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Dedicated to the memory of Daniel Shanks (1917-1996)

Let p be a prime congruent to —1 modulo 4, (g) the Legendre
symbol and S(k) = ZE: nk(g). The problem of finding a prime
p such that S(3) > 0 was one of the motivating forces behind the
development of several of Shanks’ ideas for computing in alge-
braic number fields, although neither he nor D. H. and Emma
Lehmer were ever successful in finding such a p. In this paper
we exhibit some techniques which were successful in produc-
ing, for each k such that 3 < k < 2000, a value for p such that

S(k) > 0.

1. INTRODUCTION

Shortly after the death of Daniel Shanks, the sec-
ond author received a collection of correspondence
between Shanks and D. H. and Emma Lehmer. This
material covers the period 1968-1971, when Shanks
was very active in developing ideas that would be
of great significance to the development of compu-
tational algebraic number theory. Furthermore, it is
evident from this correspondence that a rather sim-
ple looking problem served as a focus for his and the
Lehmers’ investigations during this time. In order
to discuss their problem we first require some nota-
tion. We let d denote a fundamental discriminant
of an imaginary quadratic field K = Q(v/d) and let
h(d) denote the class number of K. A brief letter,
dated April 2, 1968, from the Lehmers to Shanks,
mentions the problem of trying to produce a small
value for the ratio

where p is a prime congruent to 3 modulo 8:

We are trying to get this ratio down to .041.
According to a theorem of Chowla there are
infinitely many such primes, but we have not
seen one yet. Any candidates?
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During the following year the Lehmers and Shanks
made a concerted effort to find small values for A(p).
By August 23 they had found p = 2426489587 with
h(—p) = 2925 and A(p) = 0.05940, breaking the
“0.06 barrier”; and by September 26 they had found
the best candidate that they ever discovered, namely
p = 85702502803 with h(—p) = 16259 and A(p) =
0.05546. It is important to realize that at this time,
the fast methods for evaluating class numbers that
are used today did not exist. Indeed, Shanks was
motivated by this problem to develop fast meth-
ods because the Lehmers were producing large val-
ues of p as possible candidates. Throughout this
correspondence it is possible to see Shanks develop
and refine the ideas which were to culminate in a
very important paper [Shanks 1971], where he intro-
duced the baby-step—giant-step method for evaluat-
ing h(d) and his method of factorization of d, based
essentially on the determination of ambiguous ideal
classes in the class group of K. He even recognized
that his technique for evaluating h(d) was likely to
be of complexity O(|d|'/4*%) for any ¢ > 0, but it
was Lenstra [1982] who showed later that it was
of complexity O(|d|'/°*%) under the Extended Rie-
mann Hypothesis (ERH). This was a considerable
improvement over the previous method of count-
ing classes, a technique of complexity O(|d|'/2+¢).
Inspired by his success with imaginary quadratic
fields, Shanks [1972] went on to discover what he
called the “infrastructure” of the class group of a
real quadratic field and how it could be applied to
solve the problem of determining its regulator and
class number.

In response to a question by Shanks about where
the “theorem of Chowla” could be found, D. H. and
Emma Lehmer mentioned that it in fact appeared
in a paper by Ayoub, Chowla and Walum [Ayoub
et al. 1967]. In this paper the authors discussed the
character sum

(1-1)
n=1

where p is a prime congruent to 3 modulo 4 and

(%) is the Legendre symbol. They pointed out that,

while S(1) = —ph(—p), S(2) = —p*h(—p) and

S(k) <0 whenever k > p— 2,

they could prove that S(3) > 0 infinitely often. It
is not immediately clear why this should mean that
A(p) < 0.041 infinitely often and no proof of this was

ever provided by the Lehmers; however, the basic
idea behind their thinking is suggested in the paper
by the Lehmers and Shanks [Lehmer et al. 1970]
which originated as a result of their collaboration.
We illustrate this below.

As usual, we define the Dirichlet L-function by

=Y n7*x(n)

n=1

Also, if x(n) is the Kronecker symbol (£), the an-

alytic class number formula for K = Q(v/d) asserts
that

27h(d)

|d|

= L(1,x), (1-2)

where w is the number of roots of unity in K (w = 2
if |d| > 4). When d = —p =1 (mod 4), then

d n
= ()= ()
In [Ayoub et al. 1967] it is shown that for this char-
acter

3
50 = 58 (<200 + 526.0) 0
hence S(3) > 0 if and only if
L(L,x) < ——L(3,%)
X) < 55 L(3X)-

(1-4)

Recalling the Euler product representation of L(s,Y),

L(37X) = H qs_qix(q)a

S

(1-5)

where the product is taken over all the primes q, we
see that
3 3

q q
11 3—X(Q) 11

g<a1 4 T A x(9)
3

q
<H ()Hq?’—l'

q<al ¢* —x(q q>41

L(37 X) =

Now let a be 4 times the product of all the primes
less than or equal to 41 and b be a fixed integer
such that the Kronecker symbol (g) = —1 for all
the prime divisors of a. We have (a,b) = 1 and for
any prime p = ax + b we get x(q) = —1 for ¢ < 41
and

q

L(3,x) < ((3 = 0.84644.

q<41
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Since (1-2) and (1-4) imply A(p) < 3L(3,x)/27®
when S(3) > 0, we see that A(p) < 0.041 for such
primes. Unfortunately, it is not proved in [Ayoub
et al. 1967] that S(3) > 0 for infinitely many primes
selected from the arithmetic progression {ax + b}.
However, it is possible, by referring to a later theo-
rem of Joshi [1970], to prove the Lehmers’ assertion
that A(p) < 0.041 infinitely often without even re-
quiring that S(3) > 0 infinitely often.

The Lehmers and Shanks never did find a value
of p for which either A(p) < 0.041 or S(3) > 0.
They did, however, find several values of p for which
S(4) > 0 [Lehmer et al. 1970], and in a letter dated
June 5, 1969, they noted that S(5),S(6) > 0 for
p = 163. In fact it is stated at the end of [Ayoub
et al. 1967] that results similar to the existence of
an infinitude of primes p such that S(3) > 0 hold
for other small values of k. Later Fine [1970] proved
the following result.

Theorem 1.1. For each real k > 2 there are infinitely
many primes p = 3 (mod 4) for which S(k) > 0 and
infinitely many for which S(k) < 0.

Unfortunately, Fine’s method is not easily adapted
to the problem of finding values for p such that
S(k) > 0. The purpose of this paper is to show
how to find such values of p for small integer values
of k. Our initial objective was to discover values of
p such that S(k) > 0 for 3 < k < 50, but we were
somewhat surprised to learn that we could extend
our method to do this for all 3 < k < 2000. We
also exhibit a value of p for which S(3) > 0 and
A(p) < 0.041 under the ERH.

We want to emphasize at this point that the fact
that our last result is conditional on the ERH does
not make our value for p any less worthy a candidate
for S(3) > 0 than those for which we get S(k) > 0
when k& > 3. Indeed, all of the results on A(p) or
L(1, x) here are dependent on the truth of the ERH
and those in [Lehmer et al. 1970] are implicitly de-
pendent either on the truth of the ERH or some
heuristic estimation of L(1, x) by the truncated Eu-
ler product. The fact is that we currently have no
algorithm for evaluating the class number h of a
quadratic field of discriminant d (real or imaginary)
which is provably better than O(|d|'/?*¢) in com-
plexity. This complexity measure is far too large to
allow for the rigorous computation of h for the size
of |d| that we have to work with here.

2. OUR INITIAL STRATEGY

As was done in [Ayoub et al. 1967], we can expand
z* in a Fourier expansion with period 1 to obtain

S(k) = /b f: by (k) (%)

where )
b (k) = / ¥ sin 27rma dx.

2 0

Now, on integrating by parts,

bm<k) 1 27m .

= d
B 1 k(k—1)bn(k—2)
 2mm (2mm)? 2 '

Also, b,,(1) = b,,(2) = —1/(mm). Hence,

LE52) 2(22.)!( k') (—1)i+

bm(k): Z 2

ar (2mrm)2i+1

)
TZ ot
551 o (K ;
. _pk\/ﬁ : (22)' 21')(_1)1 .
= — g L(2i+1, x),

where x(m) = (2
In order to ge

]

CQ\/
=

V3
\_O

g

@

=

D

(@)

oL

or

where we define

L2 o ( K i+1
(20)!(5) (1)
Ak = 2/ L(2:+1, x).
(k, x) ;Zl e (2i+1, x)
This is a simple generalization of (1-4). Now, as
noted by Shanks, we have
2i+1

C(4i+2) H q .
e —-7— < L(2i+1, x)
27+1

C(2l + 1) q prime q + 1
q2i+1
< H ST ¢(2i +1);
g prime

thus,
Ak, x) > Z(k),
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where
L55) k 1
(20)!(5;) (=1
Z(k) = 2 Z;
=y BT,
and
C(4i+2) .
==
Z. =1 @i+l or ¢ odd,
¢(2¢ +1) fori even.

Here are the values of Z(k), for 3 <k < 1:

Z(k)

0.12862752537709828076
0.25725505075419656153
0.34892030342097469308
0.40362328337743267542
0.42276531850520712827
0.40774773668593467139
9 0.35679221192851994858
10 0.26494076436913562769
11 0.12237264911914991262
12 —0.08727875488694594478
13 —0.39087550751914021317

0 g O U W

We find that Z(k) stays positive for k < 11; thus,
if L(1,x) < 0.12237, then S(k) > 0 for 3 < k < 11.
However, for values of £ > 11, this approach will
clearly not work because L(1, x) is always positive.
By changing slightly the model used for the finite
probability space in [Elliott 1973] (see [Elliott 1980,
Chapter 22]), it is a routine matter, using the meth-
ods of [Elliott 1973], to establish that there must
exist a positive proportion of the primes p = —1
(mod 4) such that for any given real value of z, we
get L(1,x) < e*. Thus, not only must there exist an
infinitude of primes p (congruent to —1 modulo 4)
for which S(k) > 0 for 3 < k < 11, but there must
be a positive proportion of such primes. Undoubt-
edly, this result applies to all values of k£ > 11, but
this would require a more extensive modification of
Elliott’s results.

Our first strategy was to extend the idea that the
Lehmers employed to find the numbers mentioned in
Section 1; that is, we try to find p such that x(q) =
—1 for as many small primes ¢ as possible. Suppose
that x(¢) = —1 for all primes ¢ < Q; then from
(1-5)

L(s, x) = F.(Q)T.(Q, x),

where

r@--4 rev-1l—

q<Q >Q

We now need to estimate T, (@, x). To this end we
note that

—logT,(Q, x) = Zlog ZZ XZS ;
>Q >Q i=1
hence,
|log 0(Q, X)| ZZ pred (2-2)

i= 1q>Q

We next examine thesum 3, ¢7° (s > 1). If we
let 7(x) represent the usual prime counting function,
then by partial summation

Z — = 3" a(m)(m* — (m+1)") - 7(Q)/Q°
q>Q m2>Q
s [ @ dr - 1(Q)/Q°
>

= s/ m(z)r* de — 7(Q)/Q°.
Q
By aresult of Rosser and Schoenfeld [1962], we have

- < m(x) < - <1+ 5 ) (x > 17).

log x log = zlogx

Hence,

1 1 3 < Q
ZE < logQ<1+210gQ>s/Q z tdr = Q*log @

>Q
< QM /logQ (s>3, Q> 90).
Substituting this into (2-2) we get
3Q—s+1

Q o0 Q—si
logQ<; i >< 2logQ’

for s > 3, @ > 90. Since e®* < 1+ 2z and e™® >
1 -2z for 0 <z <1, we get

T.(Q,x) — 1] <3Q*"'/logQ

log T2.(Q, x)| <

or

(—1YT(Q,x) > (=1) =3Q *"*/log Q

for any j € Z as long as s > 3 and @ > 90.
From (2-3) it follows that

(2-3)

55+ i
Ak, x) = Z %metl(@)(_l

> B(k,Q),

)i+1T2i+1 (Q,x)
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r N, h(_Nr) L(LX) /\(Nr)
3 19 1 0.720730 0.229415
5,7 43 1 0.479088 0.152498
11,13 67 1 0.383806 0.122169
17,...,37 163 1 0.246068 0.078326
41 222643 33 0.219714 0.069937
43,47 1333963 79 0.214884 0.068399
53,959 2404147 107 0.216796 0.069008
61 20950603 311 0.213457 0.067945
67,71 51599563 487 0.212988 0.067796
73,79 96295483 665 0.212896 0.067767
83 146161723 857 0.222696 0.070886
89 1408126003 2293 0.191969 0.061105
97,101,103 3341091163 3523 0.191477 0.060949
107,109,113 52947440683 13909 0.189899 0.060446
127 193310265163 26713 0.190873 0.060756
131,137 229565917267 29351 0.192450 0.061258
139 915809911867 59801 0.196315 0.062489
149, ...,163 1432817816347 70877 0.186020 0.059212
167,...,181 30059924764123 296475 0.169880 0.054074
191 3126717241727227 3201195 0.179853 0.057248
193,197,199 8842819893041227 5188215 0.173329 0.055172
211,223 13688678408873323 6524653 0.175196 0.055766
227,...,241 22261805373620443 8035685 0.169196 0.053857
251 4908856524312968467 121139393 0.171769 0.054675
257,263,269 7961860547428719787 140879803 0.156852 0.049927
TABLE 1. N,.: least prime solutions
where Note that for 41 < r < 269 we have
= 2N log N, > (rlog2)/1 24
B(k,Q) =Y (1) Fyi(Q) og N; > (rlog2)/logr. 2-4)

(27)?%

3 @)

" 0@ Z_: CRER
thus, if L(1,x) < B(k,Q), then S(k) >

In order to find values of p = 3 (mod 4) such that

x(¢) = —1 for all ¢ < @ we made use of the number

sieve MSSU; see [Lukes et al. 1995; 1996]. We let r

be a prime and define N, as the least positive prime

integer satisfying N, = 3 (mod 8) and

—N, .
< ): —1 for all odd primes q < 7.
q

By the heuristic reasoning of [Lukes et al. 1996],
we would expect log N, to be roughly

(rlog2/logr)te®.

In somewhat over a month of MSSU time, Jacobson
[1995, p. 128] computed Table 1 above. This table
is an extension of parts of Tables III and IIla in
[Lehmer et al. 1970].

From Table 1 we see that for p = Ny57 we have
S(k) > 0 if 0.156852 < B(k,®), with some @ be-
tween 90 and 270. We next computed a table of
values for B(k, Q) for 4 < k < 400 and (Q) become
very large and therefore difficult to work with. Be-
cause of this growth rate of the terms of B(k,Q),
it was necessary to compute it using 800 digits of
precision in order to get accurate values. For a fixed
k we found that the larger the value of @, the larger
B(k, Q) would be, so that the largest number of val-
ues of k with B(k, @) > 0.156852 could be obtained
for @ = 270. In this case we found that the values of
B(k, Q) increased monotonically for 4 < k£ < 10 and
decreased monotonically for 10 < k£ < 400. Since

B(4,270)
B(142, 270)

=0.25725344,
=0.15685501 > 0.156852 > B(143, 270),

we see that for p = Nos; we have S(k) > 0 for all &
such that 4 < k < 142.
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3. A SECOND APPROACH

As the computation of the N, values is very expen-
sive and the concomitant rate of decrease of L(1, x)
is very slow, we developed a second strategy for find-
ing values of p such that S(k) > 0. The idea here
was to allow for a greater degree of freedom than
that afforded by insisting that x(¢) = —1 for all
primes ¢ < Q. To this end we define F,(Q, x) by

S

R s
F(Q,x) = qg} vy
and
LES2 T o vy (& .
(k, Q. x) = Y (20)! () D™ Foins (@ X)

(27r)2i

L55+)
3 Z (27') ( )FZH—I(Q X)
(2@7(')22 '
By using the same reasoning as that employed in

Section 2, we see that S(k) >0if L(1, x) < B(k, Q, x)
or

T (Q, x) < B(k,Q,x)/F1(Q, x)- (3-1)
If we define
GA(Qx) = FA(@)/Fi(Q) = [[ Ld=xa) ))
<0 q° _X
and
L= iy (F) (= 1)+
C(k,Q,x) = Z 20 ((2217)522 ) Gait1(Q, X)
|52 J
° Gzz+1(Q X)
logQ Z 2@7-(-)21 ’

then by (3-1) we see that S(k) > 0 if

T1(Q,x) = L(1,x)/F1(Q,x) < C(k,Q,x). (-2

Now a result of Elliott [Shanks 1971] asserts that,
if @ > 2 and F(Q, z, x) is the density of all positive
d (here x(q) = (_Td)) such that

TiQ,x) <1/(1+2) or Ti(Q,x)>1+z,

with 0 < z < 2, then there exist constants A, B
such that

F(Q,z,x) < 2Aexp(—BQ log?(1 + z)).

Hence, for z between 0 and 2 it is very likely that
T1(Q, x) < 14+z. This means that if £, @, p and z are
chosen such that C(k, @, x) > 1+ z, the chance that
T1(Q, x) < C(k,Q, x) is very good. For example, if

p is selected such that x(q) = +1 for ¢ = 2,3,5 and
x(q) = —1 for 7 < ¢ < Q = 220, then

C(k,Q,x) > 1.011

for 18 < k < 800. (This was determined by com-
puting C(k,Q, x) to 2000 digits of precision.) But,
by using the MSSU we found that

p = 2754235520364791 (3-3)
satisfies the conditions above and h(—p) =25834697;
hence, since F}(220, x) = 1.52969893, we get

= 1.01098973 < 1.011.

Thus, for p given by (3-3) we have S(k) > 0 for
18 < k < 800.

Naturally, this leads to the question of how best to
specify the values of x(q) for the small primes. Af-
ter conducting a number of numerical experiments
we discovered that the values of C(k,Q, x) tended
to be largest over the longest interval for & when
x(¢) = 1 for only the first few primes and x(¢) = —1
for the remainder of the primes < (). For example,
if x(q) =1 for ¢ = 2,3,5,7; Q =90 and x(q) = —1
for all other primes < @, then C(k,Q,x) > 1.05
for 57 < k < 325 and if x(¢q) = 1 for ¢ = 2,3,5
only, then C(k, @, x) > 1.05 for 27 < k < 319 and if
x(q) =1for q=2,3,5,7,11, then C(k,Q, x) > 1.05
for 122 < k < 273. If x(q) = 1 for ¢ = 79,83,89
and x(¢) = —1 for the remaining ¢ < 220, then
C(k,Q,x) > 1.05 only when 4 < k < 67. In all
cases we observed that for fixed @ and x, C(k, @, x)
was strictly monotonically increasing for the small
values of k, and after achieving its maximum became
strictly monotonically decreasing. The location and
the size of the maximum depended on ) and .

We also found it useful to make @ in (3-2) much
larger than the limit to which we can sieve with
the MSSU. This is because if Q* denotes the up-
per bound on the prime moduli used by MSSU,
then 77(Q*, x) will likely not differ very much from
T1(Q, x) when @ is much larger than Q*. On the
other hand we have found that, for k and x fixed,
C(k,Q, x) grows with (). This means that it is likely
that C(k,Q,x) > T1(Q, x) for a larger interval of
values of k than is the case if we work with Q* < Q.
For example, if we put Q* = 230 and ¢ = 1000 and
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specify that x(q) = 1 for ¢ = 2,3,5,7 and x(q) = —1
for all the remaining ¢ < @*, then

p = 164093214527675999 (3-4)
satisfies our conditions on x(g) for ¢ < Q*. Here
F(Q", x) = 2.02182403

while
Fi(Q, x) =2.019201909.

For this value of p we get h(—p) = 263229907; hence,

T1(Q", x) = L(1,x)/Fi(Q", x) = 1.00970949
while
T(Q, x) = L(1,x)/F1(Q, x) = 1.01102065.

On tabulating C(k,Q*,x) we found that if 29 <
kE < 969, then C(k,Q*,x) > 1.0098 > T1(Q*, x).
Hence, for p given by (3-4) we have that S(k) > 0
for 29 < k < 969. Next, on tabulating C'(k, @, x) for
the x values produced by p and ¢ = 1000, we found
that if 29 < k < 35, then C(k,Q,x) > 1.0128 >
T1(Q,x) and C(k,Q,x) > 1.085 > Ti(Q,x) for
35 < k < 2000. Thus for p given by (3—4) we get
S(k) > 0 for 29 < k < 2000. That the value 1.085 is
quite a lot larger than 1.011 suggests that if we had
tabulated C(k, @, x) even further, we would likely
have produced an even larger value for k£ such that
S(k) > 0; however, at this point the computation
of the C(k, @, x) values was very expensive because
we were using 6000 digits of precision.

4. THE PROBLEM OF S(3)

We now know values of p for which S(k) > 0 for all
4 < k <2000, but we have not yet found a value of
p for which S(3) > 0. From results in Section 2 we
know that if

L(1,x) < Z(3) = ¢(6)/(4¢(2)¢(3)) = 0.12863,
(4-1)
then S(3) > 0, and it follows that A\(p) < 0.040945.
Jacobson [1995, pp. 140-141] used the MSSU to pro-
duce numbers N = —1 (mod 4) such that (%) =
—1 for ¢ = 2,3,...,199 and computed F;(Q,x) for
@ = 1000 to search for likely values of N with small
L(1,x). For those that were prime, he computed
h(—N) and an accurate value of A(INV). The best

result he obtained was for the 20 digit

p = 19701513057844219387. (4-2)

Here h(—p) = 218285743, L(1,x) = 0.15449892,
and A(p) = 0.04917853. An attempt by the authors
to get an improved value by specifying only that
(%) = —1for ¢ = 2,3,...,149 did not produce a
better result for any prime value of N below Jacob-
son’s number (4-2). Only after searching somewhat
beyond 4.8 - 10 were we able to find better results:
for the numbers

p1 = 39686738412456114907,
p2 = 41974200404926400587,
p3 = 45505625249774422363,

we have
h(—p1) = 309519879, L(1,x) = 0.15435322,
A(p1) = 0.04913215,
h(—p2) = 317906469, L(1,x) = 0.15415514,
A(p2) = 0.04906910,
h(—ps) = 330452097, L(1,x) = 0.15389547,
A(ps) = 0.04898645.

Given its size, p from (4-2) is a most remarkable
number because there are so few values of primes
g < 401 for which x(¢) = 1. We have x(q) = —1
for all primes g < 211. Also, x(q) = —1 for 227 <
g < 241 and x(257) = —1, but x(223) = x(251) =
x(263) = 1. This is not as good as Nas7 in Section 2,
but then x(q) = —1 for 269 < ¢ < 277, x(281) =1,
x(283) = x(293) = x(307) — 1, x(311) = 1; further-
more, x(q) = —1 for 313 < ¢ < 401. This helps
to explain the good value of A(p). While the above
values of A\(p) may seem at first glance to be rather
getting close to 0.041, they are still a long distance
away, relatively speaking. The results in Table 1
suggest that in order to get values of A\(p) as small
as 0.041, we would have to search for values of p
very much beyond the limits mentioned above.

In a letter of March 5, 1969, the Lehmers de-
scribed a method which they used to find a value
of N such that L(1, x) is small. They prespecified
N to be such that N =1 (mod 131-139) and N =3
(mod 137-149); that is, they found A by the Chinese
remainder theorem such that A =1 (mod 131-139)
and A = 3 (mod 137 - 149) and put N = A + BX
where B = 131 - 137 - 139 - 149. They then em-
ployed their sieving device, the DLS-127, to find
values for X such that A + BX = 3 (mod 8) and
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(M) —1 for all primes ¢ with 3 < ¢ < 127.
By thls process they produced the 20 digit number

N = 84148631888752647283

for which x(¢) = —1 for all p < 149 and L(1,x) =
0.17009, but N is unfortunately composite. In an
attempt to find a better result than the ones of (4-2)
and (4-3), we used the Lehmers’ idea with B =
[ g ~ 3.6 - 10* and A such that (_TA) = —1 for
all ¢ dividing B. We then used the MSSU to sieve
for values of X such that ((A%BX)) —1 for g up
to 241. Our best result was the 62 digit prime

p = 126002242341907994502426401672\
31438897422023627503681017995963,

for which Jacobson computed that
h(—p) = 171318502487356060544121730019,

using an improved version of the algorithm in [Ja-
cobson 1999]. Thus, L(1,x) = 0.15162297, which
is less than that for the numbers in (4-3), but it
is still not sufficiently small to get S(3) > 0 or
A(p) < 0.041. Indeed, by August of 1968 Shanks
and the Lehmers had reached the conclusion that
the DLS-127 would never be able to find a value for
p such that S(3) > 0. Shanks went so far as to es-
timate that such a value for p might have to satisfy
x(q) = —1 for all primes ¢ < 1620. However, the
value of F;(1283) = 0.12854204 is already less than
the value of L(1, x) needed by (4-1). If we use the
empirical estimate (2-4) as a guide for estimating a
lower bound on Njsg3, we get log Nisgz > 124, sug-
gesting that Va3 is likely to be a number of at least
54 digits, a number far too large for any current sieve
device to find.

There is, however, thanks to a recent result of
Bach [1995], another way to find a candidate for p.
Because F;(1279) is quite close to ¢(6)/(4¢(2)¢(3)),
we simply found values for N such that (%) =-1
for all ¢ < 1279. We did this by specifying that for
all prime values of g < 1279,

N =3 (mod 8),
1 (mod ¢) when ¢ = —1 (mod 4),
N =7r(¢q) (mod ¢q) when ¢ =1 (mod 4).

Here r(q) denotes a randomly selected quadratic
nonresidue of q. Notice that if N satisfies these con-
ditions we have (%) = —1 for all ¢ < 1279. The
difficulty with this process is that the values we get

for N are very large, 535 or more digits. However,
testing the numbers for primality is very easy be-
cause N — 1 is divisible by all the primes ¢ = —1
(mod 4) (¢ < 1279). Thus, it is easy to find a com-
pletely factored part of N — 1 which exceeds v/N,
and the method of Pocklington mentioned in [Brill-
hart et al. 1975, Theorem 4] can easily be used to
establish the primality of N. We produced 10 prime
values for p in this way and selected the one such
that F7(200000, x) was least, namely the 535 digit
number

p = 881974625057785931222613817074\
917532086866157498333873986616\
772405314952314649125430692674\
421301535335822565110383045261\
662288884171496652768853130693\
547568926092470486468758067960\
339622958266444317598747950276 \
228195628141063361018553506872\
307865094282349696360084281769\
391483388553654419029093991970\
223187255252971434802826943154\
408037354452295695797112414760\
456576881727709666986157386200\
364701289849665480127513654606\
154630655217220710053068332795\
778436402430725458959096262770\
842000062867226918845060657043\
0205509080296159176108667.

It remains to show that L(1,x) for this p satis-
fies (4-1). We used the method of [Bach 1995] to
estimate L(1,x). We define

Z 1logi

and a; = (Q+j)10g(Q+j)/C( ), for j=0,1,...,
@—1. Bach showed that under the ERH
Q-1

- alogR(Q+i-1 x)‘ < A(Q,d),

=0

log L(1, x)

where A(Q,d) = (Alog|d| + B)/(\/q log Q) and A,
B are explicit constants tabulated in [Bach 1995,
Table 3]. For Q = 275000000 and d = —p, we com-
puted

Q-1

p)=§:%k%FNQ+i—LX)

=0
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by carrying 40 digits of precision, and found that
S(Q,p) = —2.074865302036.
We also found that
A(Q,p) = 0.0239249754.

Hence, since

eS(@p) | o—AQ:p) < L(]-7 X) < eS@.p) | eA(Q,p)’

we get
0.12260465 < L(1, x) < 0.12861391.

Thus, for p given by (44) we get S(3) > 0 and
A(p) < 0.041 under the ERH.
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