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The elliptic logarithm method for the determination of all inte-
gral solutions of a given elliptic equation is discussed for equa-
tions with associated elliptic curve of moderately large rank.
Major attention is given to the question of optimizing the choice
of Mordell-Weil basis for the curves in question. A speculative
argument suggests that for any curve of rank larger then 8 the
calculations involved are unlikely to be feasible. The arguments
are illustrated by examples of curves of rank 5, 6, 7, and 8, taken
from the literature.

1. INTRODUCTION

The history of the elliptic diophantine equation is
like a giant tree, old but very much alive, and from
its many branches rich fruits can be picked. Not
only is its size impressive, but also its age commands
respect as the origins of the elliptic equation reach
as far back as Diophantus of Alexandria. Indeed,
the so-called “ascent” principle—a method, based
on simple geometric and algebraic considerations,
by which new rational solutions can be constructed
from those already known—-can be traced to Dio-
phantus’ Arithmetica. From there, via Fermat’s fa-
mous “descent”, the trail leads up to the celebrated
Mordell-WEeil finite basis theorem on which modern
developments firmly rest. A fascinating account of
the early history of this equation runs as a finely wo-
ven thread through Weil’s history of number theory
[1984]. See also [Basmakova 1974; Scriba 1984] and
the references cited there.

In this century Mordell initiated the search for in-
tegral solutions of elliptic equations. By Siegel’s fa-
mous theorem [1929], at most finitely many integral
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solutions exist for any given elliptic equation, and
because his result is ineffective the determination of
all such solutions becomes a real challenge. For in-
dividual equations, the established approaches were
almost always purely algebraic with the occasional
geometric touch. But since Baker’s famous work
on linear forms in logarithms of algebraic numbers
made Siegel’s theorem effective, powerful diophan-
tine approximation techniques took a prominent po-
sition in the ranks of successful solution methods.

Looking back over the history of the elliptic equa-
tion, one cannot help but be impressed by the great
variety of methods and techniques that have been
successfully employed to solve individual equations.
Despite this, research in the field never stopped, and
what is more, new life was breathed into it only re-
cently by a new method which was developed simul-
taneously and independently by several researchers
[Stroeker and Tzanakis 1994; Gebel, Pethd, and Zim-
mer 1994; Smart 1994]. This approach, which we
shall henceforth refer to as the elliptic logarithm
method — €llog for short—is a harmonious blend
of algebraic, analytic and geometric ideas. For more
historical comments we refer the reader to [Stroeker
and Tzanakis 1994]. Quite recently the ¢llog method
has been generalized to number fields in [Smart and
Stephens 1997].

In the next section we shall give a brief descrip-
tion of its fundamental characteristics. In contrast
to many earlier methods, €llog is generally applica-
ble, at least in principle. Because of this, naively
as it may be, it might cross one’s mind that at this
point the story of the elliptic equation comes to a
natural and happy end. However, on reflection, it
would be of interest to see whether significant im-
provements could be made, especially as Ellog heav-
ily relies on non-trivial computations. And, likewise,
it would also be nice to know precisely where the-
ory and practice diverge, that is to say, at which
point one should expect to come up against insur-
mountable obstacles in the form of upper bounds for
numbers, memory size and cpu-time that cannot be
reduced to workable magnitude. In [Bremner et al.
1997; Stroeker and Tzanakis 1994; Stroeker 1995;
Tzanakis 1996; Stroeker and de Weger 1999a] ex-
amples are given in which serious size problems are
avoided, so that these questions were not really ad-
dressed.

Here we will do some modest speculation in more
demanding circumstances and consider a few more
challenging examples. Moreover —and this is the
main contribution of this paper —we suggest an im-
provement of the algorithm introduced in [Stroeker
and Tzanakis 1994] for Weierstra3 equations and
subsequently extended to quartic elliptic equations
in [Tzanakis 1996], which often has a favourable im-
pact on the final brute search work that needs to be
done, not by lowering the (artificially) large upper
bound resulting from the PRINCIPAL INEQUALITY
[Stroeker and Tzanakis 1994, (16)], but by signifi-
cantly reducing the final bound after LLL-reduction.
In summary, in this paper we concentrate on the
opportunities offered by the €llog method to make
choices optimal where possible. In the final sec-
tion, we shall illustrate these points by means of
suitable examples, all taken from the existing litera-
ture. We shall also seize the opportunity to show by
example that Ellog does not have more trouble in
dealing with quartic equations than it usually has
with Weierstrafl equations. This fact agrees with
the claim made in the final lines of the Introduction
of [Tzanakis 1996].

2. PRELIMINARIES

The starting point is a specific elliptic diophantine
equation for which we wish to explicitly compute all
rational integral solutions. This equation represents
an elliptic curve E over the rationals QQ, and often
it has the standard Weierstrafl form

y2 +a1ry + azy = a3 + a2x2 + a4x + ag,

with integral coefficients a;, a», a3, a4, ag, usually
satisfying a; = a; = a3 = 0. However, other models
are permitted, such as the binary quartic represen-
tation

y* = f()
used in [Tzanakis 1996], where f € Z[x] is monic and
of degree 4, or even less common cubic models like

those in [Stroeker and de Weger 1999a] and [Stroeker
and de Weger 1999b] of type

F(u,v) =0,

for any F € Z[u,v] of degree 3, provided it repre-
sents an elliptic curve over Q with a rational point
on it. Instead of giving all the details of &llog—
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which may be found in [Stroeker and Tzanakis 1994]
and [Tzanakis 1996] — we shall merely advance in-
formation that is strictly necessary for our purpose.

The €llog method naturally splits up into three dis-
tinct parts. In the initial stage essential character-
istics of the corresponding elliptic curve are gath-
ered to be used in the second part, like the tor-
sion group, the fundamental period w of the Weier-
strafl p-function for the minimal Weierstrafl model
of E, the rank r and a basis {P,,...,P,} for the
free part of the Mordell-Weil group. Now any point
P € E(Q) having integral coordinates with respect
to the original equation can be uniquely expressed
as an integral linear combination of basis elements,
allowing for torsion:

P=mP + --+m.P. +1T. (1)

Here Ty stands for any one of the finitely many tor-
sion points. If torsion is trivial, then T} is absent
from (1). Setting M = max;_1__, |m;|, once an ab-
solute upper bound for M is obtained, all points P
satisfying relation (1) can be explicitly calculated,
at least in principle.

The next stage of the method forms the body of
€llog. An upper bound is established for a linear
form in elliptic logarithms, which is closely related
to (1), and which involves M. A basic instrument for
this purpose is the group isomorphism ¢ : Ey(R) —
R/Z = [0,1) defined by

0 ifP=0,

1 [~ dx

% (mod1) ify(P)>0,
P w/z(m Vritar+b (mod 1) "if y(F) >

—p(—P) (mod 1) if y(P) <0.

Here Ey(R) is the infinite component of the short
Weierstral model y? = x® + ax + b for E. The said
linear form generally is of type

1
L(P) := 5(”0 +ngug + - 4 e +new),  (2)

where the u; := wp(FP;), for i =0,...,r, are known
as the elliptic logarithms of the points P;; the point
Py, if not the zero-point, is algebraic of degree at
most D = 3, and can be easily calculated. The q
appearing in (2) is an explicitly known small posi-
tive integer, usually 1 or 2. Further, the integers n;,
for ¢ = 1,...,r, are explicit linear combinations of

my, ..., m, with small integer coefficients; in many
cases n; = m; for all ¢+ = 1,...,r, including those
cases in which the equation to be solved is a Weier-
straf3 equation. Non-Weierstral equations can be
found in [Tzanakis 1996, Examples 1, 5, 6, 7], where
q = 2 or 4. Finally, the integer ny can be explicitly
bounded in terms of M.

So the only unknowns in this linear form are the
rational integers n;, for ¢ = 0,...,r. If we put N =
max;—o,. ., |n;|, then N < aM+ [ for some explicitly
computable small positive integers o and (3. The
essential inequality referred to above looks like

IL(P)] < e exples — 1 M?), ®

for positive constants ¢y, ¢z, and c3. The word con-
stant is used here to indicate independence of M.
The computation of these constants is the main pur-
pose of this part of the algorithm. A direct, rather
automatic application of a deep result by Sinnou
David [1995] leads to a lower bound for |L(P)| (pro-
vided L(P) # 0), which takes the form

|L(P)|>exp(—cs(log N+cs5)(loglog N+06)k+2), (4)

where k = r if uyp = 0in (2) and k = r+1 otherwise.
The constants c5 and cg are small, but ¢4 is the very
large constant

Cy = 29 . 106k+12D2k+442(k+1)2

k
% (k + 2)2k2+13k+23.3(10g 5)_2k_3 HAZ" (5)

=0

for some small positive technical constants A; inde-
pendent of k. Usually log€ =1 and D =1, 2 or 3.
Combining the upper and lower bounds for |L(P)]
and taking into account that N < aM + 3 leads to
the PRINCIPAL INEQUALITY (see (8)), which gives
a large upper bound M, for M. Note that the ¢4
in (5) differs from the one mentioned in [Stroeker
and Tzanakis 1994; Bremner et al. 1997]: the latter
occurred in a preliminary version of [David 1995].

The final part of €llog is about reducing this huge
upper bound M, to manageable size. In order to do
this, de Weger’s implementation [1989] of the LLL-
algorithm is used. A brief description will suffice
here. Assume, for the sake of simplicity, that the
linear form (2) is homogeneous, so that wuy is ab-
sent. In order to reduce My, we apply the lattice
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basis reduction process to the lattice spanned by
the columns of the matrix

1 0 e 0 0
0 1 e 0 0
A= : : . : : ;
0 0 . 1 0
[C’ul] [CUQ] [CU,] [CCU]
where C is a large constant of the size of M ™", and
where [-] denotes rounding to the nearest integer.
Consider the lattice point
l:=A(ny,...,nn0)" = (N1, ..., 00, A,

where ny appears in (2), which makes A\ a good ap-
proximation to ¢gC - L(P). From the reduced basis
we find a lower bound d for the length of the short-
est nonzero lattice vector. The inequality ||I|| > d
gives us a lower bound for |L(P)|, namely

L(P)| > —

qC
1
X <\/d2—r(aM0+6)2— T—;

assuming d is large enough —if not, we choose C
slightly larger. Together with the upper bound (3) a
reduced upper bound M; for M, is obtained which
is roughly +/log My; see (10). For a complete de-
scription, we refer to [Stroeker and Tzanakis 1994;
Tzanakis 1996].

(aMy +5)> , (6)

3. REFLECTIONS AND SPECULATIONS

In an analysis of €llog it is natural to focus on the
question of choice. Since we are working with a fixed
elliptic curve, invariants like rank, torsion, regula-
tor, and the like are uniquely determined. From
the PRINCIPAL INEQUALITY it is obvious that the
rank r plays a major role in the shaping of the up-
per bound for M. How difficult is it to compute
the rank of a given elliptic curve over Q7 Even for
small ranks, this may pose considerable problems
if one wishes to establish the rank unconditionally.
The best algorithm available seems to be John Cre-
mona’s mwrank [1992]. Ian Connell’s apecs [1995]
is also very useful. An example of the difficulties
involved is given in [Bremner et al. 1997, Section 2].
If one does not shy away from using conjectural as-
sumptions, like the Birch—Swinnerton-Dyer conjec-
tures, things become easier. Even so, for r > 8 say,

the searching for independent points could easily get
out of hand. Fortunately, for most notorious elliptic
equations the corresponding curve is of low rank.

Now suppose that the rank r has been established.
What is the effect of high rank on &llog? Consider-
ing the collection of curves to which the elliptic log-
arithm method has been applied in [Bremner et al.
1997; Stroeker and Tzanakis 1994; Tzanakis 1996;
Stroeker 1995], and also in the present paper, it
is not difficult to notice the regular behaviour of
the upper bound M, for M obtained before LLL-
reduction with respect to the size of r, namely

My ~ 10(5r2+15r+28)/2_ 7)

All curves considered, even the ones of rank 6, 7,
and 8, agree to this size, with the exception of the
upper bounds found in [Gebel, Pethd, and Zimmer
1994], which are too small to satisfy (7). This is ex-
plained by the fact that in that paper the authors er-
roneously use p-values instead of elliptic logarithms,
that is to say, they consider a non-homogeneous lin-
ear form in r p-values where they should have used
a homogeneous one in r + 1 elliptic logarithms. The
replacement of » + 1 by r has a considerable dimin-
ishing effect on the size of the upper bound M,. Af-
ter correction the new bounds also agree with (7).
Nevertheless, being merely heuristic, this formula
only serves as an indication. In order to reduce the
bound M, in the third stage of Ellog, the elliptic
logarithms need to be calculated to a precision of
at least (r + 1)log M, decimal digits. Some care-
ful extrapolation on (7) shows that this means at
least 2115 digits for rank 8, which is just feasible as
we shall see in Example 4 (Section 5), and no less
than 3740 digits for rank 10; for curves of rank 20
and higher this bound gets completely out of reach.
This seems to suggest a natural upper bound for the
rank of approximately 8 or maybe a bit larger be-
yond which €llog is not likely to succeed at present.

Once there is no doubt about the rank, finding as
many independent rational points is the next step
towards a Mordell-Weil basis. The search for points
could be very troublesome, since the upper bound
for the canonical height of points could be rather
large. In such cases, further descent techniques may
be successfully applied; see [Merriman et al. 1996].
The process of infinite descent used to construct a



Stroeker and Tzanakis: On the Elliptic Logarithm Method for Elliptic Diophantine Equations: Reflections and an Improvement 139

Mordell-Weil basis is very well described in [Siksek
1995].

So far we have not had any real choice. But having
a single basis gives us immediate access to infinitely
many bases. What is the effect on €llog of changing
the Mordell-Weil basis? A natural choice for ba-
sis elements is those of least canonical height. This
is what John Cremona’s mwrank and lan Connell’s
apecs do. But is such a basis also the most natural
choice for Ellog? The answer to this question is not
obvious. The element of the PRINCIPAL INEQUAL-
ITY that has the most significant effect on the size of
My (second to the rank r of course) is the constant
¢1 in (3). This can be seen as follows. Stripped from
insignificant elements, the PRINCIPAL INEQUALITY
essentially reduces to

M? < 2—4log(aM + B) (loglog(aM + 8))*** ()
1

for k = r or r+ 1. Now ¢, really depends on r
only —see (5) —and is therefore more or less fixed.
In view of (8) one would expect M to be roughly
of the order of ,/c; which is essentially (4k)*"; see
(5). Hence, for large k the estimate (7) is rather
conservative. Returning to (8), the constant ¢, is the
least eigenvalue of the positive definite Grammian
height-pairing matrix H = (#,;), .,, where

rXr?
Hi; = L(W(P, + P;) — h(P) — h(P})), )

and therefore depends solely on the Mordell-Weil
basis {Py,..., P} of E(Q) modulo torsion. The
notation A indicates the canonical, or Néron-Tate
height function, so (1) implies that

h(P) = Z Hijmim; > ¢y M*.
1<i,j<r
Thus, our choice of a Mordell-Weil basis should re-
flect our wish to make ¢; as large as possible. It is
this aspect of the Ellog method we shall investigate
closely in the next section.

Other choices one may have are few, and seem to
have little effect on the €llog method. For example,
we start with a given elliptic equation and we also
need the short Weierstrafli model for E. These are
related by birational transformations, which do play
a minor role in the constants c3 and maybe F,. Their
influence however is nothing like the effect the choice
of ¢; may have on inequality (8), although the latter

effect should not be exaggerated either. Indeed, the
best M satisfying the PRINCIPAL INEQUALITY, say
My, is always very large. Hence a doubling of the
ci-value results in a decrease of My by a factor V2.
This is obviously of very little significance on num-
bers of size 10'°°. It is much more important to
realize that an optimal choice of Mordell-Weil ba-
sis has a favourable effect on the final upper bound
for the coefficients m; after LLL-reduction has been
applied a few times. This is immediately clear from
the inequality

1
M} < . <log(qc20)+c3—log<\/d2—r(aM0+ﬂ)2
1

r+1
2

see (6) and (3). The final upper bound for M in
(10) is small, usually under 20. So doubling the
value of ¢; has a much more significant effect on the
final upper bound after reduction than on the initial
very large upper bound before reduction takes place.
This is best illustrated by Example 4 in Section 5.

(aM0+B))); (10)

Finally, we have argued that for any rank r > 8
there will be grave computational problems. We add
another, rather mundane argument. After applying
the LLL-reduction process several times until no fur-
ther improvement on the bound M is obtained, we
will usually end up with a final bound no less than
say 6, if » > 4, but most likely larger than that for
larger r. Then in the final search for missed inte-
gral points, there are ££((2 x 6 +1)" — 1) points to
be checked, where ¢ stands for torsion. This means
more than 10 billion points if r = 9 and t = 2,
and if no substantial number of them can be dis-
carded beforehand this could take a very long time
indeed! However, the “inequality trick” discussed in
Example 4 on page 147 may reduce considerably the
overall search time.

4. THE OPTIMAL MORDELL-WEIL BASIS

In the previous section we showed that the size of
the bound on M before reduction is governed by
the rank r, which cannot be altered, and after that
by the choice of Mordell-Weil basis, that is to say,
by the least eigenvalue ¢; of the Grammian height-
pairing matrix H. Now for small r it is very easy
to search for and find an improved basis by taking
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random combinations of basis points. Of course, for
r = 1 there is nothing to improve, but a moderately
large final bound for M is computationally nothing
to worry about when the rank is so small. Example 1
in Section 5 is meant to illustrate this. For large
values of r the optimal choice for the Mordell-Weil
basis is not obvious. This may be illustrated by the
fact that hardly any “natural” Mordell-Weil basis of
an elliptic curve of rank > 5 is ¢;-optimal. The re-
maining examples in Section 5 exemplify this point.
For us this fact provided ample motivation to inves-
tigate the possibility of standardizing the search for
the best Mordell-Weil basis.

4A. An Integral Minimax Problem

As before, let Py,..., P. be free generators of the
Mordell-Weil group of an elliptic curve E/Q and
let H be its r x r Grammian matrix, whose entries
are given by (9). This matrix  is real, symmetric,
and positive definite, and therefore all its eigenval-
ues are real and positive. It goes without saying that
these eigenvalues depend on the choice of generators.
Now the point of this discussion is to choose the set
of generators so that the least eigenvalue ¢; of the
corresponding Grammian H is as large as possible.

To analyze the dependency of ¢; on the choice
of generators, we consider another set of generators
{P{,...,P}. Then there is an r X r integer matrix
A = (ay), such that P/ = 37" a;;P;, and for the
Grammian matrix corresponding with this new set
of generators we have

H = AHA".

Since det H' = det H, it follows that det A = +1,
so that A is unimodular. In particular, this means
that the elements aj; of A~ are also integral.

Summarizing, our problem may be formulated in
the following general terms.

Integral Minimax Problem. Given an r x r real, sym-
metric, positive definite matriz H, find an r Xr inte-
gral, unimodular matriz A that mazimizes the least
eigenvalue of the matriz AHA". In symbols, deter-
mine
. 'AHA'x
max min ————
A z#0 ztx

where the maximum runs over all r X r integral,
unimodular matrices A, and the minimum runs over
all nonzero vectors x € R".

The second formulation arises because the vectors
2 that minimize the quotient above are exactly the
eigenvectors corresponding to the least eigenvalue;
this is called the Rayleigh-Ritz theorem [Horn and
Johnson 1985, p. 176] and is an easy consequence of
the existence of an orthonomal basis of eigenvectors
for AHA" (for the inner product defined by z'z).

It is not difficult to prove that this problem is
solvable (of course the maximizing A need not be
unique). To do this, consider the set

S(H) :={c1(A) | A is integral and unimodular},
where ¢; (A) is the least eigenvalue of AH A*, that is,

. ' AHA'zx
S

S(H) is nonempty, since it contains ¢; = ¢;([). If
¢y is the largest element of S(#), there is nothing
to prove. Therefore, assume that there exists a ¢} =
c1(A) > ¢; > 0 and write H" = AHA'. Then, for
any ¢ € R" with z # 0,

t 1 ! 1 tay! t
T <—7—[ —I>33: —(:EH:I;—Clx 33)
C1 C1
1
> —(c) —e)a'z >0,

C1
so that (1/c1)H’ — I is a positive definite matrix.
Then

—1 1 / —1\t 1 -1 —1\t
A (—’H —I) (A =—H-A" (A7)
C1 C1
is also positive definite. Therefore, the main diago-
nal of the latter matrix has positive elements only.
From the inequalities
T 1 .

D (@) < —Hy fori=1,...,r, (1)
i=1 “
bearing in mind that the a;; are integers, it follows
that there can be only finitely many matrices A~!
for any given matrix #. This proves that S(#) is
a finite, nonempty set, and the optimal ¢; is the
maximal element of this set.

Naturally, inequality (11) could serve as a base for
our algorithm. However, it seems more convenient
to distinguish two separate stages in the computa-
tion of the optimal c¢;.

Set
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and observe that B is integral, symmetric, positive
definite, and that det B = 1. Also note that the
matrix #; := (1/c1)H has least eigenvalue 1.

We now reformulate the integral minimax prob-
lem in the following way.

Integral Minimax Problem (reformulated).

Part 1. Given a real, symmetric, positive definite
matriz Hi with least eigenvalue 1, find all integral,
symmetric, positive definite matrices B of determi-
nant 1 and such that Hi1 — B is also positive definite.

Part 2. Given an integral, symmetric, positive defi-
nite matriz B of determinant 1, decide whether there
exists an integral, unimodular matriz A satisfying
(12) and, if so, find any one such decomposition.

In Part 2 a single decomposition (12) of B suffices,
since any other such decomposition of B gives the
same c;. This can be seen as follows. Suppose

ATHATY =B = A7V (A,

for integral, unimodular matrices A;, As. Then @ :=
A, AT is orthogonal, and hence

C1(A2) = CI(QAI) = 01(141)7

because similar matrices have the same eigenvalues.

4B. The First Stage of the Algorithm

Let the r x r matrices H, = (h;;) and B = (b;;) be
defined as in Part 1 of the integral minimax problem.
Since both B and H; — B are positive definite, all
principal minors of these matrices are positive. In
particular, all 1 x 1 principal minors are positive,
which means,

forall ¢ = 1,...,r, and also all 2 x 2 principal mi-

nors are positive. On the element level, the latter
translates to

|bij| < 4/ biibjj = Sij

and

|hij — bij| <V (hii — b)) (hjj — bj;) = dy

for all 4,5 = 1,...,r with 4 # j, which restricts b;;
to the interval

(max{—sij, hij — dij}; min{sij, hij + dl]}) (14)

This enables us to construct the matrix B by suc-
cessively enlarging the leading principal submatrices
of B by a single row and a single column, starting
with (b11), thus leading to the following description.

Algorithm (Stage 1).

Input: a real symmetric, positive definite matrix H;
with least eigenvalue 1.

1. Choose by; € N such that (13) holds for ¢ = 1.
Set By = (b11), and let 9B, be the set of all such
1 x 1 matrices B;. If ®B; is empty, stop.

2. Suppose the finite set B, of k x k integral, sym-
metric and positive definite matrices B;, has been
constructed, for 1 < k < r. Now By, is the set
of all possible symmetric (k+1) x (k+1) matrices
Bj+1 = (b;;) with these properties:

(i) the leading principal k x k submatrix of By,
belongs to By,

(i) 1,641 € N satisfies (13) for i =k + 1,

(iii) b; k+1 € Z satisfies (14) for j = k+1 and each
i=1,...,k,

(iv) det Bjyq > 0.

If 9B, is empty, stop. Else, if £k + 1 < r, repeat
Step 2 with k < k + 1.

3. For each B, € B,, if det B, = 1, accept B, as a
possible B.

We stress that, when 7 is not too small, r > 6 say,
and c¢; is rather small compared to 1, the number of
qualifying B matrices could be very large, so that
generating them all becomes infeasible. If we sus-
pect this will happen, we proceed as follows. Once a
few qualifying B matrices are known, the process is
stopped in order to check for a possible improvement
of ¢; by means of Stage 2. If so, starting Stage 1
with this improved c;-value necessarily restricts the
number of qualifying B’s.

Another trick is to artificially enlarge ¢; by insert-
ing a multiplication factor A > 1, so as to shrink the
search intervals resulting from (13) and (14). More
precisely, starting from a basis with corresponding
c; = ¢, we check whether there exists a basis with
c1 > Ac. Varying this factor A, we may enlarge ¢,
step by step, until no improvement seems likely. We
then start the process all over again with A = 1 and
the best ¢;-value so far obtained.
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4C. The Second Stage of the Algorithm

Assume that the r x r matrices B and A are defined
as in Part 2 of the reformulated Integral Minimax
Problem (page 141). We shall say that B splits if
the problem formulated in Part 2 is solvable for this
particular matrix B.

First we prove:

Lemma. The matriz B splits if and only if, for any
real decomposition of B as R'R, the corresponding
lattice Ag generated by the columns of R possesses a
basts that is orthonormal with respect to the standard
mnner product.

Proof. Since B is symmetric and positive definite,
real decompositions R'R of B always exist. Now
clearly A"'(A™ ') = R'R if and only if the matrix
Q = RA" is orthogonal. Since A’ is integral and
unimodular, this is equivalent to say that there is
an orthogonal matrix () such that Ay = Ag, hence
the result. O

Observe that B, being positive definite, defines a
vector norm

|z||p := VatBz,

Let B = R'R be any real decomposition of B. Then

for z e R".

2]l = || Rzl

for x € Z", so ||z||p gives the length of the lattice
vector Rr € Ag.

Now suppose that B splits, so that by the Lemma,
the lattice Ap has an orthonormal basis. Let this
basis be given by the orthogonal matrix @, so that
R = QU for some integral, unimodular matrix U.
Then for any lattice vector Rx € Ar we have

Izl = 1Rz |)” = |QUa|* = Uz = lyI* = D v?,
i=1

where y = U is an integral vector. Hence, the only
lattice vectors Rz with ||z||p < 1 are those with
z = 0 or £ = U~ 'e;, where e; denotes the i-th
standard basis vector of R".

Conclusion. If B splits, the lattice Ar has exactly
2r monzero vectors of length < 1, all of which in
fact have length 1. Conversely, if Agr has ezactly
2r nonzero vectors of length < 1, then either Ag
does not possess an orthonormal basis and therefore

B does not split, or Ar does have such a basis the
elements of which are amongst the 2r vectors.

All of this enables us to use the Pari procedure
minim(B, 1, 2r+1). This procedure seeks vectors
x € Z" with ||z|]|p < 1, and returns a three-com-
ponent list u, where u[l] is the number of vectors
computed, u[2] is the maximum B-norm found, and
u[3] is a matrix whose columns are the vectors com-
puted, only one being given for each pair x, —x and
there being at most 2r 4+ 1 of such pairs. No two
columns of this matrix are equal, nor are they each
other’s additive inverse.

Algorithm (Stage 2).

Input: an r X 7 integral, symmetric, positive definite
matrix B with det B = 1.

1. Set w :=minim(B, 1, 2r+1).

2. If u[l] # 2r or u[2] < 1, stop, because B does not
split. Else set U := ul[3].

3. If U'BU is the identity matrix — which is equiv-
alent to RU being orthogonal —then stop and
return A = U?, the required integral unimodular
matrix. Else stop, since B does not split.

Our algorithm obviously relies on Pari’s minim pro-
cedure. According to the Pari team, in earlier ver-
sions of the software sometimes this procedure hap-
pened to produce incorrect results, but we no longer
have any reason to doubt its correctness.

5. EXAMPLES

We have gathered here some examples to illustrate
the points made in previous sections. Far from be-
ing picked out to show our algorithm to advantage,
these examples (apart from the first) were among
the most complicated cases we could find in the lit-
erature. Some are worked out in detail; with others
we make use of existing coverage in the literature.
In the computations we used a variety of ma-
chines (notably a number of Pentium PC’s and a
Sun Sparcstation) at different locations and over a
rather long period of time. Wherever it seemed ap-
propriate we have recorded here the machine type
and the time it took to carry out the computations.

The first example is an indication of the effect a
small ¢;-value has on the final upper bound for M.
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Example 1. The curve given by the Weierstrafl equa-
tion
Y +y=2—zx

has rank 1, Mordell-Weil basis {(0,0)}, and the ¢;-
value, which obviously cannot be improved, is rather
small, namely ¢; = 0.0255557.... The correspond-
ing best upper bound for M is 16, which is large, as
was to be expected. Details are given in [Stroeker
and de Weger 1999a].

The next set of examples illustrates the fact that
finding the best c;-value is not automatic, at least
for ranks not smaller than 5.

Example 2. Table 1 summarizes three examples, the
first two due to Mestre [1986], with short Weierstrafl
forms

y? = 2® — 1642032z + 628747920,
y? = x® — 203472z + 18487440,
y? = 2> — 879984x + 319138704.

These three examples are studied in [Gebel, Pethd,
and Zimmer 1994] without making use of an optimal
Mordell-Weil basis; the authors state the ranks as
6, 5 and 5, but offer no further information as to
the conditionality of these claims. All three curves
have trivial torsion. It is often very difficult, if not

Example 2.1 Example 2.2 Example 2.3
A B 1642032, 628747920 203472,18487440 879984, 319138704
r 6 5 )
Bo Py =[432,108] = [72,2052] = [540, 1188]
P, =[396,6372] = [36, 3348] = [576, 18306]
P5 =[360,9180] = [-36,5076] = [468, 3132]
= [1044, 7236] = [-72,5724] P4 = [612,3132]
= [108,21276] P5 [396, 108] = [432, 4428]
Ps = [36, 23868]
c1(By) 0.21618... 0.40335. .. 0.34545. ..
My 1.09 x 1044 2.33 x 101! 9.85 x 10112
M ... Mgpa 97,17,15,15 57,11,10, 10 62,11,10,10
B = [360, 9180] P| =[36,3348] = [540, 1188]
P2 = [-1296, —24084] P} =[-36,5076] = [468, 3132]
P§ = [1060, —8900] P} =[432,3348] = [432,4428]
P4 = [1836, —61668] P; =[-216, 7236] P; = [—684,—24516]
=[9/16,—1603611/64] P! =[468,5076] P} =[720,—-7668]
P6 = [36, 23868]
c1(By) 0.53027 ... 0.46493. .. 0.49206. ..
My 6.94 x 10143 2.17 x 1011 1.08 x 1013
M ... Mgpa 62,10,9,8,8 53,10,9,9 52,10,9,9
_(1) _(1) (1) (1) (1) 8 01 0 00 10 0 0 O
0-1 01 1 0 00 1 0O 001 0 O
U 0 0-10-10 0 0 1 10 0 00 0 1
0 1-10-1 0 0 0-1 01 01 0 0 1
00 00 01 1 0-1 01 0 00 1-1

TABLE 1. Curves from Example 2. The Weierstraf equation of E/Q is y? = x® — Az + B, with Mordell-Weil bases

Byo={P;/|i=1,...,
which is the ¢;-improved basis. Finally, U =

r}, which is the basis given in [Gebel, Pethé, and Zimmer 1994], and B, = {FP/|i=1,...,7}
(’UJU) with le =

Z; L uij Py
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impossible, to establish the rank unconditionally for
curves without points of finite order. The curve of
Example 3 illustrates this point.

In Example 2.1 the first reduction step required
a precision of 1250 digits. We used Pari-GP on
a 75 MHz Pentium machine to execute the LLL-
reduction. Together, the calculation of the -values
and the LLL-reduction took approximately one hour
runtime. The optimal c¢;-value of Example 2.1 was
obtained by first using a multiplication factor A =
2.4. See Section 4.2 for an explanation. Total run-
time for this optimization took only a few minutes.
In [Gebel, Pethd, and Zimmer 1994] a different def-
inition of canonical height is used, so that double
ci-values are obtained: A\; = 2¢;. The upper bounds
M resulting from the PRINCIPAL INEQUALITY and
the LLL-reduced bounds Mjg,. related to the B
bases of Table 1 do not agree with the corresponding
bounds in [Gebel, Pethd, and Zimmer 1994], which
are considerably smaller.

As we noted before in Section 3, the reason for
these differences lies in the fact that the p(P;)-values
used in [Gebel, Pethd, and Zimmer 1994] are mis-
taken for the elliptic logarithms u; (see for instance
the six listed u-values on page 186 of the paper),
which causes a fortunate drop by one of the number
of elliptic logarithms in the linear form of elliptic
logarithms. Moreover, on page 187 of the same pa-
per, either the notation b, is unfortunate (see the
definition on page 184 of the paper), or the authors
forgot to insert a factor 25/2 which might be another
cause for the fact that the final bounds are appre-
ciably smaller than they should be (8 instead of 15
for the first curve). Comparison of the M, bounds
for both bases reveals that the influence of a consid-
erably improved c;-value on the initially computed
upper bound is negligible. However, after reduction,
the influence is unmistakable, as can be seen from
the Mgn.g bounds. This is most noticeable in Ex-
ample 2.1, thus improving the final search effort for
integral points by a factor

(31° —1)/(17° — 1) ~ 36.77.

Since the curves of Examples 2.2 and 2.3 both have
rank 5, improvements are expected to be less signifi-
cant, as is indeed the case. Complete lists of integral
points are provided in [Gebel, Peth, and Zimmer
1994].

Example 3. In response to a request from Tzanakis,
Jaap Top briefly wrote down [Top 1996] examples of
some techniques for the construction of elliptic quar-
tics with many integral points. He kindly agreed to
let us use this material freely. Since we are mainly
interested in curves of higher rank, we restrict our
attention to the exemplary illustration of a method
explained in [Mestre 1991]. Following Top, consider
the 10 integers, 0, +1, £2, +3, +4, 4q, and put

F(X)=(X?—4¢X)(X?—1)(X?—4)(X*-9)(X>-16).

Next, write F'(X) = h(X)? — g(X), where h(X) =
X5 — 2¢gX* + --- with coefficients chosen in such a,
way that g(X) has degree 4. Since there is no more
to this than simply “completing the square”, g(X) is
uniquely determined. This g(X) has coefficients in
Zq] that can be explicitly worked out. Now observe
that when X = « is any one of the 10 roots of
F(X) = 0, then h(a)?> = g(«). This means that
[, h(a)/2] is a rational point on the curve given by
Y? = g(X). In particular, for variable g, all these
curves have at least 10 rational points. It is not
unreasonable to expect that some, if not most, of
these points will be independent. As it turns out,
for ¢ = 2 the rank is at least 4, for ¢ =3 and ¢ =4
the rank is at least 6, and for ¢ = 5 the rank is at
least 9.

In this example we shall consider the case ¢ = 3,
for which we obtain, after division by 4, the quartic
model

y? = 24784z* + 900962°
+114372x2 4 1376352 + 7096896. (15)

The minimal Weierstraf3 model for this curve is

v+ zy 4y =2® — 2® — 281594522 + 15511281951.
(16)

It is generally very hard to determine uncondition-
ally the rank and a basis for the Mordell-Weil group
of an elliptic curve of moderate or large rank with
trivial torsion. See footnote 5 in [Siksek 1995, Ex-
ample 5.2]. In fact the 2-descent which is necessary
to determine the rank is greatly hampered by the
absence of points of finite order. For our curve we
estimate that mwrank would take many hundreds of
days on a 75 MHz Pentium machine. However, as-
suming the Birch—Swinnerton-Dyer conjecture, the
Taniyama—Weil conjecture, and a suitable Riemann
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By (apecs) By (cq-optimal)

[—21/2, 14220] [—21/2,14220]

[612/59, —48170880/3481] (-3, 1890]

[-3,1890] [948/55, 157581648 /3025]
[~1, —2402] [—1, —2402]

- [

156/17, —3034080,289)
[—324/7, 15878304/49]

—328/51, 12035240,/2601]
[—36/7, 139680/49]

c1(By) 0.42489. .. 0.52127...
M, 5.84 x 10184 5.04 x 10144
My ... Mgga 78,13,12,12 62,11, 10, 10

TABLE 2. Top’s curve of rank 6, with equation y? = 24784z* + 90096x> + 11437222 + 1376352z + 7096896. Two
conditional Mordell-Weil bases By and B; are given. See Example 3.

conjecture, apecs quickly establishes the rank and
a Mordell-Weil basis for our curve.

Searching for points of low canonical height with
Seek(5000), it took no more than 15 minutes on
a 75 MHz Pentium to find a conditional basis By
(see Table 2) with ¢;(Bp) = 0.424899.... Although
not optimal, this c;-value is almost optimal, which
renders the present example less exciting than Ex-
ample 4. The search for the c;-optimal basis B;
took approximately 20 minutes on the same Pen-
tium: 178 qualifying B-matrices were discovered,
all of which split. Most of the computation time
went into the calculation of p-values to 1500 digits
precision (almost 5 hours), the first LLL-reduction
step with the same precision (2 hours), and the final
search, which was done on a 133 MHz Pentium (ap-
proximately 29 hours). This search revealed exactly
14 integer solutions [z,y] with y > 0 on the quar-
tic (15). Particulars of our calculations are listed in
Table 2.

Although we did not set out to do this at first,
being at it, we decided to continue and compute all
integral solutions of the minimal Weierstrafl equa-
tion (16) as well. We were rather surprised to find
no fewer than 186 of them! For these calculations
we used basis B; of Table 2, properly transformed to
fit Weierstrafl equation (16) of course. Further, the
LLL-reduction process, starting with initial upper
bound M, = 5.04 x 10*** and applied several times,
produced reduced bounds of 62,11, 10, 10. The con-
cluding final search took no more than 1 hour on
a 133 MHz Pentium. We first used inequality (3)
to exclude all 6-tuples with at least one component

absolutely larger than 6 (see the inequality trick on
page 147). There is no point in listing all 28 inte-
gral solutions of (15) and all 186 integral solutions
of (16): they can be reproduced without much effort
at any moment, because, as it turns out, the abso-
lute coefficients |m;| never exceed 2. A complete list
of solutions may be obtained from Stroeker’s home-
page (see address at end of paper).

Here we make an important general remark about
the way we carried out the final search for curves
of moderately large rank. This remark particularly
applies to Example 3 and the two further examples.
The final search is about finding all integral r-tuples
(mq,...,m,) satisfying |m;| < M fori = 1,...,r
and some small value of M, and for which the cor-
responding point (1) has integral coordinates with
respect to the specific model of the elliptic curve
represented by our diophantine equation. At first
we thought this could easily be done by Pari or
apecs, both of which have procedures for calculating
linear combinations of points (1) symbolically. We
were too optimistic, which we could have foreseen,
since symbolic computations are extremely costly in
terms of CPU time. Although Pari is much faster
than apecs, both demand far too much computing
time to be of much practical use for our final search
computations. Therefore, we turned to the Uba-
sic language, which combines a very large numeri-
cal precision with fast numerical computations. We
wrote a search procedure in Ubasic code in which
linear combinations of rational points on the curve
are calculated with floating point arithmetic to, say,
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50 decimal digits precision. A point is recognized
by the Ubasic code as integral if its coordinates x, y
(with respect to the relevant equation) differ from
their nearest integers by at most 1072°. In Exam-
ples 3, 4, and 5 all prospective integral points thus
detected were checked by apecs and turned out to
be truly integral.

Example 4. We consider a curve taken from the collec-
tion of Jim Buddenhagen, given by the short Weier-
straf3 form

y* = 2® — 20932z — 330140. (17)

First, it is easy to show that this curve has trivial
torsion. Next we used John Cremona’s mwrank to
determine the rank of this curve. After running for
about 20 minutes on a Sun SparcStation 4 this pro-
gram proved the rank to be 7 and it produced the
possible basis By for the Mordell-Weil group (see
Table 3).

Further, mwrank tells us that By generates a sub-
group of the Mordell-Weil group of odd index m.
However, the upper bound of 23.34 for the canoni-
cal height of possible extra generators is too large
to hope for a quick settling of the Mordell-Weil
basis uncertainty about By. The least eigenvalue
c1(By) of the Grammian height-paring matrix hap-
pens to be extremely small, so even if we could show
that m = 1, and consequently that B, is indeed
a basis, it would not be a very good basis for our
purpose. So we let apecs 4.2 search for points of
small canonical height with the Seek command and

with its parameter set to 5000. After a few min-
utes this turned up B;, which generates the same
subgroup as By, because the determinants of the
Grammian height-pairing matrices of By and B; are
equal, namely R = 1491.0120.... This B; gives a
much better ¢;-value. Again using apecs we estab-
lished the following inequality between the canonical
and logarithmic heights:

h(P)—1h(P)>—-0.69314 for all P€ E(Q). (18)

Searching for points P € E(Q) of logarithmic
height < 5.5 only takes a few seconds and produces
a list of 30 points, all of which have canonical height
> 2.05, except one, namely [—18,202] of canoni-
cal height 2.04754.... By (18) we deduce that any
point P of canonical height less than 2.0475 has log-
arithmic height less than 5.5. Since none was found
in our search, there are no such points. Now we use
Theorem 3.1 of [Siksek 1995] in a slightly adapted
form, because the canonical height function Siksek
uses differs from the one we use by a factor 2. This
yields the following inequality for the index m:

64-R \*
< (221 ) <9993
= ((2-2.0475)7> < 2223

Since m is odd, m can only be 1 and this proves that
B; is indeed a basis for the Mordell-Weil group.
Starting with B;, we used our algorithm described
in the previous section and after a brief search we
found the c¢;-optimal basis By. The corresponding
c¢1-value improves the original ¢;(B,) by a factor
35! It is now a matter of seconds to produce the

By (mwrank) B (apecs) By (cp-optimal)
(1336, 48542 [—18,202] [—16, 26]
(672, 17002 [—22, 346] (2849, 151871]
(656, 16378] [—62, 854] [232,2702]
528, 11654] [—66, 874] [—114,758]
280, 3970] [—70,890] [—66, —874]
[—16, 26] [—16, 26] [—136, —34]
24658, 3871946] [—24, 398] [402, —7498]
c1(B;) 0.01785... 0.25397... 0.60346 . ...
My 7.95 x 1080 2.10 x 1080 1.37 x 1080
M ... Mgna 407,69, 66, 65, 65 108,17,15,15 69,11,10,10

TABLE 3. Buddenhagen’s curve of rank 7, with Weierstrafl equation y? = 2®—209322—330140. Three Mordell-Weil

bases By, By, and By are given. See Example 4.
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first upper bound M, for the coefficients m;, for
1 =1,...,7. After that the reduction process pro-
duces a final bound Mgz, = 10. This would have
been much larger, namely 65, if we had started with
By, the basis turned up by mwrank. Finally, we did
a brute force search for all 7-tuples (my,...,m7) in
the range —10 < m; < 10 with my; > 0, generating
integral points (1) with 7, = O. After running on a
133 MHz Pentium for about three days a grand total
of 2 x 88 integral points (z,y) were found.

As it happens, this final search could have been
speeded up significantly if we had applied a sim-
ple but very effective trick, which we now describe;
we call it the inequality trick. Note that for every
7-tuple (my,...,mz) corresponding to an integral
point (1), inequality (3) must be satisfied. The trick
now is based on the heuristic observation that this
inequality is rarely satisfied for points (1) with at
least one large coefficient m;. The reason is that
the elliptic logarithms wu; are more or less randomly
distributed —at least we see no reason to assume
otherwise—so that the linear form L(P) is rarely
very small. In the present example it works as fol-
lows. Suppose that (my, ..., my) generates an inte-
gral point and let |m;| > 6 for at least one . Then,
in view of (3), the absolute value of the linear form

L(P):L(m1P1—|—+m7P7)

must be bounded from above by 1.919-10~7. Check-
ing whether one 7-tuple (my,...,m7) in the range
—10 < m; < 10 (with m; > 0) satisfies this condi-
tion or not is considerably less time consuming than
checking the corresponding point (1) for integrality.
After 7 hours and 35 minutes, a mere 1633 out of
almost a billion 7-tuples passed the inequality test
and the corresponding points (1) were subsequently
tested for integrality. This took no more than 1
minute CPU time and revealed no integral points.
The remaining search for 7-tuples in the reduced
range —5 < m; < 5 took only 54 minutes and pro-
duced all integral points. Consequently, the initial
computing time of more than three days was shrunk
to less than 8 hours. An analogous trick could have
been applied to Top’s quartic curve of Example 3.

Again we omit a complete listing of all integral so-
lutions as max;<;<7 |m;| = 2; they may be obtained
from Stroeker’s homepage.

Example 5. Among the several exciting examples of
elliptic curves of large rank given in [Siksek 1995], we
have selected the curve of rank 8 from Example 5.3.
Its minimal Weierstrafl equation is

y® +xy = 2* — 5818216808130
+5401285759982786436. (19)

This curve is due to Kretschmer [1986], but it is
Siksek who proves without assuming any conjecture
that its rank is 8, and who gives an unconditional
Mordell-Weil basis, called By in Table 4. Though
the situation here is more advantageous than in Ex-
ample 3, because the curve has 2-torsion, it was
no easy matter to establish without any condition
whatsoever that By is a Mordell-Weil basis modulo
torsion. It came as no surprise to us that this basis
is not c¢;-optimal. Running our c¢;-optimal program
with multiplication factor A = 1 for this basis soon
made us realize that the number of qualifying B-
matrices is way too large. So, repeating the process
of using different values for A and stopping as soon as
we found a few good B’s, after a few steps turned up
the free basis B; of Table 4 with improved c;-value.
Starting with this basis, and using A = 1, it took
approximately 5 hours on a 75 MHz Pentium to find
10 qualifying B’s, 9 of which split. This produced
the c;-optimal free basis B,.

The first reduction step was executed in 2500 dig-
its precision, which took approximately 34 hours
CPU time on a Sun Sparcstation 4; this included the
time needed to calculate the ¢-values to the same
precision. The final search for integral points

8
P=>"mP, +eQ,
i=1
where {P,..., P} is the cj-optimal free basis, @ =
[1402932, —701466] generates the torsion group, € €
{0,1}, and m; € Z with |m;| < 8 for: = 1,...,8,
would have taken a few weeks of computing time on
a 133 MHz Pentium had we not applied the inequal-
ity trick mentioned in Example 4.

In the present example this trick works as fol-
lows. Assume (my,...,ms) generates an integral
point and let |m;| > 5 for at least one ¢. Then for
this point (1) (where Tj is either O or @) inequality
(3) must be satisfied with 8.09 - 10~? in the right-
hand side. All 8-tuples in the range —8 < m; < 8
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By (Siksek) By (c1-improved) By (c1-optimal)
[1410240 —29977314] [1365048 51389034] [ 2520768, 2013726114]
[1704648, —661672482] [1437384,88804830) [1410240, —29977314]
[1421184, —55353570] [1284264, —218219910] [1145136,489626526]
S US  B B e DUOVOUN S0 PR O
s, nswosng | | D i | | (sl wrgr
(975216, 808674546] - : 07366953 [ ]
[7028688 —17659711842] [1404150 9858594] [1368480 45144546]
2623596, —1613325930] | [1368480, —45144546] [G37573719058  1300151490263611522
ci(Bi) | 0.13586... 1.17637 . .. 1.20392. ..
My | 2.59 x 10225 8.77 x 10224 8.67 x 10224
My ... Mapa | 176,27,25,25 60,9,8, 8 59,9,8, 8

TABLE 4. Siksek’s curve of rank 8, with Weierstrafl equation y2+xy = 22 —5818216808130x+5401285759982786436.

Three Mordell-Weil bases mod torsion are given: By, By, and By. See Example 5.

were checked; this took almost 33 hours and of all
relevant 8-tuples only 14277 with Ty = O and 14130
with Ty = (@ satisfied the required inequality. A
few minutes CPU time proved that no such 8-tuple
corresponds to an integral point.

It remained to search for all integral points among
those corresponding to 8-tuples in the range —4 <
m; < 4. This took 3 hours and 40 minutes in case
Ty = O and produced 2 x 21 integral points, and
5 hours and 43 minutes were needed for the case
Ty = @ which found another 2 x 13 + 1 integral
points. The factor 2 is explained by the fact that for
any point (z,y) on (19), (z, —x—y) is also a point
different from (z,y), except when (z,y) = Q. All
integral solutions satisfy max;<;<g|m,;| = 1; for a
complete listing see the first author’s homepage.
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