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Let p be a prime congruent to �1 modulo 4,
�

n
p

�
the Legendre

symbol and S(k) =
Pp�1

n=1 nk
�

n
p

�
. The problem of finding a prime

p such that S(3) > 0 was one of the motivating forces behind the

development of several of Shanks’ ideas for computing in alge-

braic number fields, although neither he nor D. H. and Emma

Lehmer were ever successful in finding such a p. In this paper

we exhibit some techniques which were successful in produc-

ing, for each k such that 3 � k � 2000, a value for p such that

S(k) > 0.

1. INTRODUCTIONShortly after the death of Daniel Shanks, the sec-ond author received a collection of correspondencebetween Shanks and D. H. and Emma Lehmer. Thismaterial covers the period 1968{1971, when Shankswas very active in developing ideas that would beof great signi�cance to the development of compu-tational algebraic number theory. Furthermore, it isevident from this correspondence that a rather sim-ple looking problem served as a focus for his and theLehmers' investigations during this time. In orderto discuss their problem we �rst require some nota-tion. We let d denote a fundamental discriminantof an imaginary quadratic �eld K = Q (pd) and leth(d) denote the class number of K . A brief letter,dated April 2, 1968, from the Lehmers to Shanks,mentions the problem of trying to produce a smallvalue for the ratio�(p) = h(�p)=pp;where p is a prime congruent to 3 modulo 8:We are trying to get this ratio down to .041.According to a theorem of Chowla there arein�nitely many such primes, but we have notseen one yet. Any candidates?
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64 Experimental Mathematics, Vol. 8 (1999), No. 1During the following year the Lehmers and Shanksmade a concerted e�ort to �nd small values for �(p).By August 23 they had found p = 2426489587 withh(�p) = 2925 and �(p) = 0:05940, breaking the\0:06 barrier"; and by September 26 they had foundthe best candidate that they ever discovered, namelyp = 85702502803 with h(�p) = 16259 and �(p) =0:05546. It is important to realize that at this time,the fast methods for evaluating class numbers thatare used today did not exist. Indeed, Shanks wasmotivated by this problem to develop fast meth-ods because the Lehmers were producing large val-ues of p as possible candidates. Throughout thiscorrespondence it is possible to see Shanks developand re�ne the ideas which were to culminate in avery important paper [Shanks 1971], where he intro-duced the baby-step{giant-step method for evaluat-ing h(d) and his method of factorization of d, basedessentially on the determination of ambiguous idealclasses in the class group of K . He even recognizedthat his technique for evaluating h(d) was likely tobe of complexity O(jdj1=4+") for any " > 0, but itwas Lenstra [1982] who showed later that it wasof complexity O(jdj1=5+") under the Extended Rie-mann Hypothesis (ERH). This was a considerableimprovement over the previous method of count-ing classes, a technique of complexity O(jdj1=2+").Inspired by his success with imaginary quadratic�elds, Shanks [1972] went on to discover what hecalled the \infrastructure" of the class group of areal quadratic �eld and how it could be applied tosolve the problem of determining its regulator andclass number.In response to a question by Shanks about wherethe \theorem of Chowla" could be found, D. H. andEmma Lehmer mentioned that it in fact appearedin a paper by Ayoub, Chowla and Walum [Ayoubet al. 1967]. In this paper the authors discussed thecharacter sum S(k) = p�1Xn=1 nk�np�; (1–1)where p is a prime congruent to 3 modulo 4 and�np � is the Legendre symbol. They pointed out that,while S(1) = �ph(�p), S(2) = �p2h(�p) andS(k) < 0 whenever k � p� 2;they could prove that S(3) > 0 in�nitely often. Itis not immediately clear why this should mean that�(p) < 0:041 in�nitely often and no proof of this was

ever provided by the Lehmers; however, the basicidea behind their thinking is suggested in the paperby the Lehmers and Shanks [Lehmer et al. 1970]which originated as a result of their collaboration.We illustrate this below.As usual, we de�ne the Dirichlet L-function byL(s; �) = 1Xn=1 n�s�(n):Also, if �(n) is the Kronecker symbol � dn�, the an-alytic class number formula for K = Q (pd) assertsthat 2�h(d)wpjdj = L(1; �); (1–2)where w is the number of roots of unity in K (w = 2if jdj > 4). When d = �p � 1 (mod 4), then�(n) = �dn�= �np�:In [Ayoub et al. 1967] it is shown that for this char-acterS(3) = p3pp2� ��L(1; �) + 32�2L(3; �)� ; (1–3)hence S(3) > 0 if and only ifL(1; �) < 32�2L(3; �): (1–4)Recalling the Euler product representation of L(s;�),L(s; �) =Yq qsqs � �(q) ; (1–5)

where the product is taken over all the primes q, wesee thatL(3; �) = Yq�41 q3q3 � �(q) Yq>41 q3q3 � �(q)� Yq�41 q3q3 � �(q) Yq>41 q3q3 � 1 :Now let a be 4 times the product of all the primesless than or equal to 41 and b be a �xed integersuch that the Kronecker symbol � bq� = �1 for allthe prime divisors of a. We have (a; b) = 1 and forany prime p = ax + b we get �(q) = �1 for q � 41and L(3; �) < �(3) Yq�41 q3 � 1q3 + 1 = 0:84644:



Teske and Williams: A Problem Concerning a Character Sum 65Since (1{2) and (1{4) imply �(p) < 3L(3; �)=2�3when S(3) > 0, we see that �(p) < 0:041 for suchprimes. Unfortunately, it is not proved in [Ayoubet al. 1967] that S(3) > 0 for in�nitely many primesselected from the arithmetic progression fax + bg.However, it is possible, by referring to a later theo-rem of Joshi [1970], to prove the Lehmers' assertionthat �(p) < 0:041 in�nitely often without even re-quiring that S(3) > 0 in�nitely often.The Lehmers and Shanks never did �nd a valueof p for which either �(p) < 0:041 or S(3) > 0.They did, however, �nd several values of p for whichS(4) > 0 [Lehmer et al. 1970], and in a letter datedJune 5, 1969, they noted that S(5); S(6) > 0 forp = 163. In fact it is stated at the end of [Ayoubet al. 1967] that results similar to the existence ofan in�nitude of primes p such that S(3) > 0 holdfor other small values of k. Later Fine [1970] provedthe following result.
Theorem 1.1. For each real k > 2 there are in�nitelymany primes p � 3 (mod 4) for which S(k) > 0 andin�nitely many for which S(k) < 0.Unfortunately, Fine's method is not easily adaptedto the problem of �nding values for p such thatS(k) > 0. The purpose of this paper is to showhow to �nd such values of p for small integer valuesof k. Our initial objective was to discover values ofp such that S(k) > 0 for 3 < k � 50, but we weresomewhat surprised to learn that we could extendour method to do this for all 3 < k � 2000. Wealso exhibit a value of p for which S(3) > 0 and�(p) < 0:041 under the ERH.We want to emphasize at this point that the factthat our last result is conditional on the ERH doesnot make our value for p any less worthy a candidatefor S(3) > 0 than those for which we get S(k) > 0when k > 3. Indeed, all of the results on �(p) orL(1; �) here are dependent on the truth of the ERHand those in [Lehmer et al. 1970] are implicitly de-pendent either on the truth of the ERH or someheuristic estimation of L(1; �) by the truncated Eu-ler product. The fact is that we currently have noalgorithm for evaluating the class number h of aquadratic �eld of discriminant d (real or imaginary)which is provably better than O(jdj1=2+") in com-plexity. This complexity measure is far too large toallow for the rigorous computation of h for the sizeof jdj that we have to work with here.

2. OUR INITIAL STRATEGYAs was done in [Ayoub et al. 1967], we can expandxk in a Fourier expansion with period 1 to obtainS(k) = pkpp 1Xm=1 bm(k)�mp �;where bm(k)2 = Z 10 xk sin 2�mxdx:Now, on integrating by parts,bm(k)2 = 1(2�m)k+1 Z 2�m0 yk sin y dy= � 12�m � k(k � 1)(2�m)2 bm(k � 2)2 :Also, bm(1) = bm(2) = �1=(�m). Hence,
bm(k) = b k�12 cXi=0 2(2i)!� k2i�(�1)i+1(2�m)2i+1andS(k) = �pkpp� b k�12 cXi=0 (2i)!� k2i�(�1)i(2�)2i 1Xm=1 1m2i+1�mp �

= �pkpp� b k�12 cXi=0 (2i)!� k2i�(�1)i(2�)2i L(2i+1; �);where �(m) = �mp � = ��pm �.In order to get S(k) > 0, we needb k�12 cXi=0 (2i)!� k2i�(�1)i(2�)2i L(2i+1; �) < 0or L(1; �) < A(k; �); (2–1)where we de�neA(k; �) = b k�12 cXi=1 (2i)!� k2i�(�1)i+1(2�)2i L(2i+1; �):This is a simple generalization of (1{4). Now, asnoted by Shanks, we have�(4i+ 2)�(2i+ 1) = Yq prime q2i+1q2i+1 + 1 � L(2i+1; �)
� Yq prime q2i+1q2i+1 � 1 = �(2i+ 1);thus, A(k; �) � Z(k);



66 Experimental Mathematics, Vol. 8 (1999), No. 1where
Z(k) = b k�12 cXi=1 (2i)!� k2i�(�1)i+1(2�)2i Zi;

and
Zi = 8<: �(4i+ 2)�(2i+ 1) for i odd,�(2i+ 1) for i even.Here are the values of Z(k), for 3 � k � 1:k Z(k)3 0:128627525377098280764 0:257255050754196561535 0:348920303420974693086 0:403623283377432675427 0:422765318505207128278 0:407747736685934671399 0:3567922119285199485810 0:2649407643691356276911 0:1223726491191499126212 �0:0872787548869459447813 �0:39087550751914021317

We �nd that Z(k) stays positive for k � 11; thus,if L(1; �) < 0:12237, then S(k) > 0 for 3 � k � 11.However, for values of k > 11, this approach willclearly not work because L(1; �) is always positive.By changing slightly the model used for the �niteprobability space in [Elliott 1973] (see [Elliott 1980,Chapter 22]), it is a routine matter, using the meth-ods of [Elliott 1973], to establish that there mustexist a positive proportion of the primes p � �1(mod 4) such that for any given real value of z, weget L(1; �) < ez. Thus, not only must there exist anin�nitude of primes p (congruent to �1 modulo 4)for which S(k) > 0 for 3 � k � 11, but there mustbe a positive proportion of such primes. Undoubt-edly, this result applies to all values of k > 11, butthis would require a more extensive modi�cation ofElliott's results.Our �rst strategy was to extend the idea that theLehmers employed to �nd the numbers mentioned inSection 1; that is, we try to �nd p such that �(q) =�1 for as many small primes q as possible. Supposethat �(q) = �1 for all primes q � Q; then from(1{5) L(s; �) = Fs(Q)Ts(Q;�);

whereFs(Q) = Yq�Q qsqs + 1 ; Ts(Q;�) = Yq>Q qsqs � �(q) :We now need to estimate Ts(Q;�). To this end wenote that� log Ts(Q;�) =Xq>Q log 1� �(q)qs =Xq>Q 1Xi=1 ��(q)iiqis ;hence, ��log Ts(Q;�)�� � 1Xi=1 Xq>Q 1iqis : (2–2)We next examine the sumPq>Q q�s (s > 1). If welet �(x) represent the usual prime counting function,then by partial summationXq>Q 1qs = Xm�Q�(m)�m�s � (m+ 1)�s�� �(Q)=Qs
= sXm�QZ m+1m �(x)x�s�1 dx� �(Q)=Qs
= sZ 1Q �(x)x�s�1 dx� �(Q)=Qs:By a result of Rosser and Schoenfeld [1962], we havexlog x < �(x) < xlog x �1 + 3x log x� (x > 17):Hence,Xq>Q 1qs < 1logQ�1+ 32 logQ�sZ 1Q x�sdx� QQs logQ< Q�s+1= logQ (s � 3; Q � 90):Substituting this into (2{2) we get��log Ts(Q;�)�� < QlogQ� 1Xi=1 Q�sii � < 3Q�s+12 logQ ;for s � 3, Q � 90. Since ex < 1 + 2x and e�x >1� 2x for 0 < x < 1, we get��Ts(Q;�)� 1�� < 3Q�s+1= logQor (�1)jTs(Q;�) > (�1)j � 3Q�s+1= logQ (2–3)for any j 2 Z as long as s � 3 and Q � 90.From (2{3) it follows that

A(k; �) = b k�12 cXi=1 (2i)!� k2i�(2�)2i F2i+1(Q)(�1)i+1T2i+1(Q;�)> B(k;Q);



Teske and Williams: A Problem Concerning a Character Sum 67

r Nr h(�Nr) L(1; �) �(Nr)3 19 1 0:720730 0:2294155; 7 43 1 0:479088 0:15249811; 13 67 1 0:383806 0:12216917; : : : ; 37 163 1 0:246068 0:07832641 222643 33 0:219714 0:06993743; 47 1333963 79 0:214884 0:06839953; 59 2404147 107 0:216796 0:06900861 20950603 311 0:213457 0:06794567; 71 51599563 487 0:212988 0:06779673; 79 96295483 665 0:212896 0:06776783 146161723 857 0:222696 0:07088689 1408126003 2293 0:191969 0:06110597; 101; 103 3341091163 3523 0:191477 0:060949107; 109; 113 52947440683 13909 0:189899 0:060446127 193310265163 26713 0:190873 0:060756131; 137 229565917267 29351 0:192450 0:061258139 915809911867 59801 0:196315 0:062489149; : : : ; 163 1432817816347 70877 0:186020 0:059212167; : : : ; 181 30059924764123 296475 0:169880 0:054074191 3126717241727227 3201195 0:179853 0:057248193; 197; 199 8842819893041227 5188215 0:173329 0:055172211; 223 13688678408873323 6524653 0:175196 0:055766227; : : : ; 241 22261805373620443 8035685 0:169196 0:053857251 4908856524312968467 121139393 0:171769 0:054675257; 263; 269 7961860547428719787 140879803 0:156852 0:049927
TABLE 1. Nr: least prime solutionswhere

B(k;Q) = b k�12 cXi=1 (2i)!� k2i�(2�)2i (�1)i+1F2i+1(Q)
� 3logQ b k�12 cXi=1 (2i)!� k2i�(2Q�)2i F2i+1(Q);thus, if L(1; �) < B(k;Q), then S(k) > 0.In order to �nd values of p � 3 (mod 4) such that�(q) = �1 for all q � Q we made use of the numbersieve MSSU; see [Lukes et al. 1995; 1996]. We let rbe a prime and de�ne Nr as the least positive primeinteger satisfying Nr � 3 (mod 8) and��Nrq �= �1 for all odd primes q � r:By the heuristic reasoning of [Lukes et al. 1996],we would expect logNr to be roughly(r log 2= log r)1+o(1):In somewhat over a month of MSSU time, Jacobson[1995, p. 128] computed Table 1 above. This tableis an extension of parts of Tables III and IIIa in[Lehmer et al. 1970].

Note that for 41 � r � 269 we havelogNr > (r log 2)= log r: (2–4)From Table 1 we see that for p = N257 we haveS(k) > 0 if 0:156852 < B(k;Q), with some Q be-tween 90 and 270. We next computed a table ofvalues for B(k;Q) for 4 � k � 400 and (Q) becomevery large and therefore di�cult to work with. Be-cause of this growth rate of the terms of B(k;Q),it was necessary to compute it using 800 digits ofprecision in order to get accurate values. For a �xedk we found that the larger the value of Q, the largerB(k;Q) would be, so that the largest number of val-ues of k with B(k;Q) > 0:156852 could be obtainedfor Q = 270. In this case we found that the values ofB(k;Q) increased monotonically for 4 � k � 10 anddecreased monotonically for 10 � k � 400. SinceB(4; 270) = 0:25725344;B(142; 270) = 0:15685501> 0:156852>B(143; 270);we see that for p = N257 we have S(k) > 0 for all ksuch that 4 � k � 142.
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3. A SECOND APPROACHAs the computation of the Nr values is very expen-sive and the concomitant rate of decrease of L(1; �)is very slow, we developed a second strategy for �nd-ing values of p such that S(k) > 0. The idea herewas to allow for a greater degree of freedom thanthat a�orded by insisting that �(q) = �1 for allprimes q � Q. To this end we de�ne Fs(Q;�) byFs(Q;�) = Yq�Q qsqs � �(q)andB(k;Q; �) = b k�12 cXi=1 (2i)!� k2i�(�1)i+1F2i+1(Q;�)(2�)2i
� 3logQ b k�12 cXi=1 (2i)!� k2i�F2i+1(Q;�)(2Q�)2i :By using the same reasoning as that employed inSection 2, we see that S(k)>0 if L(1; �)<B(k;Q; �)or T1(Q;�) < B(k;Q; �)=F1(Q;�): (3–1)If we de�neGs(Q;�) = Fs(Q;�)=F1(Q;�) = Yq�Q qs�1(q � �(q))qs � �(q)andC(k;Q; �) = b k�12 cXi=1 (2i)!� k2i�(�1)i+1(2�)2i G2i+1(Q;�)
� 3logQ b k�12 cXi=1 (2i)!� k2i�G2i+1(Q;�)(2Q�)2i ;then by (3{1) we see that S(k) > 0 ifT1(Q;�) = L(1; �)=F1(Q;�) < C(k;Q; �): (3–2)Now a result of Elliott [Shanks 1971] asserts that,if Q > 2 and F (Q; z; �) is the density of all positived (here �(q) = ��dq �) such thatT1(Q;�) � 1=(1 + z) or T1(Q;�) � 1 + z;with 0 < z < 2, then there exist constants A, Bsuch thatF (Q; z; �) < 2A exp��BQ log2(1 + z)�:Hence, for z between 0 and 2 it is very likely thatT1(Q;�) < 1+z. This means that if k, Q, p and z arechosen such that C(k;Q; �) � 1+z, the chance thatT1(Q;�) < C(k;Q; �) is very good. For example, if

p is selected such that �(q) = +1 for q = 2; 3; 5 and�(q) = �1 for 7 � q < Q = 220, thenC(k;Q; �) > 1:011for 18 � k � 800. (This was determined by com-puting C(k;Q; �) to 2000 digits of precision.) But,by using the MSSU we found thatp = 2754235520364791 (3–3)satis�es the conditions above and h(�p)=25834697;hence, since F1(220; �) = 1:52969893, we getT1(220; �) = L(1; �)=F1(220; �)= 1:01098973 < 1:011:Thus, for p given by (3{3) we have S(k) > 0 for18 � k � 800.Naturally, this leads to the question of how best tospecify the values of �(q) for the small primes. Af-ter conducting a number of numerical experimentswe discovered that the values of C(k;Q; �) tendedto be largest over the longest interval for k when�(q) = 1 for only the �rst few primes and �(q) = �1for the remainder of the primes � Q. For example,if �(q) = 1 for q = 2; 3; 5; 7; Q = 90 and �(q) = �1for all other primes � Q, then C(k;Q; �) > 1:05for 57 � k � 325 and if �(q) = 1 for q = 2; 3; 5only, then C(k;Q; �) > 1:05 for 27 � k � 319 and if�(q) = 1 for q = 2; 3; 5; 7; 11, then C(k;Q; �) > 1:05for 122 � k � 273. If �(q) = 1 for q = 79; 83; 89and �(q) = �1 for the remaining q < 220, thenC(k;Q; �) > 1:05 only when 4 � k � 67. In allcases we observed that for �xed Q and �, C(k;Q; �)was strictly monotonically increasing for the smallvalues of k, and after achieving its maximum becamestrictly monotonically decreasing. The location andthe size of the maximum depended on Q and �.We also found it useful to make Q in (3{2) muchlarger than the limit to which we can sieve withthe MSSU. This is because if Q� denotes the up-per bound on the prime moduli used by MSSU,then T1(Q�; �) will likely not di�er very much fromT1(Q;�) when Q is much larger than Q�. On theother hand we have found that, for k and � �xed,C(k;Q; �) grows with Q. This means that it is likelythat C(k;Q; �) > T1(Q;�) for a larger interval ofvalues of k than is the case if we work with Q� < Q.For example, if we put Q� = 230 and Q = 1000 and



Teske and Williams: A Problem Concerning a Character Sum 69specify that �(q) = 1 for q = 2; 3; 5; 7 and �(q) = �1for all the remaining q � Q�, thenp = 164093214527675999 (3–4)satis�es our conditions on �(q) for q � Q�. HereF1(Q�; �) = 2:02182403while F1(Q;�) = 2:01920199:For this value of p we get h(�p) = 263229907; hence,T1(Q�; �) = L(1; �)=F1(Q�; �) = 1:00970949whileT1(Q;�) = L(1; �)=F1(Q;�) = 1:01102065:On tabulating C(k;Q�; �) we found that if 29 �k � 969, then C(k;Q�; �) > 1:0098 > T1(Q�; �).Hence, for p given by (3{4) we have that S(k) > 0for 29 � k � 969. Next, on tabulating C(k;Q; �) forthe � values produced by p and Q = 1000, we foundthat if 29 � k � 35, then C(k;Q; �) > 1:0128 >T1(Q;�) and C(k;Q; �) > 1:085 > T1(Q;�) for35 � k � 2000. Thus for p given by (3{4) we getS(k) > 0 for 29 � k � 2000. That the value 1:085 isquite a lot larger than 1:011 suggests that if we hadtabulated C(k;Q; �) even further, we would likelyhave produced an even larger value for k such thatS(k) > 0; however, at this point the computationof the C(k;Q; �) values was very expensive becausewe were using 6000 digits of precision.
4. THE PROBLEM OF S(3)We now know values of p for which S(k) > 0 for all4 � k � 2000, but we have not yet found a value ofp for which S(3) > 0. From results in Section 2 weknow that ifL(1; �) < Z(3) = �(6)=(4�(2)�(3)) = 0:12863;

(4–1)then S(3) > 0, and it follows that �(p) < 0:040945.Jacobson [1995, pp. 140{141] used the MSSU to pro-duce numbers N � �1 (mod 4) such that ��Nq � =�1 for q = 2; 3; : : : ; 199 and computed F1(Q;�) forQ = 1000 to search for likely values of N with smallL(1; �). For those that were prime, he computedh(�N) and an accurate value of �(N). The bestresult he obtained was for the 20 digitp = 19701513057844219387: (4–2)

Here h(�p) = 218285743, L(1; �) = 0:15449892,and �(p) = 0:04917853. An attempt by the authorsto get an improved value by specifying only that��Nq � = �1 for q = 2; 3; : : : ; 149 did not produce abetter result for any prime value of N below Jacob-son's number (4{2). Only after searching somewhatbeyond 4:8 � 1019 were we able to �nd better results:for the numbersp1 = 39686738412456114907;p2 = 41974200404926400587;p3 = 45505625249774422363;
9>=>; (4–3)

we haveh(�p1) = 309519879; L(1; �) = 0:15435322;�(p1) = 0:04913215;h(�p2) = 317906469; L(1; �) = 0:15415514;�(p2) = 0:04906910;h(�p3) = 330452097; L(1; �) = 0:15389547;�(p3) = 0:04898645:Given its size, p from (4{2) is a most remarkablenumber because there are so few values of primesq � 401 for which �(q) = 1. We have �(q) = �1for all primes q � 211. Also, �(q) = �1 for 227 �q � 241 and �(257) = �1, but �(223) = �(251) =�(263) = 1. This is not as good as N257 in Section 2,but then �(q) = �1 for 269 � q � 277, �(281) = 1,�(283) = �(293) = �(307)� 1, �(311) = 1; further-more, �(q) = �1 for 313 � q � 401. This helpsto explain the good value of �(p). While the abovevalues of �(p) may seem at �rst glance to be rathergetting close to 0:041, they are still a long distanceaway, relatively speaking. The results in Table 1suggest that in order to get values of �(p) as smallas 0:041, we would have to search for values of pvery much beyond the limits mentioned above.In a letter of March 5, 1969, the Lehmers de-scribed a method which they used to �nd a valueof N such that L(1; �) is small. They prespeci�edN to be such that N � 1 (mod 131 �139) and N � 3(mod 137�149); that is, they found A by the Chineseremainder theorem such that A � 1 (mod 131 �139)and A � 3 (mod 137 � 149) and put N = A + BXwhere B = 131 � 137 � 139 � 149. They then em-ployed their sieving device, the DLS-127, to �ndvalues for X such that A + BX � 3 (mod 8) and



70 Experimental Mathematics, Vol. 8 (1999), No. 1��(A+BX)q � = �1 for all primes q with 3 � q � 127.By this process they produced the 20 digit numberN = 84148631888752647283for which �(q) = �1 for all p � 149 and L(1; �) =0:17009, but N is unfortunately composite. In anattempt to �nd a better result than the ones of (4{2)and (4{3), we used the Lehmers' idea with B =Q353251 q � 3:6 � 1044 and A such that ��Aq � = �1 forall q dividing B. We then used the MSSU to sievefor values of X such that ��(A+BX)q � = �1 for q upto 241. Our best result was the 62 digit primep = 126002242341907994502426401672n31438897422023627503681017995963;for which Jacobson computed thath(�p) = 171318502487356060544121730019;using an improved version of the algorithm in [Ja-cobson 1999]. Thus, L(1; �) = 0:15162297, whichis less than that for the numbers in (4{3), but itis still not su�ciently small to get S(3) > 0 or�(p) < 0:041. Indeed, by August of 1968 Shanksand the Lehmers had reached the conclusion thatthe DLS-127 would never be able to �nd a value forp such that S(3) > 0. Shanks went so far as to es-timate that such a value for p might have to satisfy�(q) = �1 for all primes q � 1620. However, thevalue of F1(1283) = 0:12854204 is already less thanthe value of L(1; �) needed by (4{1). If we use theempirical estimate (2{4) as a guide for estimating alower bound on N1283, we get logN1283 > 124, sug-gesting that N1283 is likely to be a number of at least54 digits, a number far too large for any current sievedevice to �nd.There is, however, thanks to a recent result ofBach [1995], another way to �nd a candidate for p.Because F1(1279) is quite close to �(6)=(4�(2)�(3)),we simply found values for N such that ��Nq � = �1for all q � 1279. We did this by specifying that forall prime values of q � 1279,N � 3 (mod 8);N � 1 (mod q) when q � �1 (mod 4);N � r(q) (mod q) when q � 1 (mod 4):Here r(q) denotes a randomly selected quadraticnonresidue of q. Notice that if N satis�es these con-ditions we have ��Nq � = �1 for all q � 1279. Thedi�culty with this process is that the values we get

for N are very large, 535 or more digits. However,testing the numbers for primality is very easy be-cause N � 1 is divisible by all the primes q � �1(mod 4) (q � 1279). Thus, it is easy to �nd a com-pletely factored part of N � 1 which exceeds pN ,and the method of Pocklington mentioned in [Brill-hart et al. 1975, Theorem 4] can easily be used toestablish the primality of N . We produced 10 primevalues for p in this way and selected the one suchthat F1(200000; �) was least, namely the 535 digitnumberp = 881974625057785931222613817074n917532086866157498333873986616n772405314952314649125430692674n421301535335822565110383045261n662288884171496652768853130693n547568926092470486468758067960n339622958266444317598747950276n228195628141063361018553506872n307865094282349696360084281769n391483388553654419029093991970n223187255252971434802826943154n408037354452295695797112414760n456576881727709666986157386200n364701289849665480127513654606n154630655217220710053068332795n778436402430725458959096262770n842000062867226918845060657043n0205509080296159176108667:

(4–4)

It remains to show that L(1; �) for this p satis-�es (4{1). We used the method of [Bach 1995] toestimate L(1; �). We de�ne
C(Q) = 2Q�1Xi=Q i log i

and aj = (Q+ j) log(Q+ j)=C(Q), for j = 0; 1; : : : ;Q�1. Bach showed that under the ERH����logL(1; �)� Q�1Xi=0 ai logF1(Q+ i� 1; �)���� � A(Q; d);where A(Q; d) = (A log jdj + B)=(pq logQ) and A,B are explicit constants tabulated in [Bach 1995,Table 3]. For Q = 275000000 and d = �p, we com-puted S(Q; p) = Q�1Xi=0 ai logF1(Q+ i� 1; �)



Teske and Williams: A Problem Concerning a Character Sum 71by carrying 40 digits of precision, and found thatS(Q; p) = �2:074865302036:We also found thatA(Q; p) = 0:0239249754:Hence, sinceeS(Q;p) � e�A(Q;p) � L(1; �) � eS(Q;p) � eA(Q;p);we get 0:12260465 � L(1; �) � 0:12861391:Thus, for p given by (4{4) we get S(3) > 0 and�(p) < 0:041 under the ERH.
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