-cian. Let Iso H n be the group of isometries ofH n , and Iso+H n the subgroup of orientation-pre-serving isometries. If � � Iso H n is a subgroup, let�+ := � \ Iso+H n .Throughout this article we will assume that � isa group that acts discontinuously on H n , and thatthe quotient space �+nH n has �nite hyperbolic vol-ume. Such a group is called co�nite. A co�nitegroup � admits a fundamental domain F� � H nthat is a hyperbolic polyhedron, bounded if andonly if �+nH n is compact.Since � normalizes �+, it acts by translation onL2(�+nH n ; dv). Let L2(�) = L2(�+nH n ; dv)� bethe closed subspace of �-invariant functions.It is known that the Laplace operator �� de-�ned on a suitable domain in L2(�) has a unique
c
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positive selfadjoint extension to an operator, alsocalled ��, on L2(�). The spectrum spec � of ��on L2(�) decomposes into discrete and continuousparts: spec � = dspec � [ cspec �:The continuous spectrum cspec � is empty if �nH nis compact (such groups are called cocompact) andotherwise the union of �nitely many intervals� 14(n� 1)2; 1�:The discrete spectrum contains 0 and is moreovera discrete subset of the nonnegative real numbers.It is an important question how the sets dspec � �[0;1) might look in general. When � is cocom-pact, it is known that dspec � is in�nite and satis-�es Weyl's asymptotic law. To formulate this dis-tribution law we de�neC(�) := (4�)�n=2 vol(�+nH n)�( 12n+ 1)[� : �+] ;where vol is the hyperbolic volume and �(�) rep-resents the usual �-function. For a real number Twe put N�(T ) := ��f� 2 dspec � : � � T 2g��;counting eigenvalues with their multiplicities. Wesay that � satis�es Weyl's law iflimT!1 N�(T )T n = C(�):It is also known that co�nite (not cocompact)arithmetic congruence groups � satisfy Weyl's law[Selberg 1956; Venkov 1977a; 1979; 1981], and thatdspec � is an in�nite set if � is not equal to itsnormalizer in Iso H n or if, more generally, � isnot equal to its commensurator in Iso H n [Venkov1977b; 1978]. Note that if � is arithmetic then itis of in�nite index in its commensurator.This being what is known in general, there isthe following fascinating story for the case n = 2.Here H 2 is the hyperbolic plane and the groups �are the classical co�nite Fuchsian groups. Afteran older conjecture of Roelcke and Selberg that

any such group should satisfy Weyl's asymptoticlaw, a better understanding due to Phillips andSarnak [1985a; 1985b] led to the conjecture thatfor generic co�nite but not cocompact groups �the discrete spectrum dspec � should only consistof �nitely many elements. The new conjecturederives its credibility from Fermi's golden rule, aprinciple well known in physics: A co�nite group� with in�nite dspec � might be deformable in asuitable Teichm�uller space. A small deformationshould then lead to a new group, for which alleigenvalues embedded in the continuous spectrumshould have disappeared. The term \generic" is atthe moment still somewhat unclear; one hopes itmight mean something like an element in generalposition in a Teichm�uller space. The new conjec-ture has subsequently been heuristically checked.There where also important steps toward a proof:see [Hejhal and Rackner 1992; Sarnak 1986; Sarnak1990; Wolpert 1994] for the state of the art.There is the e�ort of P. Sarnak [1986; 1990] toget a conjectural understanding of the situation formore general symmetric spaces. For the spaces H nwith n � 3 the situation remains di�cult to judge.On the one hand there are many nonarithmeticor arithmetic noncongruence co�nite groups. Onthe other hand a heuristic reasoning using Fermi'sgolden rule is not possible since, due to Mostow'srigidity theorem, there are no genuine deforma-tions of the groups [Elstrodt et al. � 1996].This paper reports on a numerical study of thediscrete spectrum dspec � for some co�nite non-cocompact groups � < Iso+H 3 that admit a fun-damental domain of a simple nature. We mainlyconsider fundamental domains that are tetrahedrawith exactly one point at in�nity or that are sim-ple combinations of such. There are exactly ninetetrahedra with one point at in�nity that tesselateH 3 . These tetrahedra and their re
ection groupsare described in Section 3.1.Some of the groups so obtained are arithmetic.To describe them we identify Iso+H 3 with PSL2(C ).If O is the ring of integers in an imaginary quad-ratic number �eld then PSL2(O) is an arithmetic,
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co�nite, noncocompact subgroup of PSL2(C ). Infact a co�nite, noncocompact subgroup � < Iso H 3is arithmetic if and only if it is Iso H 3-conjugateto a group ~� commensurable to one of the groupsPSL2(O). It is a congruence group if ~� can be cho-sen to contain a full congruence group of PSL2(O).For example, we were able to treat the groups ofimaginary quadratic integers PSL2(Z[a]) for a = i,a = p�2, and a = 12(�1 +p�3), as well as somegroups commensurable to these. Section 8.1 con-tains tables of the small eigenvalues. Here is asample of the results.The group E5 from Section 3.6 is noncocompact,nonarithmetic, and equal to its commensurator.We have found the following approximate eigen-values below 220:45:1; 95; 112; 118; 145;163; 173; 189; 196; 199; 216?(The question mark indicates we were not certainfrom the numerical results that the eigenfunctionwe obtained for this eigenvalue satis�ed the L2-condition.)We also �nd C(E5) � 0:002926;and NE5(15)153 � 0:003259:Considering similar computations in the arithmeticcases this seems to be a reasonable case for Weyl'sasymptotic law, which reads in dimension three asfollows: limT!1 N�(T )T 3 = C(�) = vol(�+nH n)6�2[� : �+] :We also mention the re
ection group �0 of atesselating tetrahedron with two points at in�nity,given in the notation of Section 3.1 byT = [60�; 30�; 90�; 60�; 60�; 90�]:

This group, too, is noncocompact, nonarithmetic,and equal to its commensurator. We have foundthe following table of eigenvalues below 187:32:8; 68; 70?; 76; 92; 94; 116?; 124;148; 150; 160?; 163; 182?; 186Since �0 has two points at in�nity, the method ofcomputation is more involved and will be describedin a later paper [Grunewald and Huntebrinker].Our computations of eigenvalues use �nite ele-ment methods. In Sections 4 and 5 we report onthe procedure that we have used; more details aregiven in [Huntebrinker 1995]. Right now we com-ment only on questions of accuracy and appropri-ateness of our method. First of all, our resultshave gone through many compatibility checks, de-scribed in [Huntebrinker 1995]. Secondly, in twodimensions, an earlier version of the program re-ported on here produced very good agreement withresults produced by other methods [Huntebrinker1991].In three dimensions comparative data are morescarce. There is one published table of eigenvalues[Smotrov and Golovchansky 1991] that was foundby a di�erent method. It contains the twelve small-est eigenvalues for � = PSL2(Z[i]). Because of anerror in one of their corollaries, the authors wereonly able to catch eigenfunctions that are also in-variant by the bigger group PGL2(Z[i]), consideredas a subgroup of PSL2(C ) via the embeddingg 7! gpdet g :These eigenfunctions are those of our symmetrytypes C and D. Taking this into account we getperfect agreement between that table and our re-sults.Recently we became aware of a list, computedby G. Steil and F. Steiner at the Institute of Theo-retical Physics at the University of Hamburg, con-taining eigenvalues under 900 for � = PSL2(Z[i]),with six-digit accuracy. It was computed by a dif-ferent method, relying on Fourier expansions ofthe eigenfunctions. Agreement with our results is
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again good. For the smallest eigenvalues we ob-tain the same accuracy; for larger eigenvalues ourresults are worse.There have been reports of signi�cant progresson the high-precision computation of eigenvaluesfor triangle groups in Iso H 2 by the Fourier expan-sion method [Bogomolny et al. 1992; Bolte et al.1992; Hejhal 1992; Hejhal and Rackner 1992; Steil1994]. Although our method does not give thesame precision, it has the merit of 
exibility. Itdoesn't use the existence of Hecke operators andis also applicable if � has more than one cusp. Itallowed us to perform an experiment that appar-ently could not be done by the Fourier expansionmethods, as follows.As mentioned above, Mostow's theorem preventsus from deforming discrete groups of three-dimen-sional hyperbolic isometries. So we studied whathappens if their fundamental tetrahedra were de-formed. This can be done by continuously varyingangles or edge lengths. We have done computa-tions for an interesting continuous family of suchtetrahedra (Section 3.7) that includes fundamen-tal domains. We have �xed boundary conditions(Dirichlet or Neumann) on the bounding planesand looked for exponentially decaying (approach-ing the in�nite vertex) solutions. These results aredescribed in Section 8.2. In the case of full Neu-mann conditions on the boundary the tables givean interesting picture.The programs were designed by the second au-thor, and information on them can be found in[Huntebrinker 1995], together with tables of eigen-values for subgroups of �nite index in the groupstreated here. Our actual numerical computationswere done on IBM RS/6000 machines.
2. THE EIGENVALUE PROBLEMWe start by describing the upper half-space modelof three-dimensional hyperbolic space. Then wesummarize the L2-spectral theory of the Laplaceoperator for certain quotients of hyperbolic space.We also �x some notation to be used in the sequel.

2.1. The Laplace Operator for Hyperbolic SpaceLet H 3 be the upper half-space in R 3 , that is,H 3 = �(x; y; r) 2 R 3 : r > 0	 :The hyperbolic metric on H 3 is given by the lineelement ds2 = dx2 + dy2 + dr2r2 :This line element induces the volume formdv = dx dy drr3 :The corresponding Laplace operator is given by� = r2� @2@x2 + @2@y2 + @2@r2�� r @@r[Elstrodt et al. 1987].We write Iso H 3 and Iso+H 3 for the group ofisometries of H 3 and its subgroup consisting oforientation-preserving maps. Iso+H 3 can be iden-ti�ed with the group PSL2(C ): Thinking of upperhalf-space as C � R+ , with (x; y; r) correspondingto (x+ yi; r), the action of� a bc d� 2 PSL2(C )takes (z; r) 2 C � R+ to�(az + b)(�c�z + �d) + a�cr2jcz + dj2 + jcj2r2 ; rjcz + dj2 + jcj2r2� :The group Iso H 3 is then the extension of PSL2(C )by the complex re
ection� : H 3 ! H 3 ; � : (x; y; r) 7! (x;�y; r):We consider here subgroups � � Iso H 3 thatact discontinuously on H 3 . We suppose furtherthat � admits a (measurable) fundamental domain
 � H 3 of �nite hyperbolic volume but that thequotient space �nH 3 is not compact.Such a � is known to have a fundamental domain
 = F� � H 3 that is an unbounded hyperbolicpolyhedron. One can choose 
 to have a bound-ary consisting of �nitely many polygonal pieces ofhyperbolic planes.
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For � � Iso+H 3 we write L2(�nH 3 ; dv) for theset of classes of Borel measurable functions f :H 3 ! R that are �-invariant (that is, satisfy f�
 =f for all 
 2 �) and square-integrable:ZF� jf j2 dv <1:
Let D be the subspace of L2(�nH 3 ; dv) \ C2(H 3)consisting of functions f whose Laplacian �f isalso square-integrable. It is known that ��, re-garded as an operator from D to L2(�nH 3), is es-sentially selfadjoint and positive [Elstrodt et al.1987]. We denote the selfadjoint extension of thisoperator by �� as well.For a general � � Iso H 3 we put �+ := �\Iso+H 3and write L2(�) := L2(�+nH 3 ; dv)� for the closedsubspace consisting of classes of �-invariant func-tions. Restriction gives a positive selfadjoint oper-ator �� on L2(�).By an application of Stokes' Theorem we knowthat for f 2 L2(�) the following two statementsare equivalent [Elstrodt et al. 1987; � 1996]:
1. f lies in the domain of �� and satis�es��f = �f for some �: (2.1)

2. For all g 2 L2(�) we haveZ
 r2(fxgx + fygy + frgr) dv = �Z
 fg dv;with dv = dx dy dzr3 : (2.2)We shall use this equivalence to symmetrize theoperator ��, which is asymmetric in the originalcoordinates. This also shows that for our eigen-value problem we could have also considered theHilbert space of complex L2-functions.
2.2. The Spectrum of the Laplace OperatorThe spectrum spec � of �� on L2(�) splits into itsdiscrete and continuous parts:spec � = dspec � [ cspec �:

The continuous spectrum cspec � consists of acertain number of repeated intervals:
cspec � = h�[i=1[1;1);

where h� is the number of cusps of � [Elstrodt etal. 1985; Hejhal 1983; Maa� 1949a; Maa� 1949b;Venkov 1981].The discrete spectrum dspec � is a discrete sub-set of [0;1) containing 0 with multiplicity 1. Weshall use the notationdspec � = �0 < �1� � �2� � � � �	 ;writing eigenvalues with their multiplicity.
2.3. Asymptotics of EigenfunctionsWe consider here eigenvalues � 2 dspec �, with� > 1. An eigenfunction f 2 L2(�) correspondingto � will be C1 on H 3 by elliptic regularity.We suppose now, by possibly replacing � withone of its conjugates, that 1 is a cusp of �. Thismeans that there is a lattice � � C with�01 := �\n� 1 w0 1 � : w 2 C o = n� 1 �0 1 � : � 2 �o :For v, w 2 C we put hv; wi = 12(�vw + �wv) anddenote the lattice dual to � by�0 := fw 2 C : h�;wi 2 Z for all � 2 �g :From (2.1) and the fact that � > 1, we get a Fourierexpansion for f [Elstrodt et al. � 1996]. Namely,for (w; r) 2 H 3 , we havef(w; r) = X�2�0nf0g a�Ks(2� j�jr)e2�ih�;wi (2.3)

where a� 2 R , s2 = 1� �, and Ks is a Bessel func-tion that has for r !1 the asymptotic behaviorprKs(2� j�jr) � ce�2� j�jr(see [Abramowitz and Stegun 1965, xx 4.2.27, 9.2.3,9.2.4, 9.6.4; Maa� 1949a; 1949b]).
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Since the series for the Fourier expansion (2.3) off converges uniformly to f , we �nd an exponentialdecay of f as r !1.We shall consider in our examples only groups �where �1� > 1 is already known.For eigenvalues � � 1 we get a Fourier expansionof the eigenfunctions similar to (2.3) with some ad-ditional terms that decay polynomially as r !1.
3. SOME DISCONTINUOUS GROUPS AND THEIR

FUNDAMENTAL DOMAINSThis section will describe some discontinuous sub-groups � � Iso H 3 together with a fundamentaldomain that will always be of the form
= f(x; y; r) : (x; y)2P; r�p1�x2�y2g (3.1)

where P is a closed triangle or quadrangle con-tained in the unit disc.In 3.1 we treat the case when 
 is (combinato-rially) a tetrahedron. Later we shall discuss exam-ples of arithmetic groups (Sections 3.2{3.5) and anonarithmetic group (Section 3.6).To �x the notation, let d be a positive integerand K = Z(p�d) the corresponding imaginaryquadratic number �eld with ring of integers O. Weuse our identi�cation of PSL2(C ) with the group oforientation-preserving isometries of H 3 to embedPSL2(O) into Iso H 3 . Then PSL2(O) acts discon-tinuously on H 3 with a quotient space that is of�nite volume but not compact. It turns out thatPSL2(O) has a unique maximal discontinuous ex-tension in Iso H 3 [Elstrodt et al. � 1996]. Thisgroup is called the extended Bianchi group EB(O).
3.1. Tesselating TetrahedraWe consider here geodesic tetrahedra � � H 3 thathave one vertex at 1 and three �nite vertices. Wefurther suppose that � tesselates H 3 , that is, H 3can be covered without interior overlap by congru-ent copies of �. Up to isometry such a tetrahedronis determined by the angles between its boundary

planes. Looking down from the vertex at in�nitywe have this situation:
� �


� �
�We can then represent the isometry types T bythe symbol T = [�; �; 
; �; �; �]. An application ofthe Poincar�e combination theorem shows that, upto isometry, there are only nine tetrahedra withthe tesselating property [Elstrodt et al. � 1996]:T1 = [45�; 90�; 45�; 90�; 60�; 90�]T2 = [90�; 45�; 45�; 90�; 60�; 90�]T3 = [30�; 90�; 60�; 90�; 60�; 90�]T4 = [60�; 60�; 60�; 90�; 60�; 90�]T5 = [30�; 90�; 60�; 90�; 45�; 90�]T6 = [60�; 60�; 60�; 90�; 45�; 90�]T7 = [30�; 90�; 60�; 90�; 36�; 90�]T8 = [60�; 60�; 60�; 90�; 36�; 90�]T9 = [45�; 45�; 90�; 60�; 60�; 90�]Given a tetrahedron � from one of these classes,we may form the tesselation group G(�) of �, thatis, the subgroup of Iso H 3 generated by the re
ec-tions in the boundary planes of �. It is knownthat G(�) acts discontinuously on H 3 and has �as fundamental domain. Since � also has �nitehyperbolic volume, G(�) is one of the groups dis-cussed in the Introduction.Take � 2 T1. By doubling � through a suitableboundary plane we obtain a tetrahedron �0 2 T2.It is then easy to see that G(�) is of index two overG(�0). The same situation also holds for the pairs(T3;T4), (T5;T6), (T7;T8).The groups for the tetrahedra from T1;T3;T5;T7will appear below. The group corresponding to atetrahedron from T9 is conjugate to a group com-mensurable with PSL2(Z[i]) and will not be dis-cussed further.



Grunewald and Huntebrinker: A Numerical Study of Eigenvalues of the Hyperbolic Laplacian for Polyhedra with One Cusp 63

3.2. PSL2(Z[i])A fundamental domain for PSL2(Z[i]), �rst givenin [Picard 1884], is described as follows:�1 = �(x; y; r) :� 12 � x � 12 ; 0 � y � 12 ; r �p1� x2 � y2	[Elstrodt et al. 1987; Stramm 1994; Swan 1971].�1 is a hyperbolic pyramid with top point at 1and all other points �nite.The boundary identi�cations of �1 by PSL2(Z[i])are given by S = � 0�1 10�, a 180� hyperbolic rotationaround the line with endpoints (z; r) = (�i; 0);T1 = � 10 11�, a parabolic transformation mapping(z; r) to (z + 1; r); Ti = � 10 i1�, a parabolic trans-formation mapping (z; r) to (z + i; r); and U� =� i0 0�i �, a 180� rotation around the r-axis.From the identi�cation S we get for a �-invariantLaplace eigenfunction f the conditionf(x; y; r) = f(�x; y; r)on the bottom boundary of �1 (a piece of the hy-perbolic plane de�ned by x2 + y2 + r2 = 1). Fromthe identi�cations T1, T�11 , U�, and TiU� amongother pieces of the boundary of �1 we get the ad-ditional conditionsf�x; 12 ; r� = f��x; 12 ; r�;f� 12 ; y; r� = f�� 12 ; y; r�;f�x; 0; r� = f��x; 0; r�:The extended Bianchi group EB(Z[i]), which isof index four over PSL2(Z[i]), has�1 = �(x; y; r) :0 � x � 12 ; 0 � y � x; r �p1� x2 � y2	as fundamental domain [Bianchi 1892].The tetrahedron �1 is in the class T1 and hasvolume approximately 0.0763. EB(Z[i]) is the tes-selation group of �1. Concerning the eigenvaluesof the Laplace operator we know [Elstrodt et al.1987; Stramm 1994] that�1PSL2(Z[i]) � 23�2 � 6:58:

3.3. PSL2(Z[p�2])Put � := p�2. Then Z[�] is the ring of integers inthe number �eld Z(p�2). A fundamental domainof PSL2(Z[�]) is�2 = �(x; y; r) :� 12 � x � 12 ; �p22 � y � p22 ; r �p1�x2�y2	:The boundary identi�cations come from S, T1, theparabolic T� = � 10 �1�, T�11 and T�1� . A Laplaceeigenfunction f satis�esf(x; y; r) = f(�x; y; r)on the bottom boundary of �2. On the verticalboundary pieces we getf�x; p22 ; r� = f�x;�p22 ; r�;f�12 ; y; r� = f� 12 ;�y; r�:A fundamental domain of the extended Bianchigroup EB(Z[�]), which is again of index four overPSL2(Z[�]), is�2 = �(x; y; r) :0 � x � 12 ; 0 � y � p22 ; r �p1�x2�y2	:The volume of �2 is approximately 0.2509. It isknown that �1PSL2(Z[�]) � 14�2 � 2:47[Elstrodt et al. 1987; Stramm 1994].
3.4. PSL2(Z[ 1

2
(�1 +p�3)])Let ! be the cube root of unity 12(�1 + p�3).Then Z[!] is the ring of integers in Z(p�3). Afundamental domain of PSL2(Z[!]) is�3 = �(x; y; r) : 0 � x � 12 ;� 1p3x � y � 1p3(1� x); r �p1� x2 � y2	[Stramm 1994; Swan 1971]. The boundary iden-ti�cations are given by T! = � 10 !1 �, a parabolictransformation taking (z; t) to (z + !; t);U2�=3 = � e�i�=3 00 ei�=3� ;
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a 120� rotation around the r-axis; and S, T1, U2�=3,U�12�=3, U�12�=3S, U�12�=3T1, U2�=3T1T!.The extended Bianchi group EB(Z[!]) is of indexfour over PSL2(Z[!]) and has�3 = �(x; y; r) :0 � x � 12 ; 0 � y � 1p3x; r �p1� x2 � y2	as fundamental domain [Bianchi 1892]. �3 is inthe class T3 and has volume approximately 0:0422.EB(Z[!]) is the group of the tesselation with �3.It is known that�1PSL2(Z[!]) � 3227�2 � 11:70[Elstrodt et al. 1987; Stramm 1994].
3.5. E4 and �4Here we start o� with the tetrahedron�4 = �(x; y; r) :0 � x � 1p2 ; 0 � y � 1p3x; r �p1� x2 � y2	;which is in the class T5. We de�ne E4 to be thegroup of the tesselation given by �4. By lookingat the angles of �4 one can see that E4 contains asubgroup �4 � PSL2(C ) of index four, which hasthe pyramid�4 = �(x; y; r) : 0 � x � 1p2 ;� 1p3x � y � 1p3(1� x); r �p1� x2 � y2	as fundamental domain. The group �4 is com-mensurable with PSL2(Z[!]), with commensurabil-ity index 52 . The volume of �4 is approximately0:1056. It can be proved, using the method de-scribed in [Elstrodt et al. 1987; Stramm 1994], that�1�4 > 1:
3.6. E5 and �5Here we start o� with the tetrahedron�5 = �(x; y; r) : 0 � x � 14(1 +p5);0 � y � 1p3x; r �p1� x2 � y2	;

which is in the class T7. We de�ne E5 to be thegroup of the tesselation given by �5. By lookingat the angles of �5 it can be seen that E5 containsa subgroup �5 � PSL2(C )of index four, which has the pyramid�5 = �(x; y; r) : 0 � x � 14(1 +p5);� 1p3x � y � 1p3(1� x); r �p1� x2 � y2	as fundamental domain.By the arithmeticity criterion of Vinberg, E5 isnot arithmetic. A look at its fundamental domainshows that E5 is maximal discontinuous. By anarithmeticity criterion of Margulis E5 is also equalto its commensurator; see [Elstrodt et al. � 1996]for more details.The volume of �5 is approximately 0:1732. Bythe method of [Elstrodt et al. 1987; Stramm 1994]we can prove that �1�5 > 1:The boundary identi�cations for �4 and �5 areanalogous to those of �3, and induce similar sym-metries.
3.7. A Family of TetrahedraFor later use we introduce a continuous family oftetrahedra. If xQ and yQ are positive reals withxQ < 1 and y2Q < 1� x2Q, we set�(xQ; yQ) := �(x; y; r) : 0 � x � xQ;0 � y � xyQ=xQ; p1� x2 � y2 � r	:For suitable values of the parameters, �(xQ; yQ)coincides with the tesselating tetrahedra discussedbefore.One edge of �(xQ; yQ) always passes through thenorth pole of the unit sphere. The angle betweenthe vertical boundary planes meeting there is callednorthern angle.
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4. DISCRETIZATIONWe describe here the general principles we use to�nd appropriate solutions of the di�erential equa-tion ��f = �f: (4.1)

4.1. Cut-offConsider the equation (4.1) on polyhedra 
 � H 3of type (3.1) with boundary @
. We want to �ndsolutions that satisfy certain compatibility condi-tions on @
 and that have a rapid decay for r !1.So it seems reasonable to replace the unboundedpolyhedron
 = f(x; y; r) : (x; y) 2 P; r > 0gby the bounded region
R = f(x; y; r) 2 
 : r � Rg ;where R is supposed to be reasonably big. Thenew regions 
R have an additional upper bound-ary, which we call @
0.We now search for solutions of our di�erentialequation (4.1) on the regions 
R. To recognizeamongst the solutions obtained the desired eigen-functions, we consider the following two additionalboundary conditions:
1. the Dirichlet condition u = 0 on @
0, and
2. the Neumann condition @u=@n = 0 on @
0.We look for solutions of (4.1) on 
R separatelyunder the Dirichlet boundary condition and underthe Neumann boundary condition. If two such so-lutions coincide, taking into account the quality ofthe approximation, both come from a rapidly de-caying solution on 
.In each case, we usually start by applying ourprocedure with R = 15, and then again with R =19, in order to compare the results. If the di�er-ences in the eigenvalue approximations were con-siderably smaller than the error predicted by thechoice of the actual �nite elements [Axelsson and

Barker 1984; Zienkiewicz and Morgan 1983] we ac-cepted the chosen cut-o� height; otherwise we in-creased it.
4.2. Division of PolyhedraSuppose our polyhedron 
 admits a symmetry by ahyperbolic re
ection � in some vertical plane thatcuts 
 into to congruent pieces 
0 and 
00. Wewrite @
1 for the common boundary of 
0 and 
00.Since the space of solutions for given � decom-poses into an even and an odd part [Huntebrinker1995; Smotrov and Golovchansky 1991], it is some-times convenient to consider our problem only onone half, say 
0, of 
. Since the plane of symmetryis vertical we may then use the cut-o� regions 
0R.To get the even eigenfunctions we look for solu-tions on 
0R of (4.1) subject to the boundary con-ditionsu = 0 on @
0; @u@n = 0 on @
1; (4.2)and then for solutions subject to the boundary con-ditions @u@n = 0 on @
0 [ @
1: (4.3)The desired eigenfunctions of rapid decay are thosethat are solutions for both sets of boundary condi-tions.To get the odd eigenfunctions we impose theboundary conditionu = 0 on @
0 [ @
1:The numerical computations indicate that all solu-tions of (4.1) under this boundary condition havethe required rapid decay.
4.3. Weak FormulationWe want to apply the �nite element method to oureigenvalue problem. To do this we need a weakformulation of the problem [Babu�ska and Osborn1991; Chatellin 1983; Hackbusch 1986].We use the equivalence of the di�erential equa-tion (2.1) and the integral equation (2.2) and getthe following weak formulation:
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Determine u 2 V such that, for all v 2 V ,ZZZ
R 1r (uxvx + uyvy + urvr) dx dy dr =�ZZZ
R 1r3uv dx dy dr; (4.4)

where V is the Sobolev space H10 (
R) if there is aDirichlet boundary condition, or the Sobolev spaceH1(
R) if all boundary conditions are Neumann.Note that the weak formulation gives a symmet-ric eigenvalue problem with real eigenvalues andeigenfunctions.
5. NUMERICAL METHODSIn this section we discuss the actual algorithmsused, and comment on our methods of triangula-tion.The reader unfamiliar with �nite element meth-ods can turn to the books [Axelsson and Barker1984; Hughes 1987; Schwarz 1991; Zienkiewicz andMorgan 1983] for general information.
5.1. The ProblemWe consider our cut-o� region 
R � R 2 � R+ , asdescribed in the previous section. Let @
R be theboundary of 
R and @
0 the top boundary. Wesuppose, as indicated in the last section, that theremaining boundary is decomposed into parts @
i,i = 1; : : : ; j. We wish to numerically solve theeigenvalue problem (4.4), subject to j + 1 bound-ary conditions of the form (4.2) or (4.3), and theadditional conditionZZZ
R 1r3u dx dy dr = 0: (5.1)

If the j+1 boundary conditions are all of Dirich-let type on @
R, the side condition (5.1) is op-tional. Otherwise it is necessary in order to makethe eigenvalue problem uniquely solvable [Hack-busch 1986].

To sum up, a choice of a triangulation will leadto a matrix equation of the following type:
(uT c )� A hhT 0 ��uc � = ��uTBu0 � : (5.2)

5.2. Decomposition into Standard RegionsAs described in the previous section, the total re-gion 
R is decomposed using additional symme-tries into a certain number of congruent standardregions. The standard regions we encounter aretruncated hyperbolic pyramids, given for suitablexQ and yQ by the equations�(xQ; yQ)R = �(x; y; r) : 0 � x � xQ;�xyQ � yxQ � xyQ; p1�x2�y2 � r � R	;	(xQ; yQ)R = �(x; y; r) : 0 � x � xQ;0 � y � yQ;p1�x2�y2 � r � R	:We refer to these regions as triangular or rectan-gular prisms, respectively, because of their appear-ance in upper half-space (Figure 1). These prismsare bounded below by the unit sphere.Figure 1 also shows our notation for the edges.Edge N always passes through the north pole ofthe unit sphere. The angle between planes NPand NQ is called the northern angle. The prism�(xQ; yQ)R is a cut-o� version of double the tetra-hedron �(xQ; yQ) introduced in Section 3.The sti�ness matrix A and the mass matrix Bin (5.2) are only computed for one standard re-gion. The total matrices are not stored; they onlyappear implicitly when boundary conditions areintroduced [Huntebrinker 1995]. This procedureleads to a considerable amount of saving of stor-age space, and makes the computation feasible onsmaller machines. A disadvantage is the bad vec-torizability of matrix multiplication, but on theIBM RS/6000 used by us this played no role.The Dirichlet boundary conditions are enforcedby the elimination of all nodes from our eigenvalueproblem [Schwarz 1991; Huntebrinker 1995]. In
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Edge N Edge PEdge Q

Part A

Part B
Part C Part DPart E

Edge N Edge PEdge QEdge S

Part A

Part B

Edge N Edge QEdge T

Truncation of �(xQ; yQ) �(xQ; yQ)R 	(xQ; yQ)R
FIGURE 1. Decomposition of the standard regions, showing also the labeling of vertical edges. Parts A{Ecorrespond to di�erent methods of subdivision into elements (Section 5.5).this way the size of the system of linear equationsis reduced by the number of Dirichlet boundarypoints.

5.3. Choice of ElementsSince the desired eigenfunctions are su�ciently reg-ular, it is possible to use higher-degree elements[Hackbusch 1986; Babu�ska and Guo 1988; Babu�skaet al. 1989; Babu�ska and Osborn 1991]. Quad-ratic or cubic elements are particularly suited toeigenvalue problems because they reduce the sizeof the �nal system of linear equations. The biggestgain occurs by using elements from the serendip-ity family without inner nodes [Ergatoudis et al.1968; Hughes 1987; Schwarz 1991; Zienkiewicz andMorgan 1983]; see also [Huntebrinker 1991; Hunte-brinker 1995].

For the approximation of the sphere caps at thebottom we have to use isoparametric elements. Thequality of the approximation here depends on thechoice of the nodes on the curved boundary [Ax-elsson and Barker 1984; Banerjee 1992; Banerjeeand Osborn 1990; Ciarlet 1978; Ciarlet and Raviart1972; Schwarz 1991; Zienkiewicz and Morgan 1983].It is especially important to avoid obtuse innerangles in the elements. Acute angles give signif-icantly better approximations [Babu�ska and Aziz1976; Jamet 1976; Krizek 1992]. In order for onlyacute angles to occur we use tetrahedral elementsnear the points where the vertical planes meet thesphere.In the areas of big r we use parallelepiped ele-ments, which o�er the possibility of a �ner adjust-ment of the triangulation.
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5.4. Adaptive RefinementsBy adaptive re�nement we mean the re�nementof a triangulation with the aim of minimizing theglobal error in the computation of an iterated func-tion, by minimizing local errors. See [Babu�ska1986; 1988; Babu�ska and Guo 1992; Ewing 1990;Strouboulis and Haque 1992; Zienkiewicz and Zhu1991] for a discussion of standard methods.To get good indicators for the local errors of theiterated functions we use a method that we willdescribe below. Our choice of re�nement leads torestricted adaptivity [Huntebrinker 1995].Taking the strong decay in r-direction of ourdesired solutions into consideration we use in thelower parts of the standard region a global strat-egy of re�nement. In the upper parts we use anadaptive re�nement with the size of the iteratedfunction as error indicator. If the cut-o� heightis chosen big enough this leads to reasonable re-sults. For our actual choice of cut-o� heights, seethe explanation in Section 4.1.For the computation of the error indicators it isimportant to have no eigenfunctions without strongdecay present, because such eigenfunctions force anexcessive re�nement in the upper areas. We there-fore choose the functions for the computation ofthe indicator after some analysis of their growth.
5.5. Triangulation of the Standard RegionsWe now describe how our standard regions (prisms)are triangulated. Rectangular prisms are cut into�ve areas (see Figure 1, right):
1. In area A, which is above some horizontal plane,we use parallelepiped elements. The re�nementis controlled by the error indicator describedabove.
2. Just below area A we have area B, which isbounded above by a horizontal plane and be-low by a surface that models the surface of thesphere. Here we use parallelepipeds that getshorter when approaching the r-axis.
3. Between the curved surface and the sphere capat the bottom we get area C, where we make

the parallelepiped elements shorter as we movein the direction of the xr- and yr-planes. Thiscuts o� two wedges along the lower left-handedge and along the rear edge.
4. Between the wedges, the surface of the sphereand the boundary planes area D, which is apyramid, appears. This area is decomposed us-ing tetrahedral elements.
5. The union of the two wedges, area E, is de-composed into prism elements with triangles ascross-sections.Triangular prisms have a simpler triangulation, asshown in Figure 1, middle: in area A with a re�ne-ment controlled by an error indicator, and in areaB with a global re�nement strategy, using a vari-ation of methods of Bank and Sherman for com-puting the subsequent triangulations [Bank 1983;Bank and Sherman 1979; 1981; Bank et al. 1983].
5.6. Iteration Methods and Analysis of EigenfunctionsWe use simultaneous vector iteration together withthe method of conjugate gradients. For these pro-cedures see [Concus et al. 1976; Hackbusch 1993;Hestenes and Stiefel 1952; Schwarz 1991; Babu�skaand Osborn 1987; 1989; 1991]. The eigenvaluesare determined here by computation of a Rayleighquotient. See [Sartoletto et al. 1989; Gambolatiand Putti 1994; Watkins 1993] for an overview ofmethods for the computation of eigenvalues of bigmatrices. For the details of our procedure we referto [Huntebrinker 1995]. For the iteration methodused it is important not to have too much need ofstorage space.To judge the decay of the appearing functionswe compute maximal and minimal values in theupper areas of our region. These data also o�er thepossibility of seeing symmetries of the function.
6. SYMMETRIES OF EIGENFUNCTIONSThere are two distinct situations:
1. If �i is a tetrahedron, so its truncation is a rect-angular prism, we consider the union of �i with
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FIGURE 2. Symmetries of eigenfunctions for a triangular prism with a northern angle of 45�.its re
ection in the plane NQ. The newly arisingvertical edge is called T. The eigenspace with re-spect to a given � decomposes into subspaces offunctions that are either even or odd with re-spect to each of the boundary planes (the bot-tom, NT, NQ, and QT).
2. If �i is a pyramid, so its truncation is a rect-angular prism, the eigenspace with respect to agiven � decomposes into subspaces of functionsthat are either even or odd with respect to theboundary planes (the bottom, NP, PQ, QS, andNS).Of course, not all combinations of symmetries arepossible. We now describe and name the cases thatdo arise.
6.1. Symmetries for a Triangular PrismFor �1, �3, �4, and �5, six types of symmetriescan arise, as listed below. The edge P is the sameas in the explanation above. See also Figures 2and 3.

Type B: even with respect to the bottom, NQ, andPQ; odd with respect to NP.
Type C: even with respect to the bottom, NP, andPQ; odd with respect to NQ.
Type D: even with respect to all boundary planes.
Type G: odd with respect to all boundary planes.
Type H: odd with respect to the bottom, NP, andPQ; even with respect to NQ.
Type J: odd with respect to the bottom, NQ, andPQ; even with respect to NP.On �1, the fundamental region of PSL2(Z[i]), wehave eigenfunctions of types C, D, G and H (seeFigure 2). On �3, �4 and �5, we have the typesB, D, G and J (see Figure 3).On the fundamental regions �1, �3, �4 and �5we only have eigenfunctions of type D.
6.2. Symmetries for a Rectangular PrismIn the computations on �2 we get eigenfunctionsof four types of symmetry. For the polyhedron in
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FIGURE 3. Symmetries of eigenfunctions for a triangular prism with a northern angle of 30�.
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FIGURE 4. Symmetries of eigenfunctions for a rectangular prism.
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Figure 1, with edges N, P, Q and S, they are asfollows:
Type D: even with respect to all boundary planes.
Type H: odd with respect to all boundary planes.
Type P: even with respect to the bottom, NP, andQS; odd with respect to PQ and NS.
Type T: odd with respect to the bottom, NP, andQS; even with respect to PQ and NS.See Figure 4. On �2 we only have eigenfunctionsof type D.
7. NUMERICAL COMPUTATIONS

7.1. Computation for the Fundamental RegionsFor �1 we get the best approximations using cubicelements. We end up with systems of linear equa-tions of degree roughly 30000 for type C, 7000 fortype D, 9800 for type G, and 5700 for type H. Com-putations using quadratic elements are less precisebut have con�rmed our results.For �2 we also used cubic elements. We gotsystems of linear equations of size 6000 for type D,3700 for type H, 9400 for type P, and 7800 fortype T.For �3 we used quadratic elements and got sys-tems of equations of sizes between 10000 and 12000.For �4 and �5 we had to use �ner meshes; theorders of our systems of equations were 30000 to35000.
7.2. Computation for the Deformed Fundamental

RegionsThis reports on our computations for the family oftetrahedra �(xQ; yQ) introduced in Section 3. Wehave studied the variation of eigenvalues for typesB, C and D. For the corresponding eigenfunctionsf this means that, apart from exponential decay,the following conditions must be satis�ed:
Type B: the Neumann condition on the bottom andon the planes NQ and PQ, and the Dirichletcondition on NP.

Type C: the Neumann condition on the bottom andon the planes NP and PQ, and the Dirichletcondition on NQ.
Type D: the Neumann condition on all the boundary.We have carried out three series of computations:
1. Under a �xed northern angle of 30�, we movethe plane PQ by letting xQ vary between 0:45and 0:85. The polyhedra �3, �4, and �5 areobtained as particular cases.
2. With �xed xQ = 0:50, we vary the northernangle by letting yQ range between 0:25 and 0:70.We recover the cases of �1 and �3.
3. Under a �xed northern angle of 45�, we movethe plane PQ by varying xQ between 0:35 and0:65. We recover the case of �1.Complementarily we move the edge Q in steps of0.05 in the x- and y-direction.All these computations were done using rela-tively coarse meshes, to keep the size of the systemof linear equations below 6000. In each case wedetermined �fty eigenvalues.
8. TABULATION OF RESULTS

8.1. Eigenvalues for Fundamental Domains of GroupsTables 1{5 display the eigenvalues we have foundfor the fundamental domains �1 to �5 of Section 3.The last digit given is always somewhat uncertain.Having divided the set of eigenfunctions accord-ing to the symmetry types of the functions, we �ndthat within each symmetry type the eigenfunctionsare all simple. But it seems that the eigenfunctionsbelonging to speci�c symmetry types are includedamongst the eigenvalues of another type. For ex-ample, in Table 1, type G eigenvalues occur alsounder type D. This has to do with the existence ofcertain overgroups of the groups considered here.
8.2. Eigenvalues for the Family of TetrahedraFigures 5{7 display our results for the series ofcomputations described in Section 7.2. In eachcase, we join the points corresponding to the i-thsmallest eigenvalue as the parameter varies.
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44.85247 C 224.577 C 317.1 D 401.5 D 460.9 C 553.2 C 598 H 665.9 C74.1927 D 224.58 H 320.12 C 413.14 C 477.8 C 553.5 H 599 D 666 D104.649 C 236.60 D 320.12 H 413.3 H 477.8 H 556 D 609 D 667 H124.403 D 253.59 D 333.85 C 425.67 C 491.7 D 556 D 613 D 673.2 G147.781 C 263.69 C 355.70 C 429.9 G 511.2 C 569.7 C 627.8 C 679.4 C147.782 H 289.84 C 364.8 D 430.6 D 511.6 H 571.8 G 628 H 680 D166.640 D 289.87 H 370.9 D 434.6 D 515.2 D 572.3 C 648.0 C 683.8 C166.880 C 301.60 D 378.1 D 458.2 C 523.5 C 572.4 H 651 D 684 H199.25 D 305.57 G 378.58 C 458.3 H 528.5 G 576 D 655 D 697.7 C201.179 C 305.7 D 378.6 H 460.5 D 530 D 597.5 C 663.2 G 703 D
TABLE 1. Eigenvalues up to 703 for �1, the fundamental domain of PSL2(Z[i]), and symmetry type of theireigenfunctions. The entries of type D are also the eigenvalues for �1, corresponding to the extended Bianchigroup EB(Z[i]). Types C and D together constitute the eigenvalues for PGL2(Z[i]). In this and subsequenttables, the last digit of each entry may be untrustworthy.
25.4420 P 107.71 D 165.9 H 201.5 P 250.2 P 282.6 P 314 H 341 P 374 H28.471 D 111.23 H 166.5 D 211.5 P 255.4 T 283.8 D 316 D 347 D 376 T45.097 D 111.36 D 168.5 P 212.5 D 257.3 P 285.2 T 317 D 350 D 377 D55.056 P 120.01 D 174.2 D 213.5 T 257.8 D 286.0 P 317 D 350 H 377 T63.150 D 132.66 T 182.9 D 213.6 P 258.2 H 292.7 P 320 T 352 D 378 P70.205 P 132.75 P 189.2 T 214.9 D 259.5 D 295 P 322 P 362 D 380 P77.40 T 134.13 P 189.4 P 226.7 P 260.2 H 301 T 327 D 362 T 383 D77.45 P 136.18 D 189.9 T 228.6 D 261.1 D 302 P 329 T 363 P 384 T79.25 D 143.36 D 190.3 P 229.7 H 264.8 T 303 D 332 T 364 P 386 D95.78 D 150.26 T 192.3 D 231.0 D 265.0 P 309 H 333 P 367 D 388 P104.25 T 150.33 P 195.2 H 239.9 T 266.1 D 310 D 334 P 367 H 392 D104.31 P 156.0 D 195.3 D 240.1 P 279.4 D 312 H 334 T 371 P107.45 P 160.9 P 201.0 T 245.3 D 281.5 T 314 D 335 P 373 D
TABLE 2. Eigenvalues up to 392 for �2, the fundamental domain of PSL2(Z[p�2]). The entries of type D arealso the eigenvalues for �2, corresponding to the group EB(Z[p�2]).
51.014 B 222.0 B 293.5 D 365.1 D 441 B 484 B 515 G 568 D 605 B122.19 B 226.4 D 304.1 B 375.7 J 446 D 498 B 544 B 596 D 642 B157.29 D 261.5 J 331.2 B 376.0 B 450 D 514 D 544 J 597 D 665 B177.78 B 261.6 B 355.9 D 408.7 B 483 J 515 D 553 B 602 J 669 D

TABLE 3. Eigenvalues up to 675 for �3, the fundamental domain of PSL2(Z[!]). The entries of type D are alsothe eigenvalues for �3, corresponding to the group EB(Z[!]).
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16.490 B 91.11 D 135.88 J 160.0 B 205.15 J 232.7 B 256.8 B 293.5 D 301.9 D45.856 D 100.77 D 135.91 B 177.78 B 205.2 B 238.1 D 261.5 J 294.9 B 304.1 B51.014 B 107.14 B 139.77 D 185.2 D 222.0 B 248.3 G 261.6 B 299.2 J78.41 B 122.19 B 157.29 D 198.7 D 226.4 D 248.4 D 270.2 D 299.8 B
TABLE 4. Eigenvalues up to 305 for �4, the fundamental domain of the group �4 of Section 3.5. The entriesof type D are also the eigenvalues for �4, corresponding to the group E4.
7.322 B 63.7 B 95 D 118 D 151.4 B 170 B 189 D 199.7 J24.43 B 74.6 B 103.3 J 128 B 156.7 J 173 D 192 B 212 B43.5 B 87.0 B 112 D 145 D 163 D 179.6 G 196 D 216 ? D45.1 D 93.6 B 116 B 145.5 B 166.3 B 185.9 B 199 D 220 B

TABLE 5. Eigenvalues up to 220 for �5, the fundamental domain of the group �5 of Section 3.6. The entriesof type D are also the eigenvalues for �5, corresponding to the group E5. The question mark indicates wewere not certain from the numerical results that the eigenfunction we obtained for this eigenvalue satis�ed theL2-condition.
� Series 1, Type B
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FIGURE 5. Eigenvalues from series 1, types B and D.
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yQ :25 :30 :35 :40 :45 :50 :55 :60 :65 :70
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FIGURE 6. Eigenvalues from series 2, types B and D.
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FIGURE 7. Eigenvalues from series 3, types B, C, and D.
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FIGURE 8. Number of eigenvalues of type D found for di�erent tetrahedra �(xQ; yQ). In this �gure we onlycount the eigenvalues for which the quality of the approximation for the iterated eigenfunction was very good.Compare Figure 9.Eigenvalues of types B and C vary continuouslywith the parameters. This is expected from theminimax principle, since the spectrum is purelydiscrete because of the Dirichlet boundary condi-tions. The curves descend as the parameter grows,since the volume of the tetrahedron grows.For eigenvalues of Type D|those subject to fullNeumann boundary conditions|the case is altered.As the �gures show, the behavior here is erratic:eigenvalues seem to come and go. Of course aneigenvalue existing on one tetrahedron may a�ectheavily the computation on neighboring tetrahe-dra, so the little pieces of curves may only be points.

For certain values of the parameter, namely, forxQ = 0:5 and xQ � 0:707 in series 1, for yQ � 0:289and yQ = 0:5 in series 2, and for xQ = 0:5 in se-ries 3, we pass over the fundamental domain ofan arithmetic congruence group, and we expect-edly �nd many pieces of curves near these param-eter values. We also �nd many pieces of curves forxQ � 0:809 in series 1; this corresponds to the fun-damental domain of the nonarithmetic group E5.Another way to look at the data for eigenvaluesof type D is shown in Figures 8 and 9. Recall thatthe tetrahedron �(xQ; yQ) has its lower verticesabove the points (0; 0), (xQ; 0), and (xQ; yQ). For
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FIGURE 9. Number of eigenvalues of type D found for di�erent tetrahedra �(xQ; yQ), as in Figure 8, butincluding dubious eigenvalues (those for which the eigenfunction approximation was not very good). The areaof each disk is proportional to the total number of eigenvalues, and the darkness increases with the proportionof good eigenvalues. For calibration, the disk at ( 12 ; 12 ) represents 12 good and 12 dubious eigenvalues.di�erent values of (xQ; yQ), we have placed at thepoint (xQ; yQ) the number of eigenvalues of typeD for �(xQ; yQ). In both �gures the local maximaare found where a fundamental domain is passed.This may indicate that only tesselating tetrahedracan carry eigenfunctions of type D for the Laplaceoperator.
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