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We show that, under mild nonflatness conditions, forany r > 3
and any C"-immersion of a surface into R with an isolated
umbilic point there exist an analytic surface with an isolated
umbilic of the same index. The connection of this with Cara-
théodory’s Conjecture on umbilics is discussed.

1. INTRODUCTION

The classical Carathéodory Conjecture states that
every smooth convex embedding of a 2-sphere in
R?® must have at least two umbilics. A well known
approach to the problem is based on a “semi-local”
argument. For any surface in R®, the eigenspaces
of the second fundamental form define two orthog-
onal line fields (principal directions) whose singu-
larities are exactly the umbilics. To each isolated
umbilic we can attach the index of either one of the
two fields, which is half of an integer, and the sum
of those indexes is the Euler characteristic of the
surface, if the surface is compact and all umbilics
are isolated. So, if an embedded sphere has only
one umbilic, this must have index two. We just ob-
serve that, up to an inversion in R, we can always
suppose that the curvature at a given umbilic is
positive, and therefore the convexity hypothesis is
not relevant for this argument.

Examples of umbilics of index j are known for all
7 < 1. A local conjecture stronger than Carathéo-
dory’s, known as the Loewner conjecture, states
that there are no umbilics of index greater then
one. This conjecture has been asserted to be true
for analytic surfaces by several authors [Hamburger
1940-1941; Bol 1943-1944; Klotz 1959; Titus 1973],
implying therefore Carathéodory’s Conjecture for
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analytic surfaces. Very recently we where informed
that Voss and Scherbel are trying to clarify some
points in the above mentioned works. These points
are explained in [Scherbel, Appendix B]; in this re-
spect see also [Yau 1982, p. 684; Lang 1990, p. 19].

In this note we prove that for each umbilic on
a C7 surface it is possible to construct, under a
mild nondegeneracy condition, an analytic surface
with an umbilic of the same index and therefore, in
those cases, a positive answer to the the local C”
conjecture follows from a positive answer for the
analytic case.

It is interesting to observe that generically the
index of an umbilic is :I:%. In particular, a gener-
ically embedded compact surface S has at least
2|x(S)| umbilics. This was proved in [Feldman
1967] and subsequently in [Asperti 1980]. A nice
geometric (generic) condition under which the in-
dex of an umbilic has to be at most one was given
in [Smyth and Xavier 1992]. Their condition is a
nonvanishing condition on the 3-jet of a suitable
function. Our condition is somewhat better since,
at least in the smooth case, it is a condition on the
k-jet for some k, and is automatically verified in
the analytic case.

The global configurations determined by the fo-
liations tangent to the principal directions have al-
ready been studied. See for instance [Gutierrez and
Sotomayor 1982; 1983; 1993; Ramirez-Galarza and
Sénchez-Bringas 1995].

2. BONNET COORDINATES AND FUNCTIONS

Let 8 C R?® be an oriented C"-embedded surface,
where r > 3. Suppose that the Gaussmap N : § —
S? takes § diffeomorphically and preserving orien-
tation onto an open subset N (8) of S?\ {(0,0,1)}.
In particular, the gaussian curvature of § is posi-
tive everywhere. Let IT : R — S2\ (0,0, 1) be the
diffeomorphism given by the inverse map of the
stereographic projection; that is,

2 2y a:2+y2—1>

H Y :< ? ?
(.9) I+z?2+y? 1+a?+y? 1+22 +y°

Then the map

O(z,y) = (X(z,9),Y(2,9), Z(z,y)) = N~ oll(z,y)
defined in U = II7!(IN(8)) provides a global C™~!

parametrization of 8, called Bonnet chart associ-
ated to 8 (and to the particular stereographic pro-
jection IT).

Let A(z,y) = (1 + 2% + y*)I(z,y); that is,

A(z,y) = (2, 2y, 2> +y* — 1).
We define the Bonnet function
Bz, y) = Mz, y) - 2(z,y),

where the dot stands for the usual inner product.

Proposition 2.1. Let 8 C R® be an oriented C" em-
bedded surface, where r > 3. Suppose that the
Gauss map N : 8§ — S? takes 8§ diffeomorphi-
cally and preserving orientation onto an open sub-
set of S* — {(0,0,1)}. Then the Bonnet function
B = B(z,y) associated to S is of class C™ and the
differential equation of the principal lines of curva-
ture of S, in its Bonnet chart, is given by

Proof. Since A-®, = A-®, = 0, where the subindex
means the partial derivative with respect to this
variable, we have A, - ® = (3, and A, - ® = ,.
This, together with A - ® = (, can be written in
matrix notation as M - ® = B, where

2r 2y z2*+y*—1

M=|2 0 2z ,
0 2 2y
X B

b = Y 5 B = /Bw
Z By

Since N is of class C"1, ® is also of class C" 1.
Therefore, M - ® = B implies that 3 is of class
Cr. Since, for all (z,y) € R?, the determinant of
M is —4(1 + 2% + y?) # 0, we may write ® =
M~1.B. From this we can compute the first and
second fundamental forms of ® in terms of 8 and
therefore we obtain (2.1). O
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Remark 2.2. There are several other proofs of (2.1);
see, for example, [Bonnet 1860; Darboux 1896, pp.
285-300; Blaschke 1929, pp. 283-289]. Our di-
rect approach has the merit that it can be easily
checked using a symbolic computer system.

Proposition 2.3. Let 3 : R?> — R be a C" function,
with r > 3. Suppose that the 2-jet j°B,0) of B at
(0,0) has the form

7*B0.0)(z,y)
= ago + a10T + o1y + azx’ + 2a117Y + agry?

and that

ago + aoo(aoz + azo) - afl + Qp2a29 # 0. (2.2)

Then there exists an open neighborhood U C R? of
(0,0) such that B|y is the Bonnet function of an
oriented C" surface embedded in R3.

Proof. The function 8 = B(z,y) determines a func-
tion B = B(x,y) as in the proof of Proposition 2.1;
let ® = M~' - B. Using (2.2), we can check that

09, (0,0) 0P, (0,0)
Oz Oy
det #£0,
0%, (0,0) 0%, (0,0)
oz oy '

and therefore that (since B is of class C" ') there
exists an open neighborhood U C R? of (0,0) such
that ® : U — R® is a C" ! regular parametrization
of S = ®(U). We want to show that there exists
an open neighborhood of ®(0,0) in S that is the
inverse image of a regular value of a C” function.
Let ¢ : U X (—¢,e) — R® be given by

‘P(mvya 8) = ‘I)(:E,y) + SH(l',y).

Then, by the Inverse Mapping Theorem, ¢ is a
C" ! local diffeomorphism around (0,0,0). Let
V = ¢(U x (—¢,¢)). By taking U x (—¢, ) smaller
if necessary, we shall proceed assuming that ¢ :
U x (—e,e) — V is a diffeomorphism. Let g =
m3op 1 :V — R, where m3(z,y,s) =s. Then S =
g *(0). Since (dp ')(gradg) = (0,0,1), we have
gradg = Il o w5 0 @ !, where ma(z,y, s) = (z,y).

Therefore grad g is of class C™!, so that g is of
class C" and 0 is a regular value. Finally, because
A-®=A-M~1-B =, we get that 3 is the Bonnet
function of ®(U). O

Remark 2.4. In the proof above, notice that the
parametrization ¢ is essentially defined in terms
of what will be the unit normal vector, so it has a
class of differentiability one less than the (natural)
class of differentiability of S.

Remark 2.5. Under the conditions of Proposition
2.1, if the Bonnet function [ is defined in a neigh-
borhood of (0,0) and the 2-jet of 8 at (0,0) is writ-
ten as in the statement of Proposition 2.3, then
(since ®,(0,0) and ®,(0,0) are linearly indepen-
dent) inequality (2.2) of Proposition 2.3 is satis-
fied.

3. UMBILICS OF LOJASIEWICZ TYPE

We say that a C™ vector field ¢ on R? fulfills a Lo-
Jjasiewicz inequality at (0,0) if there exist k € N*
and § > 0 such that ||£(z,y)| > 6]|(z,y)||* on some
neighborhood of (0,0). Under these circumstances,
we will also say that £ satisfies a Lojasiewicz in-
equality of order k (with associated constant ¢) at
(0,0).

Suppose that a C" oriented surface § C R?, with
r > 3, has an isolated umbilic point p € 8. We
will say that p is an umbilic of Lojasiewicz type (of
order k, with 1 < k < r — 2) if there is a local
C" diffeomorphism ¢ of a neighborhood of p € R?
onto an open set of R® such that the image surface
©(8) = § satisfies the following properties:

1. p = ¢(p) is an isolated umbilic of § with the
same index as p, and $ has positive curvature
in p and unit normal vector (0,0, —1).

2. The Bonnet function 3 of § is such that the
vector field E(w,y) = (Bm - Byy, QBW) satisfies
a Lojasiewicz inequality of order k at (0, 0).

Remarks 3.1. (a) The composition of an appropriate
rigid translation and the inversion J(p) = p/||pl|*
preserves the principal lines of curvature, hence
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umbilics and their indexes as well. Thus an in-
version may be used to transform a flat umbilic
into an umbilic of positive curvature and, up to
a conformal diffeomorphism, the first condition is
always satisfied.

(b) With the notation above, the index of £ at (0, 0)
is twice the index of the umbilic point p [Smyth and
Xavier 1992].

(c) If a vector field on R? satisfies a Lojasiewicz
inequality at the singular point (0,0), then (0, 0) is
an isolated singularity of the vector field.

(d) Suppose that Y : (U, (0,0)) — (R?,(0,0)) is an
analytic vector field defined in an open set U C R2.
Then (0, 0) is an isolated singular point of Y if, and
only if, Y satisfies a Lojasiewicz inequality at (0, 0)
[Dumortier 1977]. Therefore, using (a) above, an
analytic surface immersed in R® always satisfies a
Lojasiewicz inequality at an isolated umbilic point.

Lemma 3.2. If ¢ : (U, (0,0)) — (R?,(0,0)) is a C”
vector field, where r > 1, defined in a neighborhood
U of (0,0) and satisfying a Lojasiewicz inequality
of order k at (0,0), where 1 < k <r, then:

() the k-jet j*& of € at (0,0) satisfies a Lojasiewicz
inequality of order k at (0,0).

(b) both & and its k-jet j*&, at (0,0) have the same
index at their common isolated singularity (0,0).

Proof. Let £ = j*&,+¢. By assumption, there exists
a constant § > 0 such that ||£(z,y)]| > 6||(z,y)||*,
for all (z,y) in a neighborhood V' of (0,0). Since
© is the Taylor remainder of order k, by shrinking
V if necessary, we may find € > 0 such that € < i&
and [|p(z,v)|| < |/(z,y)||* for all (z,y) € V. This
implies that, when restricted to V, each element
of the family &, = j*¢, + pp, with parameter p €
[0, 1], satisfies a Lojasiewicz inequality of order k
with associated constant § — ¢ at (0,0). It is easy
to see that the family &, provides a homotopy be-
tween ¢ and j*¢, such that each |y has a unique
singularity, namely (0,0). This implies the lemma,
by index theory [Guillemin and Pollack 1974]. O

We are now in condition to prove the announced
result:

Theorem 3.3. If p is an umbilic point of a C™ surface
8§ C R3, where r > 3, that satisfies a Lojasiewicz
inequality of order 1 < k < r — 2, then there is an
analytic surface 8 such that p is an isolated umbilic
point ofg and 8 having, in both cases, the same
index.

Proof. By definition, we may assume that the Gaus-
sian curvature of a surface 8§ at p is positive, and
that the unit normal vector to 8 at p is (0,0, —1).
Let 8 = B(z,y) be the C” Bonnet function associ-
ated to 8 at a neighborhood of p. By assumption,
the vector field

§($,y) = (/Bzz - /Byya 2/8111)

satisfies a Lojasiewicz inequality of order k£ at the
singularity (0,0). Let v = y(z,y) be the (k+2)-jet
of 8 at (0,0). Since (3 satisfies the properties men-
tioned in Remark 2.5, we can apply Proposition 2.3
to make a Bonnet function of v with associated
surface S. Let

Y(:z:,y) = (’Ymv — Yyy>» 2'79:9)'

Since Y and the k-jet of £ at (0,0) coincide, it
follows from the lemma above that p is an umbilic
point of both § and S satisfying the conditions of
the lemma. O

Theorem 3.4. Assuming the truth of the Loewner
conjecture for isolated umbilics on analytic sur-
faces, if a C" surface 8 C R3, with r > 3, satisfies
a Lojasiewicz inequality at an umbilic point p, the
index of p is at most 1. Therefore, if a C" im-
mersion of a sphere has one umbilic of Lojasiewicz
type, it must have at least one more umbilic.
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